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Abstract 

In recent years, compositional modeling and self- 
explanatory simulation techniques have simplified the 
process of building dynamic simulators of physical sys- 
tems. Building steady-state simulators is, conceptu- 
ally, a simpler task consisting in solving a set algebraic 
equations. This simplicity hides delicate technical is- 
sues of convergence and search-space size due to the 
potentially large number of unknown parameters. We 
present an automated technique for reducing the di- 
mensionality of the problem by 1) automatically iden- 
tifying feedback loops (a generally NP-complete prob- 
lem), 2) hierarchically decomposing the set of equa- 
tions in terms of feedback loops, and 3) structuring 
a simulator where equations are solved either serially 
without search or in isolation within a feedback loop. 
This paper describes the key algorithms and the re- 
sults of their implementation on building simulators 
for a two-phase evaporator loop system across multi- 
ple combinations of causal and non-causal approxima- 
tions. 

Introduction 
Recent advances in model-based reasoning have greatly 
simplified the task of building and using dynamic 
simulators of physical systems (Nayak 1993; Forbus 
& Falkenhainer 1995; Amador, Finkelstein, & Weld 
1993). While the usefulness of dynamic simulators is 
well established in various fields from teaching to high- 
fidelity simulation, steady-state simulators are charac- 
terized by low computational requirements (i.e., that of 
solving a set of equations only once) which makes them 
attractive for a wide range of engineering analyses such 
as stress tolerance, sensitivity, and diagnosis (Biswas 
& Yu 1993). However, building steady-state simulators 
can be a challenging task dominated by issues related 
to the existence of numerical solutions, the physical 
interpretability of the solutions found and the conver- 
gence properties of the simulator (Manocha 1994). 

Building a steady-state simulators is conceptually a 
simple task, that of solving N algebraic equations in 
M < N unknown parameters with respect to N - M 
known parameter values. This simplicity hides the 
computational and numerical task of efficiently and 

accurately searching a solution in a space as large as 
M dimensions. There are two extreme approaches for 
solving a set of algebraic equations: the brute-force ap- 
proach uses an algorithm to search the numerical so- 
lution in the M-dimensional space of possible values; 
the clever approach seeks to identify closed-form alge- 
braic formulae for computing the unknown parameters 
in terms of the known values. This paper presents an 
intermediate approach relying on an automated tech- 
nique for reducing the dimensionality of the original 
search space thereby greatly simplifying the task of 
selecting numerical algorithms and initial solution es- 
timates. This is achieved by 1) automatically iden- 
tifying feedback loops, 2) hierarchically structuring a 
equation solver where groups of equations are solved 
either serially or independently from each other and 3) 
structurally merging the modeler’s choice of algorithms 
and initial estimates with the feedback decomposition 
to build the steady-state simulator. 

The construction of high-performance hierarchical 
steady-state simulators is organized as an operational- 
ization process transforming the steady-state model 
into numerical simulation software. The former is a 
non-computable, unstructured, conceptual specifica- 
tion of the latter which is is a computable, structured, 
pragmatic description of the former. In doing so, we 
elicit engineering understanding of feedback loops re- 
lated to closed-loop circuits (physical loops) or interde- 
pendent equations (algebraic loops). In varying mod- 
eling assumptions, we earnmark conceptual progress in 
tuning modeling assumptions not only to the purpose 
of the model and the conditions of the physical system 
but to the various numerical and physical aspects of 
the simulator (initial estimates, speed of convergence, 
and physical interpretability of solutions). Therefore 
this approach enables modelers to progress on con- 
ceptual and cognitive fronts; the alternance of which 
is characteristic of the cyclic nature of the modeling 
process from theory formation and revision, to experi- 
mentation, evaluation and interpretation as described 
in (Aris 1978). Like all modeling tools, efficiency is 
a practical concern. Consequently, we have limited 
the hierarchical feedback decomposition technique to a 
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tractable domain of models where the algorithms have 
polynomial-time complexity and efficient implementa- 
tions. 

As an unstructured collection of equations, a model 
is computationally unoperational for there is no indi- 
cation of which values must be computed when. The 
first step of operationalization consists in determining 
a partial ordering of computations; a process we call 
algebraic ordering whose emphasis on numerical com- 
putability distinguishes it from a physical notion of 
causation behind the process of causal ordering. We 
first presents a very efficient algorithm for comput- 
ing algebraic orderings as a maximum flow problem 
through a network. This ordering produces a graph 
of algebraic dependencies among parameters. The key 
contribution of this paper is in an algorithm that de- 
composes parameter dependency graphs to elucidate 
the hierarchical feedback structure of the equation 
model. Knowledge of this structure can be exploited in 
many ways; we show here how it serves the purposes of 
constructing low-cost, high-performance steady-state 
simulators. 

Algebraic ordering 
In numerical analysis, it is well known that there is 
no general-purpose, universally good numerical equa- 
tion solving algorithm (Press et al. 1992), there is 
only an ever-growing multitude of algorithms with var- 
ious abilities in specific domains and for specific types 
of equations. For steady-state simulation, this vari- 
ety poses a pragmatic problem; choosing the right al- 
gorithm for the job becomes more and more difficult 
as the size of the model grows. To efficiently reason 
about the possible ways to construct a simulation pro- 
gram for a given set of algebraic equations, we define 
the notion of an algebraic ordering gruph that captures 
how each parameter of the model algebraically depends 
on the values of other model parameters via the al- 
gebraic model equations. Our notion of algebraic or- 
dering bears close resemblance to that of causal order- 
ing (Nayak 1993; Iwasaki & Simon 1993) and relevance 
in modeling (Levy 1993). These three notions of or- 
dering share a common representation where an equa- 
tion, E: PV = nRT, yields the following parameter- 
equation graph (left): 

where edges indicate possible relations of physical 
causality and algebraic relevance between parameters 
and equations. Here, we focus on algebraic compu- 
tation instead of physical causality and we explicitly 
distinguish two types of relations (above right). One 

where an equation can compute a parameter value 
(solid edges) and another where an equation needs 
other parameter values to perform such computations 
(dashed edges). 

This allows us to distinguish several ways to numeri- 
cally compute parameter values. An equation e can di- 
rectly constrain a parameter value p if e is algebraically 
solvable with respect to p. An equation e indirectly 
constrains a parameter value p if e is not algebraically 
solvable with respect to p. For example, the equation: 
y = fi can directly constrain y for a given x since the 
solution is unique. This equation indirectly constrains 
x for a given y since there two possible solutions in x. 

Although, it is preferable to compute all model pa- 
rameters through direct constrainment, it is not always 
possible to do so. The combinations of possible direct 
and indirect constrainment relationships lead to three 
categories of parameter constrainment: 1) A parameter 
may not have any equation directly constraining it; we 
say it is under constrained because its solution value 
must be guessed as there is no way to directly com- 
pute it. 2) When a parameter is directly constrained 
by exactly one equation, we say it is properly construi- 
ned because its value is unambiguously computed by 
solving a unique equation. 3) When multiple equations 
directly constrain the same parameter, we say it is over 
constrained because there is no guarantee that all such 
equations yield the same numerical value unless other 
parameters of these equations can be adjusted. 

An equation can only be solved with respect to a 
single parameter; thus, there are only two possible con- 
strainment categories: 1) A properly constrained equa- 
tion e of n parameters properly constrains exactly one 
parameter p if p is computed numerically or analyti- 
cally by solving e with respect to values for the other 
n - 1 parameters. 2) An equation e of n parameters 
which constrains no parameter is said to be over cons- 
trained: there is no guarantee that the values given to 
the n parameters satisfy e unless some of the parameter 
values can be adjusted. 

We have established a validity test for a set of equa- 
tions and parameters which determines when a set 
of indirect and direct constrainment relationships is 
solvable (See Ch. 4 in (Rouquette 1995)). If all pa- 
rameters and equations were properly constrainable, 
then a bipartite matching approach (e.g., (Nayak 1993; 
Serrano & Gossard 1987)) would suffice to establish 
a valid order of computations. To account for pos- 
sible over and under constrainment, we defined an 
extended bipartite matching algorithm which ensures 
that each case of over constrainment is balanced by 
an adequate number of adjustable under-constrained 
parameters thereby resulting in a valid, computable 
ordering. 

Extended bipartite matching 

Algorithm 1 constructs a network flow 
match parameters and equations (Step 1 

graph F to 
and 2). Step 
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3 creates paths between s and t for each exogenous pa- 
rameter. The key difference with Nayak’s algorithm is 
in the construction of paths corresponding to the possi- 
ble constrainment relationships among equations and 
parameters. By default, equation ej could be solved 
iteratively to find the value of one of its parameters 
pi E P(ej) (pi + eydirect + ej). For a given ej, at 
most one pi E P(ej) can be computed in this man- 
ner. If an equation ej can properly constrain a pa- 
rameter pi, then there is a path: pi + eyirect + ej 
in F (Step 4). Since all paths have unit capacity, the 
paths pi -+ elidirect + ej and p; + eydirect -+ ej for 
all pi’s and ej s are mutually exclusive. This property 
confers to a maximum flow the meaning of a bipartite 
matching between the set of equations and parameters 
(step 5) as is also used in Nayak’s causal ordering al- 
gorithm. Further, the costs associated to paths allow a 
maximum flow, minimum cost algorithim to optimize 
the use of direct computations as much as possible. 
Finally, the results of the matching are used to define 
the edges of the algebraic ordering graph (step 7). For 
models where the equations are causal, it follows that 
an algebraic ordering is identical to a causal ordering 
when every non-exogenous parameter is directly com- 
puted. 

As an example, we consider the following hypothet- 
ical set of algebraic equations: 

el fl(pl, p2, p3, p8) = 0 ez5 exogenous( P5) 
e2 fi(p2, p7) = 0 ez6 exogenouS( p6) 

e3 f3(P3, p4) = 0 e7 

e4 f4(P4, P5) = 0 e8 

.iji$h 2;2\= 0 

8 5, 8 - 

Suppose that e2 is solvable in P7 but not P2 and that 
e4 is solvable in P5 but not P4. The extended bipartite 
matching graph for this example is shown in Fig. 1. 

Intuitively, Alg. 1 combines the idea of using a per- 
fect matching as a validity criteria and the flexibility 
of both direct and indirect computations. Edges of 
the form (e, p) represent direct computations where the 
value of p is computed by e as a function of some ar- 
guments. Edges of the form (p, e) represent indirect 
computations where the value of p is constrained by e: 
the solution value of p is computed by search. 

If the algebraic ordering graph were acyclic, a topo- 
logical ordering would define an adequate order of com- 
putations. With cycles, the key to globally order com- 
putations is to relate the topological structure of the 
graph to feedback loops. 

Feedback 
Feedback is a property of the topological interdepen- 
dencies among parameters. 

Parameter Dependency Graph 
Definition 1 (Algebraic dependency) A 
parameter p’ depends on p, noted by p - p’, iff there 
exists an equation e such that p E P(e) and p’ E P(e) 

Input: A parameter-equation graph G = (V, A) 
Output: A predicate: EBM(e,p) for e E E and p E P(e). 
1) 
2) 

3) 

4 

5) 

6) 
7) 
74 
W 
8) 

Create a network flow graph F = (Vf , Af). 
Vf = V U{edirect, eindirect 1 e E E} U{s, t} 
(S and t are respectively the source and sink vertices) 
Af = Pf U Ef where: 
pr = {(%I4 I P E PI u 

UP, e4, (e9, t) I P E P A exogenous(p)} 
Ef = {(edirect, e), (eindirect, e), (e, t) 1 e E E} 
Each path s + p + ezP + t (p exogenous) 
has unit flow capacity and zero cost. 

direct Edges between pi and ei, = e; 
are-defined as follows: 

and e;, = efndlrect 

path: cost& capacity=1 
From: To: 

path: cost= 1, capacity=1 

Apply a min. cost, max. flow algorithm on F 
Nonzero transhipment nodes are: 
- the source, s, with b(s) = IPI 
- the sink, t, with b(t) = -IPI. 
If f(s, t) < IPI then return 0 
Define EBM() f rom the maximum flow topology: 
EBM(P;, ej, indirect) holds iff f(Pi, eFdirect) = 1 
EBM(Pi, ej, direct) holds iff f(Pi, ejdirect) = 1 
Return EBM() 

Algorithm 1: Extended bipartite 
strutting an algebraic ordering. 

matching for con- 

(i.e., p and p’ are parameters of e) and 
EBM(p’, e, direct) holds. 

The dependency digraph Gd = (Pd, Ed) corre- 
sponding to an algebraic ordering digraph G’ = (V = 
P U E, A’) is defined as follows: 
e Pd = {p/p E P A lexogenous(p)) 

Q Ad = {(P,P’) IP,P’ E PdAp-+ p’} 

For notation convenience, we say that p w* p’ when 
there exists a sequence of parameters, p = pl, . . . , p, = 
p’ such that 

P = PI Q p2 - - *p,-1 - p,. 

For the 7-equation example, we have the following 
parameter-dependency graph: 

where parameters P4 and P2 are under-constrained 
while PI is over constrained. The validity of this 
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Figure 1: Extended bipartite matching for the 7- , 
equation example. The minimum cost, maximum flow 
solution is drawn with solid edges. 

ordering stems from the proper balancing between 
over and under-constrained parameters. Indeed, there 
are 3 ways to compute a value of Pi, two of which 
(P4 + P3 + PI, P2 + PI) can be relaxed to match 
the value derived from the exogenous parameter P5 
(P5 + P8 + Pl). 

Hierarchical Feedback Decomposition 

Intuitively, feedback occurs when there exists at least 
two parameters p and p’ in the dependency graph Gd 
such that p +* p’ and p’ u* p hold in Gd. Feedback 
is described by various terms in various scientific dis- 
ciplines and engineering fields. Terms such as closed- 
loop circuit (as opposed to an open-loop circuit), cir- 
cular dependencies, closed-loop control, circular state 
dependencies, and state or control feedback are com- 
monly used. Here, we follow some basic ideas of system 
theory (Padulo & Arbib 1974) and concepts of connect- 
edness of graph theory (Even 1979) to distinguish two 
types of feedback structures, namely state (left) and 
control (right) as shown below: 

In a state feedback loop, input parameters, x, af- 
fect the output parameters, y, through a feedforward 
transformation. In a dependency graph, we will have: 
x CL)* y. The feedback transformation in turns makes 
the inputs x dependent on the outputs y, or: y w* x. 
A control feedback loop is similar to a state feedback 
loop except that the feedback transformation (usually 
the controller) uses both inputs x and outputs y inputs, 
i.e., 2, y ** 2. 

Operationalixing Feedback 

Except for degenerate cases, a feedback loop must be 
solved iteratively for it corresponds to a system of 
N 1 2 equations in N unknown parameters. Opti- 
mizing the solution quality and its computational cost 
requires making a number of choices for each feedback 
loop in terms of numerical algorithms, initial solution 
estimates, and convergence criteria. Addressing these 
issues globally can be very difficult. With a decompo- 
sition of the model in terms of a hierarchy of feedback 
loops, we can address these issues in two phases: one 
for the model subset corresponding to a given feed- 
back loop and another for the structure of the model 
encompassing this loop. Typically, the former focuses 
on finding a solution for the feedback loop while the 
latter addresses convergence issues at a global level. 

Unfortunately, identifying feedback in an arbitrary 
graph is an NP-complete problem. Fortunately, 
lumped-parameter algebraic models of physical sys- 
tems are typically sparse (due to lumping) and have 
a low degree of connectivity (because most physical 
components have limited interactions with neighbor 
components). Combined with the fact that most man- 
made devices are often engineered with closed-loop 
control designs, it is quite common for the correspond- 
ing dependency graphs of such models to be decom- 
posable in terms of feedback loops. 

Breaking feedback loops apart 

The algebraic dependency relation defined for Gd in- 
duces an equivalence relation. By definition, two pa- 
rameters pl and p2 are in the same equivalence class iff 
PI -* ~2 and ~2 -* P 1. These relations are character- 
istic of state and control feedback loops. Thus, feed- 
back loops are strongly-connected subgraphs of Gd; the 
converse is not truel. Thus, we now define a struc- 
tural criterion for recognizing feedback loops. In (Even 
1979), a set of edges, T, is an (a,b) edge separator iff 
every directed path from a to b passes through at least 
one edge of T. Then for a strongly-connected compo- 
nent C, consider the smallest 2 such that, C - T is ei- 
ther unconnected or broken into two or more strongly- 
connected subcomponents. For a given pair, a, b, we 
call such a subset T a one-step optimal edge separator.2 

With the one-step optimal edge separator, we can 
solve a restricted version of the feedback vertex prob- 
lem in polynomial time. Algorithm 2 shows how to 
remove optimal edge separators to analyze the topo- 
logical structure of a graph G. The algorithm stops 
if G is not separable with the optimal edge separa- 
tor (step 1). Consider G’ = (V, A - T). By def- 
inition of an optimal edge separator, T will break 

‘A fully-connected graph is not a feedback loop. 
20ne-step because we make a single analysis of how re- 

moving 7’ affects the strong connectivity of the given sub- 
graph. See (Rouquette 1995, Ch. 6) for a polynomial-time 
algorithm. 
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apart the strongly-connectedness of G. If G’ is no 
longer strongly-connected, G is in fact a simple feed- 
back loop (step 3). If G’ is still strongly-connected, we 
need to analyze the remaining structure of G’. First, 
we remove the strongly-connected components already 
found (step 4). 3 Let G” be the remaining subgraph 
(step 5). We consider two cases according to the 
connectivity of G”. If G” is not strongly connected, 
G has a 2-level hierarchical structure (if there are 2 
or more sub-components) or a ‘L-level nested struc- 
ture (if there is only one sub-component) (step 7). 

If G” is strongly connected, it must have a single 
component, RCC4. Topologically, either RCC only 
shares vertices with the other sub-components already 
found (i.e.,CCS) (step 8) or it is distinct from them. 

In the latter case, we need to abstract the sub- 
component already found CC1 , . . . , CC,, RCC into - -- 
equivalence class vertices Ci , . . . , C,, R so that we can 
further analyze the remaining struct-ure of G” (step 9). 
Since G was strongly-connected, G is also strongly- 
connected (step 10). The algorithm stops if this ab- 
stract component, k, is not decomposable (step 12). 
Otherwise, we map to-the base level graph_ G the op- 
timal edge separator S that breaks apart K (step 13). 

Note that the DAD algorithm is recursive for we also 
need to analyze the structure of the strongly-connected 
sub-components of G found (steps 7,8,14). The re- 
cursion stops if a strongly-connected component has 
either 1) the structure of a state or control feedback 
loop (step 3) or 2) a more complex structure than that 
of a feedback loop (steps 1,12). 

Hierarchical Feedback Example 

3We use the notat’ ion A(X) to mean ‘the set of edges of 
the subgraph X’. 

4This follows from having removed all components found 
earlier (step 5) and from the nature of an optimal edge 
separator. 

Input: G = (V,A), a strongly-connected digraph 
Output: The hierarchical feedback tree 

(HFT) decomposition of G 
1) Let T be a one-step optimal edge separator of G; 

HFT=ComplexFeedback(G) if T = 0. 
2) G’ = (V, A - T) (remove 2’ from G). 
3) HFT=Feedback(G,T) if G’ is not strongly connected. 
4) Let CCS = {Ccl, . . . , CCn} be the remaining 

strongly-connected components of G’ 
5) G” = (v A - (UCCECCS A(m))) (remove CCS from G) 
6) If G” is strongly-connected, go to step 8. 

7) HFT= 
1 

*f&G, T, UCC~CCS IlAD( if n > 1 
Nested(G, T, DAD(CC1)) ifn=l 

8) G” has a single strongly-connected component RCC. 
HFT= *gg(G T, DAD(RCC) u UccECCS DA%c))) 

if A(G”) - A(RCC) = 8. 
9) Let 2;; be an abstract vertex representing CC;. 

Let E be an abstract vertex representing RCC. 
Let e = (v, 2) the abstract graph of G 
v= {El )...) ErL,ii}. 
2 is defined according to paths among CCS U{ FCC}. 

10) Let E be the strongly-connected component of G. 

Let ,? be the optimal edge separator of k 
12) HFT=ComplexFeedback(G) if g = 8. 
13) Let S C A be the base edges corresponding to ,!?. 

14) HFT= Aggr(G, S, u DAD(cc) u DAD(RCC)) 
CCECCS 

Algorithm 2: DAD: Decomposition and Aggregation 
of Dependencies 

As an illustration example, we show in Fig 2 
a schematic diagram of the evaporator loop of a 
two-phase, External-Active Thermal Control System 
(EATCS) designed at McDonnell Douglas. Liquid am- 
monia captures heat by evaporation from hot sources 
and releases it by condensation to cold sinks. The 
venturis maintain a sufficiently large liquid ammonia 
flow to prevent complete vaporization and superheat- 
ing at the evaporators. The RFMD pump transfers 
heat between the two-phase evaporator return and the 
condenser loop (not shown). A model of the EATCS 
presented in (Rouquette 1995) yields a parameter- 
dependency graph of 55 parameters, 18 exogenous and 

Figure 2: The evaporator loop of the External-Active 
Thermal Control System. 
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37 unknowns paired to 37 equations. A brute-force 
simulation approach consists in solving the 37 equa- 
tions for the 37 unknown parameters-at the cost of 
finding 37 initial value estimators for each unknown. 
The DAD algorithm finds a 2-level feedback decompo- 
sition shown-in Fig. 3. 

This essentially amounts to determining, at problem- 
solving time, how to prioritize the unknown parameters 
to work on. In contrast, the hierarchical decomposition 
determines these priorities once and for all at com- 
pile time. With hierarchical decomposition, higher- 
level feedback loops effectively act as constraints on 
the possible values lower-level feedback parameters can 
take. This process is similar to the gradient-descent 
techniques used in numerical algorithms. The key dif- 
ference is that a gradient-descent algorithm is contin- 
uously guessing the direction where the solution is. 
With hierarchical-feedback decomposition, there is no 
guesswork about the whereabouts of the solution; the 
hierarchical equation solver is built to find it in a very 
organized manner specified at compile-time instead of 
run-time. 

Venturi/Evaporator 

(pressure) -> flow 

Figure 3: Physical and nested algebraic feedback loops. 

With this feedback hierarchy, we now turn to pro- 
ducing a steady-state simulation, i.e., an equation 
solver for all the model equations. The modeler needs 
to choose for each feedback loop which subset of pa- 
rameters will characterize its state5 with the constraint 
that state parameters must be a graph cutset of the 
feedback loop 6. Other issues influence the choice of a 
feedback cutset as a state vector: numerical conver- 
gence, stability and speed. For example, in Fig. 3, the 
modeler chose the pressures at each loop, namely, Pr , 
Pz, and Ppitot, because the pressures have the widest 
range of behavior across possible states. Flow rates 
would be a poor choice because they are mostly con- 
stant during nominal circumstances. 

To produce the final hierarchical equation solver, the 
modeler must provide for each feedback loop the fol- 
lowing information: 1) a state vector of parameters; 
2) an initial function to compute the initial state vec- 
tor values (this function can only use the exogenous 
parameters relative to the feedback loop.) and 3) a 
numerical algorithm to find the final feedback param- 
eter values from any state vector estimate7 Without 
decomposition, the equation solver has all unknown 
parameters to handle simultaneously. The gradient- 
descent approach (?) is a method to guess where the 
solution may be and focus the search towards there. 

5The state parameter common to control and state feed- 
back structures is a good candidate. 

%e.,if state parameters are removed, the connectivity of 
the loop is broken. 

7See (Rouquette 1995) for algorithms to generate C hi- 
erarchical equation solvers based on the above information. 

For the EATCS, we start at Loopl. From Ppitot 
we compute new estimates of the lower-level feedback 
loop states (PI, P2). Then, Loop2 and Loop3 refine 
PI and P2 to satisfy the algebraic feedback equations. 
With this decomposition, search costs are effectively 
divided among multiple feedback loops. Furthermore, 
we are spared from continuously evaluating the next- 
best direction to go as is done with gradient descent. 
The charts below show experimental results demon- 
strating that despite the lack of flexibility in determin- 
ing the next-best parameters to adjust, the decomposi- 
tion approach finds solutions of equal quality at much 
lower computational cost, even for difficult solutions. 
For each chart, we considered a series of 21 exogenous 
conditions defined by pump speed, venturi diameters 
(to analyze clogging conditions) and evaporator load. 
As long as the model converges to a nominal state for 
the EATCS, all three solvers are practically equivalent 
(data sets 0 through 12). Data sets 13 and above corre- 
spond to overload-conditions where the heat applied is 
greater than what the evaporator loop can circulate. In 
such cases, the initial estimates are quite far from the 
actual abnormal solutions which implies more search. 
In fact, the brute-force and intermediate solvers spend 
several orders of magnitude more time searching only 
to find wrong solutions. Only the hierarchical solver 
managed to predict the temperature increase at the 
evaporator outlet due to the overheating condition. 

0.0495 
Venturi 1 diameter, Phil (input) - 

I ’ ’ ’ ’ - ’ ’ ’ ‘-1 

0.049 

0.0485 t 

0.047 

0.0465 
t 

Phil with linespoints 1; : 1 

0.046 t 
0.0455 e 

0.045 f . - f * . ’ - * * 
0 2 4 6 8 10 1’2 14 16 18 20 
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Conclusion 
To describe the possible ways for solving a set of pa- 
rameters from a set of algebraic equations, we pre- 
sented the notion of algebraic ordering which is equiv- 
alent to causal ordering if all equations are believed to 
be causal. From an algebraic ordering, we constructed 
a parameter-dependency graph and described a de- 
composition algorithm based on analyzing the topo- 
logical structure of the dependencies in terms of its 
strongly-connected components. By carefully choosing 
how to break apart such components, we showed how 
to construct the hierarchical decomposition of the de- 
pendency graph in terms of state and control feedback 
structures. Once the modeler chooses state feedback 
parameters and initial estimators for them, the set of 
all equations is solved bottom-up by applying a cho- 
sen equation solver according to the- hierarchical feed- 
back decomposition found. Compared to knowledge- 
free gradient-descent approaches to equation solving, 
our knowledge-intensive approach seeks to elucidate 
knowledge about feedback from the model itself to help 
the modeler provide as much relevant equation-solving 
knowledge as possible in terms of initial solution estc 
mates and convergence metrics. Experimentally, this 
produced faster, better, and cheaper simulation pro- 
grams trading off an expansive and broad search space 
(brute force approach) for a narrow, structured search 

space (fewer independent parameters) thereby achiev- 
ing greater computational efficiency without loss of ac- 
curacy. 
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