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Abstract 
We believe that many problem domains that lend 
themselves to a case-based reasoning solution can benefit 
from an diagrammatic implementation and propose a 
diagrammatic case-based solution to what we term the 
n-queens best solution problem where the best solution is 
defined as that which solves the probfem moving the fewest 
queens. A working system, based on a novel combination of 
diagrammatic and case-based reasoning, is described. 

the problem in the fewest moves). Further, we develop an 
inter-diagrammatic implementation of the min-conflicts 
heuristic [Gu 1989-J to find solutions to randomly chosen 
n-queens problems [Stone & Stone 19861 themselves. 

Introduction 
Interest in computing with analogical representations is on 
the rise. This is evidenced by the attention given to them in 
recent symposia (e.g. [Narayanan 1992]), journals (e.g. 
parayanan 1993]), and books (e.g. [Glasgow, Narayanan, 
& Chandrasekaran 19951). We believe that such attention 
is the natural outgrowth of the evolution of the currency of 
computing, the first two generations of which were 
numeric and symbolic. 

We present a syntax and semantics of 
inter-diagrammatic reasoning and then introduce the 
inter-diagrammatic operators and functions. Next, 
case-based reasoning is briefly overviewed. This is 
followed by a description of the diagrammatic solution of 
the n-queens problem and the diagrammatic case-based 
solution of the n-queens best solution problem. A brief 
discussion of related work follows and, finally, we offer 
our conclusions. 

Our particular interest lies in developing a general set 
of operators that can be used to reason with sets of related 
diagrams- inter-diagrammatic reasoning. This concept 
has been explored in [Anderson 1994; Anderson & 
McCartney 1995a; Anderson & McCartney 1995b] in 
which a heuristic for a game has been developed, musical 
notation and Venn diagrams have been reasoned with, and 
information from cartograms and various type of charts has 
been inferred using a general set of operators. Along these 
lines, we have been investigating the integration of 
inter-diagrammatic reasoning with case-based reasoning. 

Inter-diagrammatic Reasoning 
Most generally, one can syntactically define a diagram to 
be a tessellation of a planar area such that it is completely 
covered by atomic two dimensional regions or tesserae. 
The semantic domain will be defined as {v,, . . . . v,.,] 
denoting an i valued, additive gray scale incrementally 
increasing from a minimum value v, ,WHITE, to a 
maximum value vi-, , BLACK. Intuitively, the gray scale 
values correspond to a discrete set of transparent gray 
filters that, when overlaid, combine to create a darker filter 
to a maximum of BLACK. 

The following primitive unary operators, binary 
operators, and functions provide a set of basic tools to 
facilitate the process of inter-diagrammatic reasoning. 

We contend that many problem domains that lend 
themselves to a case-based reasoning solution can benefit 
from an inter-diagrammatic implementation. For example, 
domains that deal with spatial configuration, navigation 
[Goel et al. 19941, and perception all might benefit from 
explicit representation of cases stored as diagrams, 
retrieved via a diagrammatic match, and modified 
diagrammatically. 

Unary Operators 

NOT, denoted ld, is a unary operator taking a single 
diagram that returns a new diagram where each tessera’s 
value is the difference between BLACK and its previous 
value. 

Binary Operators 

We propose a diagrammatic case-based solution to 
what we term the n-queens best solution problem where 
the best solution is defined as that which solves the 
problem moving the fewest queens, leaving queens that are 
already in place untouched (versus a solution that solves 

Binary operators take two diagrams, d, and d2, of equal 
dimension and tessellation and return a new diagram where 
each tessera has a new value that is some function of the 
two corresponding tesserae in the operands. 

OR, denoted d, v d2, returns the maximum of each pair 
of tesserae where the maximum of two corresponding 
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tesserae is defined as the tessera whose value is closest to 
BLACK. 

AND, denoted d, A d2, returns the minimum of each pair 
of tesserae where the minimum of two corresponding 
tesserae is defined as the tessera whose value is closest to 
WHITE. 

OVERLAY, denoted d, + d2, returns the sum of each pair 
of tesserae (to a maximum of BLACK) where the sum of 
values of corresponding tesserae is defined as the sum of 
their respective values’ subscripts. 

PEEL, denoted d, - d2, returns the dzfirence of each 
pair of tesserae (to a minimum of WHITE) where the 
difference of values of corresponding tesserae is defined as 
the difference of their respective values’ subscripts. 

ASSIGNMENT, denoted d, c d2, modifies d, such that 
each tessera has the value of the corresponding tessera in 
d2. (Note that non-diagrammatic assignment will be 
symbolized as := and the equality relation as =.) 

Functions Over Diagrams 
NULL, denoted NULL(d), is a one place Boolean function 
taking a single diagram that returns TRUE if all tesserae of 
dare WHITE else it returns FALSE. 

NONNULL, denoted NONNULL( is a one place 
Boolean function taking a single diagram that returns 
FALSE if all tesserae of d are WHITE else it returns TRUE. 

Functions Over Sets of Diagrams 

ACCUMULATE, denoted ACCUMULATE (d, ds, o), is a 
three place function taking an initial diagram, d, a set of 
diagrams of equal dimension and tessellation, ds, and the 
name of a binary diagrammatic operator, o, that returns a 
new diagram which is the accumulation of the results of 
successively applying o to d and each diagram in ds . 

MAP, denoted MAP(fI ds), is a two place function taking 
a function f and a set of diagrams of equal dimension and 
tessellation, ds, that returns a new set of diagrams 
comprised of all diagrams resulting from application offto 
each diagram in ds. 

FILTER, denoted FILTER% ds), is a two place function 
taking a Boolean function, fand a set of diagrams of equal 
dimension and tessellation, ds, that returns a new set of 
diagrams comprised of all diagrams in ds for which f 
returns TRUE. 

RANDOM, denoted RANDOM([x,]s), is a one or two 
place function that returns a set of x unique elements of s at 
random, x defaulting to 1 if not present. 

CARDINALITY, denoted CARDINALITY(s), is a one 
place function taking a finite set that returns the number of 
elements in s. 

Case-based reasoning [Kolodner 19931 is the use of 
previous problem solving episodes (with solutions) to 
solve a new problem. Cases can be used for two purposes: 
1) to support plausible inferencing in the absence of a 
complete domain theory [McCartney 19931, and 2) to 
increase efficiency by either providing partial solutions or 
providing focus and direction to problem solving efforts 
[Kambhampati & Hendler 19921. For both of these 
purposes, case-based reasoning provides an obvious 
learning mechanism: as problems are solved, new episodes 
are incorporated into the case base, which can later be used 
in future problem solving. 

Implementing a case-based reasoning system requires 
answering a number of fundamental questions. 

0 representation: What is a case and how is it 
represented? 

. indexing: How is a case stored and retrieved? 

l similarity: How do we determine which case is most 
appropriate to use in solving a given problem? 

0 adaptation: How do we use an appropriate case once 
we get it? 

These questions have obvious general answers given 
our interest in diagrammatic reasoning. Cases will be 
diagrams, represented in a way consistent with the 
proposed syntax and semantics, and algorithms used for 
indexing, similarity, and adaptation of a case will be 
defined in terms of diagrammatic operators. As we are 
working with a complete domain theory and no 
uncertainty, we are using case-based reasoning to increase 
efficiency and provide a mechanism to improve 
performance over time. 

iagrammatic Constraint Satisfaction 
Diagrammatic reasoning can be used to solve constraint 
satisfaction problems- problems in the form of a set of 
variables that must satisfy some set of constraints. The 
n-queens problem, for example, can be viewed as a 
constraint satisfaction problem that can be solved 
diagrammatically. 

A solution to the n-queens problem is any configuration 
of n queens on an n by n chessboard in which no queen is 
being attacked by any other queen. Figure 1 shows a 
diagram of a solution to the problem when n = 8. When the 
location of each queen is considered a variable that must 
meet the constraint that no other queen can attack that 
location, a constraint satisfaction perspective of the 
problem arises. The min-conflicts heuristic, which 
advocates selecting a value for a variable that results in the 
minimum number of conflicts with other variables, can be 
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Figure 1: n -queen solution where n=8 

implemented diagrammatically to solve the n-queens 
problem. 

A diagram in the n-queens domain is represented as an 
n by n tessellation of gray-scale valued tesserae. A set of n 
by n diagrams comprised of all possible single queen 
positions (denoted Queens) must be defmed. Each of these 
diagrams represents one possible position of a queen (in a 
medium level gray) and the extent of its attack (in 
GRAYI). Figure 2 shows a diagram of n OVERLAYed 
queen diagrams and each of the corresponding diagrams 
from Queens that represent the individual queens in 
question where n = 8. Given a random selection of queen 
positions, the strategy is to move iteratively the most 
attacked queen to a position on the board that currently is 
the least attacked until a solution is discovered. 

Discovering a Solution 

After a random selection of queens is made, all the 
corresponding diagrams from Queens (denoted 
SelectedQueens) are OVERLAYed onto a single diagram 
(denoted CurrentBoard). This process can be more 
formally represented using the proposed diagrammatic 
operators as 

CurrentBoard= 
ACCUMULATE (0, SelectedQueens, +) 

The CurrentBoard is checked to see if it is a solution 
by PEELing from it a diagram that is completely covered 
in the same gray level that represents a queen (denoted 
QueenGrqBoard). Only if the result of this operation is a 
diagram with all WHITE tesserae (denoted NullDiagram) 
has a solution been found. More formally stated, a solution 
will return TRUE for 

NULL (CurrentBoard - QueenGrayBoard) 

As long as the gray level representing queens is greater 
than any gray level achievable by simply OVERLAYing the 
GRAY1 tesserae representing queen attack extents, a 
tessera will only take on a gray level greater than that 
representing queens if one or more GRAY1 tesserae is 
OVERLAYed upon a queen. If such a level of gray is found, 
a queen is under attack. Therefore, if the previous PEEL 
operation does not remove all gray from a diagram, it 
cannot be a solution. If a solution has yet to be found, an 
attacked queen is PEELed from the current diagram and a 

Figure 2: OVERLAYing 8 queen diagrams 

new queen is OVERLAYed at a minimally attacked 
location. 

An attacked queen (denoted AttackedQueen) is found 
by ANDing a GRAYI-PEELed version of all diagrams from 
SelectedQueens with the results of the solution test and 
randomly selecting from those queens that do not produce 
the NuZZDiagram (i.e. those queens that correspond with 
NON-WHITE tesserae in the diagram resulting from the 
solution test). More formally: 

AttackedQueent 
RANDOM 

(FILTER 
(NULL, 

MAP (h(x) ((x - Gray/Board) 
A 

(CurrentBoard - QueenGrayBoard)), 
SelectedQueens))) 

AttackedQueen is PEELed from the CurrentBoard and 
a minimally attacked queen is OVERLAYed in its place. By 
definition, the minimally attacked queen (denoted 
MinimalQueen) on the current diagram will be the queen at 
the location that is the lightest gray level. These locations 
are found by ANDing a GRAYI-PEELed version of all 
unused diagrams from Queens (denoted UnusedQueens) 
with the current diagram and randomly selecting from 
those queens that produce the NullDiagram (i.e. those 
queens that correspond with WHITE tesserae in 
CurrentBoard ). More formally: 

MinimalQueene= 
RANDOM 

(FILTER 
(NONNULL, 

MAP (h(x) ((x - GraylBoard) 
A 

(CurrentBoard - AttackedQueen)), 
UnusedQueens))) 
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If no such queen is found, a diagram that is completely 
covered in GRAY1 (denoted GrayZBoard) is iteratively 
PEELed from the current diagram, making all tesserae one 
gray level lighter, and the process repeated. More formally: 

CurrentBoard = CurrentBoard - Gray I Board 

MinimalQueen is then OVERLAYed upon the current 
diagram. More formally: 

CurrentBoard e= 
CurrentBoard - AttackedQueen + MinimalQueen 

This new diagram is checked to see if it is a solution 
and the process continues until such a solution is 
discovered. 

An Example 

Figures 2 through 4 graphically display an example of the 
solution finding process where n = 8. Figure 2 shows the 
queen diagrams selected from Queens as well as the 
diagram that results from OVERLAYing these diagrams. 

Figure 3 displays one iteration of this process. 3a shows 
the solution check, QueenGrayBoard is PEELed from the 
current diagram. This diagram is not a solution because the 
result is not the NullDiagram. In 3b, one of the attacked 
queens is selected and PEELed from the current diagram. 
Since there are no WHITE tesserae, GraylBoard is PEELed 
from the result in 3c. In 3d, a queen diagram is randomly 
selected from the set of queen diagrams that correspond to 
the WHITE tesserae in the result and OVERLAYed on the 
current diagram. 

Figure 4 shows the next two iterations of the solution 
finding process. 4a displays the solution check for the 
current diagram created by the last iteration. This is also 
found not to be a solution, so an attacked queen’s diagram 
is PEELed from the current diagram in 4b. Since there is a 
WHITE tesserae in the result, PEELing GraylBoard from it 
is not required. The only possible new queen diagram is 
then OVERLAYed on the current diagram in 4c. 4d shows 
the solution check for the third iteration and, as this is 
found to be a solution (i.e. the check results in the 
NullDiagram), processing stops. The result of the entire 
process is the 8-queen problem solution presented in 4e. 

Diagrammatic Case-based Best Solution 
A solution to an n-queens best solution problem is an 
n-queens placement obtained by moving the fewest queens 
from some initial placement. Although finding this 
minimal solution can only be achieved at great 
computational cost, we have implemented a system that 
improves its performance at this task by making use of 
previous solutions it has developed. Solutions to previous 

D) 

Figure 3: 8-queens example, 1st iteration 

B) 

El 

Figure 4: 8-queens example, 2nd and 3rd iterations 

problems can be used to provide partial solutions to the 
current problem. 

These previous solutions form the cases of our 
case-based reasoning solution. Case representation is 
defined diagrammatically as an OVERLAYed solution set 
of n queens without attack extent information. Case 
similarity is defined as cases that have the most number of 
queens in common with the current problem. This 
matching is accomplished diagrammatically by ANDing the 
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current problem board (PEELed with QueenGrayBoard) 
with each of the stored solutions, counting all non-WHITE 
tesserae and retrieving those solutions with the highest 
count. A partial solution to the current problem has then 
been found; all queens in common can be exempted from 
further consideration as they are already in place. Case 
adaptation is the arrangement of those queens that are not 
yet in place to form a complete solution without disturbing 
the positions of the exempted queens. Lastly, case indexing 
is expedited by diagrammatically comparing a new 
candidate case with existing cases and rejecting duplicates. 

An Example 
Figure 5 details this case-based approach. 5a PEELS 
QueenGrayBoard from the current diagram resulting in a 
diagram that is gray only where queens are placed on the 
current diagram (denoted QueenPlacement). More 
formally: 

QueenPlacement c CurrentBoard - QueenGrayBoard 

5b shows the process of ANDing QueenPlacement with 
each stored solution in the CaseBase, 5c, resulting in a set 
of diagrams, 5d, that each display their similarity with 
QueenPlacement via the number of gray tessera they have 
(denoted SimilaritySet). More formally: 

SimilaritySet := 
MAP&(x) (QueenPlacement A x), CaseBase) 

In this example, one case’s queen placement matches 
six of the current diagram’s, 5e. Such counting of certain 
valued tessera is accomplished diagrammatically as well 
(see [Anderson & McCartney 1995b]). This case is chosen, 
then, and the placement of the remaining two queens 
proceeds as described previously with the stipulation that 
the six matched queens are not to be moved. 

Although this system cannot guarantee an optimal 
solution, it learns over time by storing previous solutions 
and, therefore, becomes progressively better at providing 
near optimal solutions at reasonable computational cost. 

Related Research 
Research in diagrammatic reasoning is just beginning to 
flourish after a long dormancy it experienced being 
virtually abandoned after a brief flirtation in the early days 
of AI (e.g. [Gelernter 1959; Evans 19621). See, for 
instance, [Larkin & Simon 1987; Narayanan & 
Chandrasekaran 199 1; Narayanan 1992; Chandrasekaran, 
Narayanan, & Iwasaki 1993; Narayanan 1993; Glasgow 
1993; Glasgow, Narayanan, & Chandrasekaran 19951 for a 
representative sample of this work. We have previously 
proposed inter-diagrammatic reasoning as one way of 
using diagrammatic representations to solve problems 
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Figure 5: 8-queens example, case matching 

[Anderson 1994; Anderson & McCartney 1995a; Anderson 
& McCartney 1995b]. The earliest work in diagrammatic 
reasoning can be considered the first example of 
inter-diagrammatic reasoning as well [Evans 19621. Bieger 
and Glock [ 1985; 19861 and Willows and Houghton 
[ 19871 have done work in human use of sets of related 
diagrams. 

Case-based reasoning has generated a good deal of 
interest: much work has been and is being done in this 
area. See [Kolodner 19931 for an overview. Interestingly, 
case-based reasoning has been previously used to increase 
efficiency in solving constraint satisfaction problems in 
[Purvis 19951. 

[Narayanan & Chandrasekaran 199 I] discuss what they 
term “visual cases” for diagrammatic spatial reasoning but 
we believe that we are the first to successfully integrate 
diagrammatic and case-based reasoning. 

Conclusion 
We have shown how a diagrammatic cased-based approach 
is useful in providing near optimal solutions to the 



n-queens problem. It is straight forward to generalize our 
approach to involve objects of various sizes and extents. 
This is the fast step towards applying this approach to 
spatial configuration problems and other domains. 

We believe that, in general, a diagrammatic approach to 
case-based reasoning can help provide answers to the 
questions of case representation, similarity, indexing, and 
adaptation in many interesting real world domains. Further, 
a case-based reasoning approach to diagrammatic 
reasoning provides a framework that enables the 
effectiveness of diagrammatic operators to emerge. 
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