
atic Reasoning and Cases

Michael Anderson Robert McCartney
Computer Science Department

University of Hartford
200 Bloomfield Avenue

West Hartford, Connecticut 06 117
anderson@morpheus.hartford.edu

Department of Computer Science and Engineering
University of Connecticut

191 Auditorium Road
Stows, Connecticut 06269-3 15

robert@cse.uconn.edu

Abstract
We believe that many problem domains that lend
themselves to a case-based reasoning solution can benefit
from an diagrammatic implementation and propose a
diagrammatic case-based solution to what we term the
n-queens best solution problem where the best solution is
defined as that which solves the probfem moving the fewest
queens. A working system, based on a novel combination of
diagrammatic and case-based reasoning, is described.

the problem in the fewest moves). Further, we develop an
inter-diagrammatic implementation of the min-conflicts
heuristic [Gu 1989-J to find solutions to randomly chosen
n-queens problems [Stone & Stone 19861 themselves.

Introduction
Interest in computing with analogical representations is on
the rise. This is evidenced by the attention given to them in
recent symposia (e.g. [Narayanan 1992]), journals (e.g.
parayanan 1993]), and books (e.g. [Glasgow, Narayanan,
& Chandrasekaran 19951). We believe that such attention
is the natural outgrowth of the evolution of the currency of
computing, the first two generations of which were
numeric and symbolic.

We present a syntax and semantics of
inter-diagrammatic reasoning and then introduce the
inter-diagrammatic operators and functions. Next,
case-based reasoning is briefly overviewed. This is
followed by a description of the diagrammatic solution of
the n-queens problem and the diagrammatic case-based
solution of the n-queens best solution problem. A brief
discussion of related work follows and, finally, we offer
our conclusions.

Our particular interest lies in developing a general set
of operators that can be used to reason with sets of related
diagrams- inter-diagrammatic reasoning. This concept
has been explored in [Anderson 1994; Anderson &
McCartney 1995a; Anderson & McCartney 1995b] in
which a heuristic for a game has been developed, musical
notation and Venn diagrams have been reasoned with, and
information from cartograms and various type of charts has
been inferred using a general set of operators. Along these
lines, we have been investigating the integration of
inter-diagrammatic reasoning with case-based reasoning.

Inter-diagrammatic Reasoning
Most generally, one can syntactically define a diagram to
be a tessellation of a planar area such that it is completely
covered by atomic two dimensional regions or tesserae.
The semantic domain will be defined as {v,, v,.,]
denoting an i valued, additive gray scale incrementally
increasing from a minimum value v, ,WHITE, to a
maximum value vi-, , BLACK. Intuitively, the gray scale
values correspond to a discrete set of transparent gray
filters that, when overlaid, combine to create a darker filter
to a maximum of BLACK.

The following primitive unary operators, binary
operators, and functions provide a set of basic tools to
facilitate the process of inter-diagrammatic reasoning.

We contend that many problem domains that lend
themselves to a case-based reasoning solution can benefit
from an inter-diagrammatic implementation. For example,
domains that deal with spatial configuration, navigation
[Goel et al. 19941, and perception all might benefit from
explicit representation of cases stored as diagrams,
retrieved via a diagrammatic match, and modified
diagrammatically.

Unary Operators

NOT, denoted ld, is a unary operator taking a single
diagram that returns a new diagram where each tessera’s
value is the difference between BLACK and its previous
value.

Binary Operators

We propose a diagrammatic case-based solution to
what we term the n-queens best solution problem where
the best solution is defined as that which solves the
problem moving the fewest queens, leaving queens that are
already in place untouched (versus a solution that solves

Binary operators take two diagrams, d, and d2, of equal
dimension and tessellation and return a new diagram where
each tessera has a new value that is some function of the
two corresponding tesserae in the operands.

OR, denoted d, v d2, returns the maximum of each pair
of tesserae where the maximum of two corresponding

1004 Model-Based Reasoning

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

tesserae is defined as the tessera whose value is closest to
BLACK.

AND, denoted d, A d2, returns the minimum of each pair
of tesserae where the minimum of two corresponding
tesserae is defined as the tessera whose value is closest to
WHITE.

OVERLAY, denoted d, + d2, returns the sum of each pair
of tesserae (to a maximum of BLACK) where the sum of
values of corresponding tesserae is defined as the sum of
their respective values’ subscripts.

PEEL, denoted d, - d2, returns the dzfirence of each
pair of tesserae (to a minimum of WHITE) where the
difference of values of corresponding tesserae is defined as
the difference of their respective values’ subscripts.

ASSIGNMENT, denoted d, c d2, modifies d, such that
each tessera has the value of the corresponding tessera in
d2. (Note that non-diagrammatic assignment will be
symbolized as := and the equality relation as =.)

Functions Over Diagrams
NULL, denoted NULL(d), is a one place Boolean function
taking a single diagram that returns TRUE if all tesserae of
dare WHITE else it returns FALSE.

NONNULL, denoted NONNULL(is a one place
Boolean function taking a single diagram that returns
FALSE if all tesserae of d are WHITE else it returns TRUE.

Functions Over Sets of Diagrams

ACCUMULATE, denoted ACCUMULATE (d, ds, o), is a
three place function taking an initial diagram, d, a set of
diagrams of equal dimension and tessellation, ds, and the
name of a binary diagrammatic operator, o, that returns a
new diagram which is the accumulation of the results of
successively applying o to d and each diagram in ds .

MAP, denoted MAP(fI ds), is a two place function taking
a function f and a set of diagrams of equal dimension and
tessellation, ds, that returns a new set of diagrams
comprised of all diagrams resulting from application offto
each diagram in ds.

FILTER, denoted FILTER% ds), is a two place function
taking a Boolean function, fand a set of diagrams of equal
dimension and tessellation, ds, that returns a new set of
diagrams comprised of all diagrams in ds for which f
returns TRUE.

RANDOM, denoted RANDOM([x,]s), is a one or two
place function that returns a set of x unique elements of s at
random, x defaulting to 1 if not present.

CARDINALITY, denoted CARDINALITY(s), is a one
place function taking a finite set that returns the number of
elements in s.

Case-based reasoning [Kolodner 19931 is the use of
previous problem solving episodes (with solutions) to
solve a new problem. Cases can be used for two purposes:
1) to support plausible inferencing in the absence of a
complete domain theory [McCartney 19931, and 2) to
increase efficiency by either providing partial solutions or
providing focus and direction to problem solving efforts
[Kambhampati & Hendler 19921. For both of these
purposes, case-based reasoning provides an obvious
learning mechanism: as problems are solved, new episodes
are incorporated into the case base, which can later be used
in future problem solving.

Implementing a case-based reasoning system requires
answering a number of fundamental questions.

0 representation: What is a case and how is it
represented?

. indexing: How is a case stored and retrieved?

l similarity: How do we determine which case is most
appropriate to use in solving a given problem?

0 adaptation: How do we use an appropriate case once
we get it?

These questions have obvious general answers given
our interest in diagrammatic reasoning. Cases will be
diagrams, represented in a way consistent with the
proposed syntax and semantics, and algorithms used for
indexing, similarity, and adaptation of a case will be
defined in terms of diagrammatic operators. As we are
working with a complete domain theory and no
uncertainty, we are using case-based reasoning to increase
efficiency and provide a mechanism to improve
performance over time.

iagrammatic Constraint Satisfaction
Diagrammatic reasoning can be used to solve constraint
satisfaction problems- problems in the form of a set of
variables that must satisfy some set of constraints. The
n-queens problem, for example, can be viewed as a
constraint satisfaction problem that can be solved
diagrammatically.

A solution to the n-queens problem is any configuration
of n queens on an n by n chessboard in which no queen is
being attacked by any other queen. Figure 1 shows a
diagram of a solution to the problem when n = 8. When the
location of each queen is considered a variable that must
meet the constraint that no other queen can attack that
location, a constraint satisfaction perspective of the
problem arises. The min-conflicts heuristic, which
advocates selecting a value for a variable that results in the
minimum number of conflicts with other variables, can be

Spatial h Functional Reasoning 1005

Figure 1: n -queen solution where n=8

implemented diagrammatically to solve the n-queens
problem.

A diagram in the n-queens domain is represented as an
n by n tessellation of gray-scale valued tesserae. A set of n
by n diagrams comprised of all possible single queen
positions (denoted Queens) must be defmed. Each of these
diagrams represents one possible position of a queen (in a
medium level gray) and the extent of its attack (in
GRAYI). Figure 2 shows a diagram of n OVERLAYed
queen diagrams and each of the corresponding diagrams
from Queens that represent the individual queens in
question where n = 8. Given a random selection of queen
positions, the strategy is to move iteratively the most
attacked queen to a position on the board that currently is
the least attacked until a solution is discovered.

Discovering a Solution

After a random selection of queens is made, all the
corresponding diagrams from Queens (denoted
SelectedQueens) are OVERLAYed onto a single diagram
(denoted CurrentBoard). This process can be more
formally represented using the proposed diagrammatic
operators as

CurrentBoard=
ACCUMULATE (0, SelectedQueens, +)

The CurrentBoard is checked to see if it is a solution
by PEELing from it a diagram that is completely covered
in the same gray level that represents a queen (denoted
QueenGrqBoard). Only if the result of this operation is a
diagram with all WHITE tesserae (denoted NullDiagram)
has a solution been found. More formally stated, a solution
will return TRUE for

NULL (CurrentBoard - QueenGrayBoard)

As long as the gray level representing queens is greater
than any gray level achievable by simply OVERLAYing the
GRAY1 tesserae representing queen attack extents, a
tessera will only take on a gray level greater than that
representing queens if one or more GRAY1 tesserae is
OVERLAYed upon a queen. If such a level of gray is found,
a queen is under attack. Therefore, if the previous PEEL
operation does not remove all gray from a diagram, it
cannot be a solution. If a solution has yet to be found, an
attacked queen is PEELed from the current diagram and a

Figure 2: OVERLAYing 8 queen diagrams

new queen is OVERLAYed at a minimally attacked
location.

An attacked queen (denoted AttackedQueen) is found
by ANDing a GRAYI-PEELed version of all diagrams from
SelectedQueens with the results of the solution test and
randomly selecting from those queens that do not produce
the NuZZDiagram (i.e. those queens that correspond with
NON-WHITE tesserae in the diagram resulting from the
solution test). More formally:

AttackedQueent
RANDOM

(FILTER
(NULL,

MAP (h(x) ((x - Gray/Board)
A

(CurrentBoard - QueenGrayBoard)),
SelectedQueens)))

AttackedQueen is PEELed from the CurrentBoard and
a minimally attacked queen is OVERLAYed in its place. By
definition, the minimally attacked queen (denoted
MinimalQueen) on the current diagram will be the queen at
the location that is the lightest gray level. These locations
are found by ANDing a GRAYI-PEELed version of all
unused diagrams from Queens (denoted UnusedQueens)
with the current diagram and randomly selecting from
those queens that produce the NullDiagram (i.e. those
queens that correspond with WHITE tesserae in
CurrentBoard). More formally:

MinimalQueene=
RANDOM

(FILTER
(NONNULL,

MAP (h(x) ((x - GraylBoard)
A

(CurrentBoard - AttackedQueen)),
UnusedQueens)))

1006 Model-Based Reasoning

If no such queen is found, a diagram that is completely
covered in GRAY1 (denoted GrayZBoard) is iteratively
PEELed from the current diagram, making all tesserae one
gray level lighter, and the process repeated. More formally:

CurrentBoard = CurrentBoard - Gray I Board

MinimalQueen is then OVERLAYed upon the current
diagram. More formally:

CurrentBoard e=
CurrentBoard - AttackedQueen + MinimalQueen

This new diagram is checked to see if it is a solution
and the process continues until such a solution is
discovered.

An Example

Figures 2 through 4 graphically display an example of the
solution finding process where n = 8. Figure 2 shows the
queen diagrams selected from Queens as well as the
diagram that results from OVERLAYing these diagrams.

Figure 3 displays one iteration of this process. 3a shows
the solution check, QueenGrayBoard is PEELed from the
current diagram. This diagram is not a solution because the
result is not the NullDiagram. In 3b, one of the attacked
queens is selected and PEELed from the current diagram.
Since there are no WHITE tesserae, GraylBoard is PEELed
from the result in 3c. In 3d, a queen diagram is randomly
selected from the set of queen diagrams that correspond to
the WHITE tesserae in the result and OVERLAYed on the
current diagram.

Figure 4 shows the next two iterations of the solution
finding process. 4a displays the solution check for the
current diagram created by the last iteration. This is also
found not to be a solution, so an attacked queen’s diagram
is PEELed from the current diagram in 4b. Since there is a
WHITE tesserae in the result, PEELing GraylBoard from it
is not required. The only possible new queen diagram is
then OVERLAYed on the current diagram in 4c. 4d shows
the solution check for the third iteration and, as this is
found to be a solution (i.e. the check results in the
NullDiagram), processing stops. The result of the entire
process is the 8-queen problem solution presented in 4e.

Diagrammatic Case-based Best Solution
A solution to an n-queens best solution problem is an
n-queens placement obtained by moving the fewest queens
from some initial placement. Although finding this
minimal solution can only be achieved at great
computational cost, we have implemented a system that
improves its performance at this task by making use of
previous solutions it has developed. Solutions to previous

D)

Figure 3: 8-queens example, 1st iteration

B)

El

Figure 4: 8-queens example, 2nd and 3rd iterations

problems can be used to provide partial solutions to the
current problem.

These previous solutions form the cases of our
case-based reasoning solution. Case representation is
defined diagrammatically as an OVERLAYed solution set
of n queens without attack extent information. Case
similarity is defined as cases that have the most number of
queens in common with the current problem. This
matching is accomplished diagrammatically by ANDing the

Spatial & Functional Reasoning 1007

current problem board (PEELed with QueenGrayBoard)
with each of the stored solutions, counting all non-WHITE
tesserae and retrieving those solutions with the highest
count. A partial solution to the current problem has then
been found; all queens in common can be exempted from
further consideration as they are already in place. Case
adaptation is the arrangement of those queens that are not
yet in place to form a complete solution without disturbing
the positions of the exempted queens. Lastly, case indexing
is expedited by diagrammatically comparing a new
candidate case with existing cases and rejecting duplicates.

An Example
Figure 5 details this case-based approach. 5a PEELS
QueenGrayBoard from the current diagram resulting in a
diagram that is gray only where queens are placed on the
current diagram (denoted QueenPlacement). More
formally:

QueenPlacement c CurrentBoard - QueenGrayBoard

5b shows the process of ANDing QueenPlacement with
each stored solution in the CaseBase, 5c, resulting in a set
of diagrams, 5d, that each display their similarity with
QueenPlacement via the number of gray tessera they have
(denoted SimilaritySet). More formally:

SimilaritySet :=
MAP&(x) (QueenPlacement A x), CaseBase)

In this example, one case’s queen placement matches
six of the current diagram’s, 5e. Such counting of certain
valued tessera is accomplished diagrammatically as well
(see [Anderson & McCartney 1995b]). This case is chosen,
then, and the placement of the remaining two queens
proceeds as described previously with the stipulation that
the six matched queens are not to be moved.

Although this system cannot guarantee an optimal
solution, it learns over time by storing previous solutions
and, therefore, becomes progressively better at providing
near optimal solutions at reasonable computational cost.

Related Research
Research in diagrammatic reasoning is just beginning to
flourish after a long dormancy it experienced being
virtually abandoned after a brief flirtation in the early days
of AI (e.g. [Gelernter 1959; Evans 19621). See, for
instance, [Larkin & Simon 1987; Narayanan &
Chandrasekaran 199 1; Narayanan 1992; Chandrasekaran,
Narayanan, & Iwasaki 1993; Narayanan 1993; Glasgow
1993; Glasgow, Narayanan, & Chandrasekaran 19951 for a
representative sample of this work. We have previously
proposed inter-diagrammatic reasoning as one way of
using diagrammatic representations to solve problems

1008 Model-Based Reasoning

4

s!

Figure 5: 8-queens example, case matching

[Anderson 1994; Anderson & McCartney 1995a; Anderson
& McCartney 1995b]. The earliest work in diagrammatic
reasoning can be considered the first example of
inter-diagrammatic reasoning as well [Evans 19621. Bieger
and Glock [1985; 19861 and Willows and Houghton
[19871 have done work in human use of sets of related
diagrams.

Case-based reasoning has generated a good deal of
interest: much work has been and is being done in this
area. See [Kolodner 19931 for an overview. Interestingly,
case-based reasoning has been previously used to increase
efficiency in solving constraint satisfaction problems in
[Purvis 19951.

[Narayanan & Chandrasekaran 199 I] discuss what they
term “visual cases” for diagrammatic spatial reasoning but
we believe that we are the first to successfully integrate
diagrammatic and case-based reasoning.

Conclusion
We have shown how a diagrammatic cased-based approach
is useful in providing near optimal solutions to the

n-queens problem. It is straight forward to generalize our
approach to involve objects of various sizes and extents.
This is the fast step towards applying this approach to
spatial configuration problems and other domains.

We believe that, in general, a diagrammatic approach to
case-based reasoning can help provide answers to the
questions of case representation, similarity, indexing, and
adaptation in many interesting real world domains. Further,
a case-based reasoning approach to diagrammatic
reasoning provides a framework that enables the
effectiveness of diagrammatic operators to emerge.

References

Anderson, M. 1994. Reasoning with Diagram Sequences.
In Proceedings of the Conference on Information-Oriented
Approaches to Logic, Language and Computation (Fourth
Conference on Situation Theory and its Applications).

Anderson, M. and McCartney, R. 1995a. Developing a
Heuristic via Diagrammatic Reasoning. In Proceedings of
the Tenth Annual ACM Symposium on Applied
Computing.

Anderson, M. and McCartney, R. 1995b.
Inter-diagrammatic Reasoning. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence.

Bieger, G. and Glock, M. 1985. The Information Content
of Picture-Text Instructions. The Journal of Experimental
Education, 53(2), 68-76.

Bieger, G. and Glock, M. 1986. Comprehending Spatial
and Contextual Information in Picture-Text Instructions.
The Journal of Experimental Education, 54(4), 18 1- 188.

Chandrasekaran, B., Narayanan, N. and Iwasaki, Y. 1993.
Reasoning with Diagrammatic Representations, AI
Magazine, I4(2).

Evans, T. G. 1962. A Heuristic Program to Solve
Geometry Analogy Problems. MIT AI Memo 46. (also in
Semantic Information Processing as “A Program for the
Solution of a Class of Geometric-analogy Intelligence-test
Questions”, 271-353, Minsky, M. L., ed. MIT Press,
1968).

Feigenbaum, E. A. and Feldman, J., eds. 1963. Computers
and Thought, McGraw-Hill.

Gelernter, H. 1959. Realization of a Geometry Theorem
Proving Machine. In Proceedings of an International
Conference on Information Processing, 273-282. UNESCO
House. (also in [Feigenbaum & Feldman 19631).

Glasgow, J. 1993. The Imagery Debate Revisited: A
Computational Perspective in [Narayanan 19931.

Glasgow, J., Narayanan, N., and Chandrasekaran, B. 1995.
Diagrammatic Reasoning: Cognitive and Computational
Perspectives, AAAI Press.

Goel, A., Ali, K., Donnellan, M., de Silva Garza, A., and
Callantine, T. 1994. Multistrategy Adaptive Path Planning,
IEEE Expert, 9:6,57-65.

Gu, J. 1989. Parallel Algorithms and Architectures for
Very Fast AI Search, Ph.D. diss., University of Utah.

Kambhampati, S., and Hendler, J. 1992. A Validation
Structure Based Theory of Plan Modification and Reuse.
ArtiJcial Intelligence, 55: 193-258.

Kolodner, J. L. 1993. Case-based Reasoning. Morgan
Kaufmann, San Mateo.

Larkin, J. and Simon, H. 1987. Why a Diagram is
(Sometimes) Worth Ten Thousand Words. Cognitive
Science, 11, 65-99.

McCartney, R. 1993. Episodic Cases and Real-time
Performance in a Case-based Planning System. Expert
Systems with Applications, 619-22.

Narayanan, N., ed. 1992. Working Notes of AAAI Spring
Symposium on Reasoning with Diagrammatic
Representations.

Narayanan, N., ed. 1993. Taking Issue/Forum: The
Imagery Debate Revisited. Computational Intelligence,

W).
Narayanan, N. H. and Chandrasekaran, B. 1991.
Reasoning Visually about Spatial Interactions. In
Proceedings of the 12th International Joint Conference on
Artificial Intelligence.

Purvis, L. 1995. Constraint Satisfaction Combined with
Case-Based Reasoning for Assembly Sequence Planning,
Technical Report CSE-TR-93-20, University of
Connecticut.

Stone, H. S. and Stone, J. 1986. Efficient Search
Techniques: an Empirical Study of the n-Queens Problem,
Technical Report RC 12057, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York.

Willows, D. and Houghton, H. 1987. The Psychology of
Illustration, Springer-Verlag.

Spatial & Functional Reasoning 1009

