
Building steady-state simulators via hierarchical feedback
decomposition

Nicolas Rouquette
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M/S 525-3660

Pasadena, CA 91109
Nicolas.Rouquette@jpl.nasa.gov

Abstract

In recent years, compositional modeling and self-
explanatory simulation techniques have simplified the
process of building dynamic simulators of physical sys-
tems. Building steady-state simulators is, conceptu-
ally, a simpler task consisting in solving a set algebraic
equations. This simplicity hides delicate technical is-
sues of convergence and search-space size due to the
potentially large number of unknown parameters. We
present an automated technique for reducing the di-
mensionality of the problem by 1) automatically iden-
tifying feedback loops (a generally NP-complete prob-
lem), 2) hierarchically decomposing the set of equa-
tions in terms of feedback loops, and 3) structuring
a simulator where equations are solved either serially
without search or in isolation within a feedback loop.
This paper describes the key algorithms and the re-
sults of their implementation on building simulators
for a two-phase evaporator loop system across multi-
ple combinations of causal and non-causal approxima-
tions.

Introduction
Recent advances in model-based reasoning have greatly
simplified the task of building and using dynamic
simulators of physical systems (Nayak 1993; Forbus
& Falkenhainer 1995; Amador, Finkelstein, & Weld
1993). While the usefulness of dynamic simulators is
well established in various fields from teaching to high-
fidelity simulation, steady-state simulators are charac-
terized by low computational requirements (i.e., that of
solving a set of equations only once) which makes them
attractive for a wide range of engineering analyses such
as stress tolerance, sensitivity, and diagnosis (Biswas
& Yu 1993). However, building steady-state simulators
can be a challenging task dominated by issues related
to the existence of numerical solutions, the physical
interpretability of the solutions found and the conver-
gence properties of the simulator (Manocha 1994).

Building a steady-state simulators is conceptually a
simple task, that of solving N algebraic equations in
M < N unknown parameters with respect to N - M
known parameter values. This simplicity hides the
computational and numerical task of efficiently and

accurately searching a solution in a space as large as
M dimensions. There are two extreme approaches for
solving a set of algebraic equations: the brute-force ap-
proach uses an algorithm to search the numerical so-
lution in the M-dimensional space of possible values;
the clever approach seeks to identify closed-form alge-
braic formulae for computing the unknown parameters
in terms of the known values. This paper presents an
intermediate approach relying on an automated tech-
nique for reducing the dimensionality of the original
search space thereby greatly simplifying the task of
selecting numerical algorithms and initial solution es-
timates. This is achieved by 1) automatically iden-
tifying feedback loops, 2) hierarchically structuring a
equation solver where groups of equations are solved
either serially or independently from each other and 3)
structurally merging the modeler’s choice of algorithms
and initial estimates with the feedback decomposition
to build the steady-state simulator.

The construction of high-performance hierarchical
steady-state simulators is organized as an operational-
ization process transforming the steady-state model
into numerical simulation software. The former is a
non-computable, unstructured, conceptual specifica-
tion of the latter which is is a computable, structured,
pragmatic description of the former. In doing so, we
elicit engineering understanding of feedback loops re-
lated to closed-loop circuits (physical loops) or interde-
pendent equations (algebraic loops). In varying mod-
eling assumptions, we earnmark conceptual progress in
tuning modeling assumptions not only to the purpose
of the model and the conditions of the physical system
but to the various numerical and physical aspects of
the simulator (initial estimates, speed of convergence,
and physical interpretability of solutions). Therefore
this approach enables modelers to progress on con-
ceptual and cognitive fronts; the alternance of which
is characteristic of the cyclic nature of the modeling
process from theory formation and revision, to experi-
mentation, evaluation and interpretation as described
in (Aris 1978). Like all modeling tools, efficiency is
a practical concern. Consequently, we have limited
the hierarchical feedback decomposition technique to a

Qualitative Physics 991

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

tractable domain of models where the algorithms have
polynomial-time complexity and efficient implementa-
tions.

As an unstructured collection of equations, a model
is computationally unoperational for there is no indi-
cation of which values must be computed when. The
first step of operationalization consists in determining
a partial ordering of computations; a process we call
algebraic ordering whose emphasis on numerical com-
putability distinguishes it from a physical notion of
causation behind the process of causal ordering. We
first presents a very efficient algorithm for comput-
ing algebraic orderings as a maximum flow problem
through a network. This ordering produces a graph
of algebraic dependencies among parameters. The key
contribution of this paper is in an algorithm that de-
composes parameter dependency graphs to elucidate
the hierarchical feedback structure of the equation
model. Knowledge of this structure can be exploited in
many ways; we show here how it serves the purposes of
constructing low-cost, high-performance steady-state
simulators.

Algebraic ordering
In numerical analysis, it is well known that there is
no general-purpose, universally good numerical equa-
tion solving algorithm (Press et al. 1992), there is
only an ever-growing multitude of algorithms with var-
ious abilities in specific domains and for specific types
of equations. For steady-state simulation, this vari-
ety poses a pragmatic problem; choosing the right al-
gorithm for the job becomes more and more difficult
as the size of the model grows. To efficiently reason
about the possible ways to construct a simulation pro-
gram for a given set of algebraic equations, we define
the notion of an algebraic ordering gruph that captures
how each parameter of the model algebraically depends
on the values of other model parameters via the al-
gebraic model equations. Our notion of algebraic or-
dering bears close resemblance to that of causal order-
ing (Nayak 1993; Iwasaki & Simon 1993) and relevance
in modeling (Levy 1993). These three notions of or-
dering share a common representation where an equa-
tion, E: PV = nRT, yields the following parameter-
equation graph (left):

where edges indicate possible relations of physical
causality and algebraic relevance between parameters
and equations. Here, we focus on algebraic compu-
tation instead of physical causality and we explicitly
distinguish two types of relations (above right). One

where an equation can compute a parameter value
(solid edges) and another where an equation needs
other parameter values to perform such computations
(dashed edges).

This allows us to distinguish several ways to numeri-
cally compute parameter values. An equation e can di-
rectly constrain a parameter value p if e is algebraically
solvable with respect to p. An equation e indirectly
constrains a parameter value p if e is not algebraically
solvable with respect to p. For example, the equation:
y = fi can directly constrain y for a given x since the
solution is unique. This equation indirectly constrains
x for a given y since there two possible solutions in x.

Although, it is preferable to compute all model pa-
rameters through direct constrainment, it is not always
possible to do so. The combinations of possible direct
and indirect constrainment relationships lead to three
categories of parameter constrainment: 1) A parameter
may not have any equation directly constraining it; we
say it is under constrained because its solution value
must be guessed as there is no way to directly com-
pute it. 2) When a parameter is directly constrained
by exactly one equation, we say it is properly construi-
ned because its value is unambiguously computed by
solving a unique equation. 3) When multiple equations
directly constrain the same parameter, we say it is over
constrained because there is no guarantee that all such
equations yield the same numerical value unless other
parameters of these equations can be adjusted.

An equation can only be solved with respect to a
single parameter; thus, there are only two possible con-
strainment categories: 1) A properly constrained equa-
tion e of n parameters properly constrains exactly one
parameter p if p is computed numerically or analyti-
cally by solving e with respect to values for the other
n - 1 parameters. 2) An equation e of n parameters
which constrains no parameter is said to be over cons-
trained: there is no guarantee that the values given to
the n parameters satisfy e unless some of the parameter
values can be adjusted.

We have established a validity test for a set of equa-
tions and parameters which determines when a set
of indirect and direct constrainment relationships is
solvable (See Ch. 4 in (Rouquette 1995)). If all pa-
rameters and equations were properly constrainable,
then a bipartite matching approach (e.g., (Nayak 1993;
Serrano & Gossard 1987)) would suffice to establish
a valid order of computations. To account for pos-
sible over and under constrainment, we defined an
extended bipartite matching algorithm which ensures
that each case of over constrainment is balanced by
an adequate number of adjustable under-constrained
parameters thereby resulting in a valid, computable
ordering.

Extended bipartite matching

Algorithm 1 constructs a network flow
match parameters and equations (Step 1

graph F to
and 2). Step

992 Model-Based Reasoning

3 creates paths between s and t for each exogenous pa-
rameter. The key difference with Nayak’s algorithm is
in the construction of paths corresponding to the possi-
ble constrainment relationships among equations and
parameters. By default, equation ej could be solved
iteratively to find the value of one of its parameters
pi E P(ej) (pi + eydirect + ej). For a given ej, at
most one pi E P(ej) can be computed in this man-
ner. If an equation ej can properly constrain a pa-
rameter pi, then there is a path: pi + eyirect + ej
in F (Step 4). Since all paths have unit capacity, the
paths pi -+ elidirect + ej and p; + eydirect -+ ej for
all pi’s and ej s are mutually exclusive. This property
confers to a maximum flow the meaning of a bipartite
matching between the set of equations and parameters
(step 5) as is also used in Nayak’s causal ordering al-
gorithm. Further, the costs associated to paths allow a
maximum flow, minimum cost algorithim to optimize
the use of direct computations as much as possible.
Finally, the results of the matching are used to define
the edges of the algebraic ordering graph (step 7). For
models where the equations are causal, it follows that
an algebraic ordering is identical to a causal ordering
when every non-exogenous parameter is directly com-
puted.

As an example, we consider the following hypothet-
ical set of algebraic equations:

el fl(pl, p2, p3, p8) = 0 ez5 exogenous(P5)
e2 fi(p2, p7) = 0 ez6 exogenouS(p6)

e3 f3(P3, p4) = 0 e7

e4 f4(P4, P5) = 0 e8

.iji$h 2;2\= 0

8 5, 8 -

Suppose that e2 is solvable in P7 but not P2 and that
e4 is solvable in P5 but not P4. The extended bipartite
matching graph for this example is shown in Fig. 1.

Intuitively, Alg. 1 combines the idea of using a per-
fect matching as a validity criteria and the flexibility
of both direct and indirect computations. Edges of
the form (e, p) represent direct computations where the
value of p is computed by e as a function of some ar-
guments. Edges of the form (p, e) represent indirect
computations where the value of p is constrained by e:
the solution value of p is computed by search.

If the algebraic ordering graph were acyclic, a topo-
logical ordering would define an adequate order of com-
putations. With cycles, the key to globally order com-
putations is to relate the topological structure of the
graph to feedback loops.

Feedback
Feedback is a property of the topological interdepen-
dencies among parameters.

Parameter Dependency Graph
Definition 1 (Algebraic dependency) A
parameter p’ depends on p, noted by p - p’, iff there
exists an equation e such that p E P(e) and p’ E P(e)

Input: A parameter-equation graph G = (V, A)
Output: A predicate: EBM(e,p) for e E E and p E P(e).
1)
2)

3)

4

5)

6)
7)
74
W
8)

Create a network flow graph F = (Vf , Af).
Vf = V U{edirect, eindirect 1 e E E} U{s, t}
(S and t are respectively the source and sink vertices)
Af = Pf U Ef where:
pr = {(%I4 I P E PI u

UP, e4, (e9, t) I P E P A exogenous(p)}
Ef = {(edirect, e), (eindirect, e), (e, t) 1 e E E}
Each path s + p + ezP + t (p exogenous)
has unit flow capacity and zero cost.

direct Edges between pi and ei, = e;
are-defined as follows:

and e;, = efndlrect

path: cost& capacity=1
From: To:

path: cost= 1, capacity=1

Apply a min. cost, max. flow algorithm on F
Nonzero transhipment nodes are:
- the source, s, with b(s) = IPI
- the sink, t, with b(t) = -IPI.
If f(s, t) < IPI then return 0
Define EBM() f rom the maximum flow topology:
EBM(P;, ej, indirect) holds iff f(Pi, eFdirect) = 1
EBM(Pi, ej, direct) holds iff f(Pi, ejdirect) = 1
Return EBM()

Algorithm 1: Extended bipartite
strutting an algebraic ordering.

matching for con-

(i.e., p and p’ are parameters of e) and
EBM(p’, e, direct) holds.

The dependency digraph Gd = (Pd, Ed) corre-
sponding to an algebraic ordering digraph G’ = (V =
P U E, A’) is defined as follows:
e Pd = {p/p E P A lexogenous(p))

Q Ad = {(P,P’) IP,P’ E PdAp-+ p’}

For notation convenience, we say that p w* p’ when
there exists a sequence of parameters, p = pl, . . . , p, =
p’ such that

P = PI Q p2 - - *p,-1 - p,.

For the 7-equation example, we have the following
parameter-dependency graph:

where parameters P4 and P2 are under-constrained
while PI is over constrained. The validity of this

Qualitative Physics 993

Figure 1: Extended bipartite matching for the 7- ,
equation example. The minimum cost, maximum flow
solution is drawn with solid edges.

ordering stems from the proper balancing between
over and under-constrained parameters. Indeed, there
are 3 ways to compute a value of Pi, two of which
(P4 + P3 + PI, P2 + PI) can be relaxed to match
the value derived from the exogenous parameter P5
(P5 + P8 + Pl).

Hierarchical Feedback Decomposition

Intuitively, feedback occurs when there exists at least
two parameters p and p’ in the dependency graph Gd
such that p +* p’ and p’ u* p hold in Gd. Feedback
is described by various terms in various scientific dis-
ciplines and engineering fields. Terms such as closed-
loop circuit (as opposed to an open-loop circuit), cir-
cular dependencies, closed-loop control, circular state
dependencies, and state or control feedback are com-
monly used. Here, we follow some basic ideas of system
theory (Padulo & Arbib 1974) and concepts of connect-
edness of graph theory (Even 1979) to distinguish two
types of feedback structures, namely state (left) and
control (right) as shown below:

In a state feedback loop, input parameters, x, af-
fect the output parameters, y, through a feedforward
transformation. In a dependency graph, we will have:
x CL)* y. The feedback transformation in turns makes
the inputs x dependent on the outputs y, or: y w* x.
A control feedback loop is similar to a state feedback
loop except that the feedback transformation (usually
the controller) uses both inputs x and outputs y inputs,
i.e., 2, y ** 2.

Operationalixing Feedback

Except for degenerate cases, a feedback loop must be
solved iteratively for it corresponds to a system of
N 1 2 equations in N unknown parameters. Opti-
mizing the solution quality and its computational cost
requires making a number of choices for each feedback
loop in terms of numerical algorithms, initial solution
estimates, and convergence criteria. Addressing these
issues globally can be very difficult. With a decompo-
sition of the model in terms of a hierarchy of feedback
loops, we can address these issues in two phases: one
for the model subset corresponding to a given feed-
back loop and another for the structure of the model
encompassing this loop. Typically, the former focuses
on finding a solution for the feedback loop while the
latter addresses convergence issues at a global level.

Unfortunately, identifying feedback in an arbitrary
graph is an NP-complete problem. Fortunately,
lumped-parameter algebraic models of physical sys-
tems are typically sparse (due to lumping) and have
a low degree of connectivity (because most physical
components have limited interactions with neighbor
components). Combined with the fact that most man-
made devices are often engineered with closed-loop
control designs, it is quite common for the correspond-
ing dependency graphs of such models to be decom-
posable in terms of feedback loops.

Breaking feedback loops apart

The algebraic dependency relation defined for Gd in-
duces an equivalence relation. By definition, two pa-
rameters pl and p2 are in the same equivalence class iff
PI -* ~2 and ~2 -* P 1. These relations are character-
istic of state and control feedback loops. Thus, feed-
back loops are strongly-connected subgraphs of Gd; the
converse is not truel. Thus, we now define a struc-
tural criterion for recognizing feedback loops. In (Even
1979), a set of edges, T, is an (a,b) edge separator iff
every directed path from a to b passes through at least
one edge of T. Then for a strongly-connected compo-
nent C, consider the smallest 2 such that, C - T is ei-
ther unconnected or broken into two or more strongly-
connected subcomponents. For a given pair, a, b, we
call such a subset T a one-step optimal edge separator.2

With the one-step optimal edge separator, we can
solve a restricted version of the feedback vertex prob-
lem in polynomial time. Algorithm 2 shows how to
remove optimal edge separators to analyze the topo-
logical structure of a graph G. The algorithm stops
if G is not separable with the optimal edge separa-
tor (step 1). Consider G’ = (V, A - T). By def-
inition of an optimal edge separator, T will break

‘A fully-connected graph is not a feedback loop.
20ne-step because we make a single analysis of how re-

moving 7’ affects the strong connectivity of the given sub-
graph. See (Rouquette 1995, Ch. 6) for a polynomial-time
algorithm.

994 Model-Based Reasoning

apart the strongly-connectedness of G. If G’ is no
longer strongly-connected, G is in fact a simple feed-
back loop (step 3). If G’ is still strongly-connected, we
need to analyze the remaining structure of G’. First,
we remove the strongly-connected components already
found (step 4). 3 Let G” be the remaining subgraph
(step 5). We consider two cases according to the
connectivity of G”. If G” is not strongly connected,
G has a 2-level hierarchical structure (if there are 2
or more sub-components) or a ‘L-level nested struc-
ture (if there is only one sub-component) (step 7).

If G” is strongly connected, it must have a single
component, RCC4. Topologically, either RCC only
shares vertices with the other sub-components already
found (i.e.,CCS) (step 8) or it is distinct from them.

In the latter case, we need to abstract the sub-
component already found CC1 , . . . , CC,, RCC into - --
equivalence class vertices Ci , . . . , C,, R so that we can
further analyze the remaining struct-ure of G” (step 9).
Since G was strongly-connected, G is also strongly-
connected (step 10). The algorithm stops if this ab-
stract component, k, is not decomposable (step 12).
Otherwise, we map to-the base level graph_ G the op-
timal edge separator S that breaks apart K (step 13).

Note that the DAD algorithm is recursive for we also
need to analyze the structure of the strongly-connected
sub-components of G found (steps 7,8,14). The re-
cursion stops if a strongly-connected component has
either 1) the structure of a state or control feedback
loop (step 3) or 2) a more complex structure than that
of a feedback loop (steps 1,12).

Hierarchical Feedback Example

3We use the notat’ ion A(X) to mean ‘the set of edges of
the subgraph X’.

4This follows from having removed all components found
earlier (step 5) and from the nature of an optimal edge
separator.

Input: G = (V,A), a strongly-connected digraph
Output: The hierarchical feedback tree

(HFT) decomposition of G
1) Let T be a one-step optimal edge separator of G;

HFT=ComplexFeedback(G) if T = 0.
2) G’ = (V, A - T) (remove 2’ from G).
3) HFT=Feedback(G,T) if G’ is not strongly connected.
4) Let CCS = {Ccl, . . . , CCn} be the remaining

strongly-connected components of G’
5) G” = (v A - (UCCECCS A(m))) (remove CCS from G)
6) If G” is strongly-connected, go to step 8.

7) HFT=
1

*f&G, T, UCC~CCS IlAD(if n > 1
Nested(G, T, DAD(CC1)) ifn=l

8) G” has a single strongly-connected component RCC.
HFT= *gg(G T, DAD(RCC) u UccECCS DA%c)))

if A(G”) - A(RCC) = 8.
9) Let 2;; be an abstract vertex representing CC;.

Let E be an abstract vertex representing RCC.
Let e = (v, 2) the abstract graph of G
v= {El)...) ErL,ii}.
2 is defined according to paths among CCS U{ FCC}.

10) Let E be the strongly-connected component of G.

Let ,? be the optimal edge separator of k
12) HFT=ComplexFeedback(G) if g = 8.
13) Let S C A be the base edges corresponding to ,!?.

14) HFT= Aggr(G, S, u DAD(cc) u DAD(RCC))
CCECCS

Algorithm 2: DAD: Decomposition and Aggregation
of Dependencies

As an illustration example, we show in Fig 2
a schematic diagram of the evaporator loop of a
two-phase, External-Active Thermal Control System
(EATCS) designed at McDonnell Douglas. Liquid am-
monia captures heat by evaporation from hot sources
and releases it by condensation to cold sinks. The
venturis maintain a sufficiently large liquid ammonia
flow to prevent complete vaporization and superheat-
ing at the evaporators. The RFMD pump transfers
heat between the two-phase evaporator return and the
condenser loop (not shown). A model of the EATCS
presented in (Rouquette 1995) yields a parameter-
dependency graph of 55 parameters, 18 exogenous and

Figure 2: The evaporator loop of the External-Active
Thermal Control System.

Qualitative Physics 995

37 unknowns paired to 37 equations. A brute-force
simulation approach consists in solving the 37 equa-
tions for the 37 unknown parameters-at the cost of
finding 37 initial value estimators for each unknown.
The DAD algorithm finds a 2-level feedback decompo-
sition shown-in Fig. 3.

This essentially amounts to determining, at problem-
solving time, how to prioritize the unknown parameters
to work on. In contrast, the hierarchical decomposition
determines these priorities once and for all at com-
pile time. With hierarchical decomposition, higher-
level feedback loops effectively act as constraints on
the possible values lower-level feedback parameters can
take. This process is similar to the gradient-descent
techniques used in numerical algorithms. The key dif-
ference is that a gradient-descent algorithm is contin-
uously guessing the direction where the solution is.
With hierarchical-feedback decomposition, there is no
guesswork about the whereabouts of the solution; the
hierarchical equation solver is built to find it in a very
organized manner specified at compile-time instead of
run-time.

Venturi/Evaporator

(pressure) -> flow

Figure 3: Physical and nested algebraic feedback loops.

With this feedback hierarchy, we now turn to pro-
ducing a steady-state simulation, i.e., an equation
solver for all the model equations. The modeler needs
to choose for each feedback loop which subset of pa-
rameters will characterize its state5 with the constraint
that state parameters must be a graph cutset of the
feedback loop 6. Other issues influence the choice of a
feedback cutset as a state vector: numerical conver-
gence, stability and speed. For example, in Fig. 3, the
modeler chose the pressures at each loop, namely, Pr ,
Pz, and Ppitot, because the pressures have the widest
range of behavior across possible states. Flow rates
would be a poor choice because they are mostly con-
stant during nominal circumstances.

To produce the final hierarchical equation solver, the
modeler must provide for each feedback loop the fol-
lowing information: 1) a state vector of parameters;
2) an initial function to compute the initial state vec-
tor values (this function can only use the exogenous
parameters relative to the feedback loop.) and 3) a
numerical algorithm to find the final feedback param-
eter values from any state vector estimate7 Without
decomposition, the equation solver has all unknown
parameters to handle simultaneously. The gradient-
descent approach (?) is a method to guess where the
solution may be and focus the search towards there.

5The state parameter common to control and state feed-
back structures is a good candidate.

%e.,if state parameters are removed, the connectivity of
the loop is broken.

7See (Rouquette 1995) for algorithms to generate C hi-
erarchical equation solvers based on the above information.

For the EATCS, we start at Loopl. From Ppitot
we compute new estimates of the lower-level feedback
loop states (PI, P2). Then, Loop2 and Loop3 refine
PI and P2 to satisfy the algebraic feedback equations.
With this decomposition, search costs are effectively
divided among multiple feedback loops. Furthermore,
we are spared from continuously evaluating the next-
best direction to go as is done with gradient descent.
The charts below show experimental results demon-
strating that despite the lack of flexibility in determin-
ing the next-best parameters to adjust, the decomposi-
tion approach finds solutions of equal quality at much
lower computational cost, even for difficult solutions.
For each chart, we considered a series of 21 exogenous
conditions defined by pump speed, venturi diameters
(to analyze clogging conditions) and evaporator load.
As long as the model converges to a nominal state for
the EATCS, all three solvers are practically equivalent
(data sets 0 through 12). Data sets 13 and above corre-
spond to overload-conditions where the heat applied is
greater than what the evaporator loop can circulate. In
such cases, the initial estimates are quite far from the
actual abnormal solutions which implies more search.
In fact, the brute-force and intermediate solvers spend
several orders of magnitude more time searching only
to find wrong solutions. Only the hierarchical solver
managed to predict the temperature increase at the
evaporator outlet due to the overheating condition.

0.0495
Venturi 1 diameter, Phil (input) -

I ’ ’ ’ ’ - ’ ’ ’ ‘-1

0.049

0.0485 t

0.047

0.0465
t

Phil with linespoints 1; : 1

0.046 t
0.0455 e

0.045 f . - f * . ’ - * *
0 2 4 6 8 10 1’2 14 16 18 20

996 Model-Based Reasoning

Log of Residual Error
le+lO

brute-force -
intermediate .-+--

hiearchicd Q-

1

le-10
f

le-20 I

0 2 4 6 8 10 12 14 16 18 20
Data set

Equation-solving time
0.500

0.450

0.400

0.350

0.300

0.250

0.200

0.150

0.100

0.050

0.000
0 2 4 6 8 10 12 14 16 18 20

Data set
Evaporator 1 outlet temperature (Tl)

260 , r - a z - . 8 - - ,
brute-force G 1

220 - intermediate --F-- _
b 200 hiearchical .

180
ir

.
160 - d
140 -
120 d -

100 -
80 - _ _ _ _ _ _ _
60 -
40 ’ ’ ’ ’ * ’ ’ a ’

0 2 4 6 8 10 12 14 16 18 20
Data set

Conclusion
To describe the possible ways for solving a set of pa-
rameters from a set of algebraic equations, we pre-
sented the notion of algebraic ordering which is equiv-
alent to causal ordering if all equations are believed to
be causal. From an algebraic ordering, we constructed
a parameter-dependency graph and described a de-
composition algorithm based on analyzing the topo-
logical structure of the dependencies in terms of its
strongly-connected components. By carefully choosing
how to break apart such components, we showed how
to construct the hierarchical decomposition of the de-
pendency graph in terms of state and control feedback
structures. Once the modeler chooses state feedback
parameters and initial estimators for them, the set of
all equations is solved bottom-up by applying a cho-
sen equation solver according to the- hierarchical feed-
back decomposition found. Compared to knowledge-
free gradient-descent approaches to equation solving,
our knowledge-intensive approach seeks to elucidate
knowledge about feedback from the model itself to help
the modeler provide as much relevant equation-solving
knowledge as possible in terms of initial solution estc
mates and convergence metrics. Experimentally, this
produced faster, better, and cheaper simulation pro-
grams trading off an expansive and broad search space
(brute force approach) for a narrow, structured search

space (fewer independent parameters) thereby achiev-
ing greater computational efficiency without loss of ac-
curacy.

References
Amador, F.; Finkelstein, A.; and Weld, D. 1993. Real-
time self-explanatory simulation. In Proceedings of
the Eleventh National Conference on Artificial Intel-
ligence. The AAAI Press.
Aris, R. 1978. Mathematical Modeling Techniques,
volume 24 of Research notes in mathematics. Pitman.
Biswas, G., and Yu, X. 1993. A formal modeling
scheme for continuous systems: Focus on diagnosis.
In International Joint Conference on Artificial Intel-
ligence, 1474-1479.
Even, S. 1979. Graph Algorithms. Computer Science
Press.
Forbus, K., and Falkenhainer, B. 1995. Scaling up
self-explanatory simulators: Polynomial-time compi-
lation. In International Joint Conference on Artificial
Intelligence, 1798-1805.
Iwasaki, Y., and Simon, H. A. 1993. Retrospective
on causality in device behavior: Artificial Intelligence
Journal 141-146.
Levy, A. 1993. Irrelevance Reasoning in Knowledge
Based Systems. Ph.D. Dissertation, Department of
Computer Science, Stanford University.
Manocha, D. 1994. Algorithms for computing se-
lected solutions of polynomial equations. J. Symbolic
Computation ll:l-20.
Nayak, P. 1993. Automated Modeling of Physical Sys-
tems. Ph.D. Dissertation, Department of Computer
Science.
Padulo, L., and Arbib, M. A. 1974. System Theory.
W. B. Saunders Company.
Press, H.; Teukolsky, S.; W.Vetterling; and Flannery,
B. 1992. Numerical Recipes in C. Cambridge Univer-
sity Press.
Rouquette, N. 1995. Operationalizing Engineering
Models of Steady-State Equations. Ph.D. Disserta-
tion, Dept. of Computer Science, Univ. of S. Califor-
nia.
Serrano, D., and Gossard, D. 1987. Constraint man-
agement in conceptual design. In Sriram, D., and
Adey, R., eds., Knowledge Based Expert Systems in
Engineering: Planning and Design. Computational
Mechanics Publications. 211-224.

Qualitative Physics 997

