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Abstract 

By a “tree-bank grammar” we mean a context-free 
grammar created by reading the production rules di- 
rectly from hand-parsed sentences in a tree bank. 
Common wisdom has it that such grammars do not 
perform we& though we know of no published data 
on the issue. The primary purpose of this paper is to 
show that the common wisdom is wrong. In particu- 
lar, we present results on a tree-bank grammar based 
on the Penn WaII Street Journal tree bank. To the 
best of our knowledge, this grammar outperforms ah 
other non-word-based statistical parsers/grammars on 
this corpus. That is, it outperforms parsers that con- 
sider the input as a string of tags and ignore the actual 
words of the corpus. 

Introduction 
Recent years have seen many natural-language pro- 
cessing (NLP) projects aimed at producing gram- 
mars/parsers capable of assigning reasonable syntac- 
tic structure to a broad swath of English. Naturally, 
judging the creations of your parser requires a “gold 
standard,” and NLP researchers have been fortunate 
to have several corpora of hand-parsed sentences for 
this purpose, of which the so-called “Penn tree-bank” 
[7] is perhaps the best known. It is also the corpus 
used in this study. (In particular, we used the Wall 
Street Journal portion of the tree bank which consists 
of about one million words of hand-parsed sentences.) 

However, when a convenient standard exists, the re- 
search program subtly shifts: the goal is no longer to 
create any-old parser, but rather to create one that 
mimics the Penn tree-bank parses. Fortunately, while 
there is no firm NLP consensus on the exact form a 
syntactic parse should take, the Penn trees are rea- 
sonably standard and disagreements are usually about 
less common, or more detailed, features. Thus the at- 
tempt to find Penn-style trees seems a reasonable one, 
and this paper is a contribution to this effort. 

Of those using tree banks as a starting point, a sig- 
nificant sub-community is interested in using them to 
support supervised learning schemes so that the gram- 
mar/parser can be created with minimal human inter- 
vention [1,2,5,6,8]. The benefits of this approach are 

P VP 

NP / NP 

pron vb dt nn 

She heard the noise 

Figure 1: A simple parsed entry in a tree-bank 

twofold: learning obviates the need for grammar writ- 
ers, and such grammars may well have better coverage 
(assign parses to more sentences) than the hand-tooled 
variety. At any rate, this is the’game we have chosen. 

Now the simplest way to “learn” a context-free 
grammar from a tree-bank is to read the grammar off 
the parsed sentences. That is, we can read the follow- 
ing rules off the parsed sentence in Figure 1 

S + NPVP 
NP + pron 
VP + vb NP 
NP + dt nn 

We call grammars obtained in this fashion “tree-bank 
grammars.” 

It is common wisdom that tree-bank grammars do 
not work well. We have heard this from-several well- 
known researchers in the statistical NLP community, . , 
and the complete lack of any performance results on 
such grammars suggests that -if they have been re- 
searched the results did not warrant publication. The 
primary purpose of this paper is to refute this com- 
mon wisdom. The next section does this by presenting 
some results for a tree-bank grammar. Section 3 com- 
pares these results to prior work and addresses why 
our results differ from the common expectations. 

The parser used in our experiments is, for the most 
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part, a standard chart parser. It does differ from the 
standard, however, in two ways. One is an efficiency 
matter - we improved its ability to search for the 
most probable parse. This is discussed briefly in sec- 
tion 3 as well. The second difference is more unusual. 
On impressionistic evidence, we have come to believe 
that standard PCFGs do not match English’s prefer- 
ence for right-branching structures. In section 4 we 
present some ideas on how this might be corrected and 
show how these ideas contribute to the performance 
results of section 2. 

The Experiment 
We used as our tree bank the Penn parsed Wall Street 
Journal corpus, release 2. ’ We divided the sentences 
into two separate corpora, about 100,000 words for 
testing and about l,OOO,OOO words for training. We ig- 
nored all sentences in the testing data of length greater 
than 40 because of processing-time considerations; at 
any rate, the actual number of such sentences is quite 
low, as the overall average sentence length is about 22 
words and punctuation. Of the 100,000 words of test- 
ing data, half were used for preliminary testing and the 
other half for “official” testing - the results reported 
here. 

With the exception of the right-bracketing bias dis- 
cussed later, the training was particularly simple. We 
obtained a context-free grammar (CFG) by reading the 
rules off all the sentences in the training data. Trace el- 
ements indicated in the parse were ignored. To create a 
probabilistic CFG, a PCFG, we assigned a probability 
to each rule by observing how often it was used in the 
training corpus. Let 1 T ] be the number of times rule 
T occurred in the parsed training corpus and X(T) be 
the non-terminal that ir expands. Then the probability 
assigned to r is 

Pm = 
b-1 

Cr’E(r’ 1 x(T’)=x(T)} I r’ I (1) 

After training we test our parser/grammar on the 
test data. The input to the tester is the parsed sentence 
with each word assigned its (presumably) correct part 
of speech (or tag). Naturally the parse is ignored by the 
parser and only used to judge the parsers output. Also, 
our grammar does not use lexical information, but only 
the tags. Thus the actual words of the sentence are 
irrelevant as far as our parser is concerned; it only 
notices the tag sequence specified by the tree-bank. 
For example, the sentence in Figure 1 would be “pron 
vb dt nn." 

We used as our set of non-terminals those specified 
in the tree-bank documentation, which is roughly the 

‘An earlier draft of this paper was based upon a pre- 
liminary version of this corpus. As this earlier version was 
about one-third the size and somewhat less “clean,” this 
version of the paper sports (a) a larger tree-bank grammar 
(because of more training sentences), and (b) somewhat 
better results (primarily because of the cleaner test data). 

Sentence 
Lengths 
2-12 
2-16 
2-20 
2-25 
2-30 
2-40 

Figure 2: Parsing results for the tree-bank grammar 

Average 
Length Precision Recall 
8.0 91.5 89.1 

11.5 89.6 87.1 
13.9 87.3 84.9 
16.3 85.5 83.3 
18.8 83.6 81.6 
22.0 82.0 80.0 

Accuracy 
96.9 
95.0 
92.9 
91.2 
89.7 
88.0 

set specified in [7]. It was necessary to add a new start 
symbol, Sl, as all the parses in our version of the tree 
bank have the following form: 

((S (NP The dog) (VP chewed (NP the bone)) .)) 
Note the topmost unlabeled bracketing with the single 
S subconstituent, but no label of its own. We handled 
such cases by labeling this bracket Sl.’ 

We use the full set of Penn-tree-bank terminal parts 
of speech augmented by two new parts of speech, the 
auxiliary verb categories aux and auxg (an aux in the 
“ing” form). We introduced these by assigning all oc- 
currences of the most common aux-verbs (e.g., have, 
had, is, am, are, etc.) to their respective categories. 

The grammar obtained had 15953 rules of which only 
6785 occurred more than once. We used all the rules, 
though we give some results in which only a subset are 
used. 

We obtained the most probable parse of each sen- 
tence using the standard extension of the HMM Viterbi 
algorithm to PCFGs. We call this parse the map (max- 
imum a posteriori) parse. We then compared the map 
parse to the one given in the tree-bank testing data. 
We measured performance by three observations: 
1. precision: the percentage of all non-terminal brack- 

etings appearing in map parses that also appear as 
a non-terminal bracketing in the corresponding tree- 
bank parse, 

2. recall: the percentage of all non-empty non-terminal 
bracketings from the tree bank that also appeared as 
non-terminal bracketings in the map parse, and 

3. accuracy: the percentage of all bracketings from the 
map parses that do not cross over the bracketings in 
the tree-bank parse. 

The results obtained are shown in Figure 2. 
At about sixteen thousand rules, our grammar is 

rather large. We also ran some tests using only the 

20ne interesting q uestion is whether this outermost 
bracketing should be counted when evaluating the preci- 
sion and recall of the grammar against the tree-bank. We 
have not counted it in this paper. Note that this bracketing 
always encompasses the entire sentence, so it is impossible 
to get wrong. Including it would improve our results by 
about l%, i.e., precision would increase from the current 
82% to about 83%. 
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Sentence Grammar 
Lengths Size Precision Recall Accuracy 
2-16 Full 89.6 87.1 95.0 

Reduced 89.3 87.2 94.9 
2-25 Full 85.5 83.3 91.2 

Reduced 85.1 83.3 91.1 
2-40 Full 82.0 80.0 88.0 

Reduced 81.6 80.0 87.8 

Figure 3: Parsing results for a reduced tree-bank gram- 
mar 
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85- 

A- The tree-bank grammar 
@ - The PCFG of [5] 
17 - The transformational 
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0 - The PCFG of [B] 

A 

A 

q  n A 
0 

A 
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subset of rules that occurred more than once. As noted 
earlier, this reduced the number of rules in the gram- 
mar to 6785. Interestingly, this reduction had almost 
no impact on the parsing results. Figure 3 gives first 
the results for the full grammar followed by the results 
with the 6785-rule subset; the differences are small. 

Discussion 
To put the experimental results into perspective it is 
useful to compare them to previous results on Wall 
Street Journal data. Figure 4 compares the accuracy 
figures for our tree-bank grammar with those of three 
earlier grammars/parsers that also used Wall Street 
Journal text for testing purposes. We compare only 
accuracy figures because the earlier work did not give 
precision and recall figures. 

It seems clear that the tree-bank grammar is more 
accurate than the others, particularly when the aver- 

age sentence length increases - i.e., when longer sen- 
tences are allowed into the testing corpus, The only 
data point that matches our current results is one for 
an earlier grammars of ours [5], and that only for very 
short sentences. 

This is not to say, however, that there are no bet- 
ter grammars/parsers. Magerman [6] reports preci- 
sion and accuracy figures of 86% for WSJ sentences of 
length 40 and less. The difference is that Magerman’s 
parser uses statistics based upon the actual words of 
the sentence, while ours and the others shown in Fig- 
ure 4 use only the tags of the words. We believe this 
shows the importance of including lexical information, 
a point to which we return below. 

Next we turn to the discrepancy between our results 
and the prevailing expectations. Roughly speaking, 
one can identify five reasons why a parser does not 
identify the “correct” parse for a sentence: 
1. the necessary rules are not in the grammar, 
2. the rules are there, but the probabilities are incor- 

rect, 
3. the probabilities are correct, but the tag sequence 

by itself does not provide sufficient information to 
select the correct parse, 

4. the information is sufficient, but because the parser 
could not consider all of the possible parses, it did 
not find the correct parse, 

5. it found the correct parse, but the the tree-bank 
“gold standard” was wrong (or the correct parse is 
simply not clear). 
Of these, (3) and (5) are important but not relevant 

to the current discussion. Of the rest, we believe that 
(1) is a major component of the low expectations for 
tree-bank grammars. Certainly it was our major con- 
cern. Penn-style trees tend to be be rather shallow, and 
the 40-odd parts of speech allow many possible com- 
binations. For example, consider the NP “the $200 to 
$400 price range”, which has the tag sequence dt $ cd 
to $ cd nn nn. Our tree-bank grammar does not have 
the corresponding NP rule (or any reasonable combi- 
nation of rules as far as we can tell) and thus could 
not assign a correct parse to a sentence that contained 
this N P. For this reason we gave some thought to how 
new rules might be introduced and assigned non-zero 
probability. Indeed, we started on this work becuase 
we believed we had a interesting way to do this. In 
the event, however, no such complications proved nec- 
essary. First, our grammar was able to parse all of the 
test sentences. Second, it is not too hard to show that 
coverage is not a first-order problem. 

In retrospect, our concerns about coverage were not 
well thought out because of a second property of our 
tree-bank grammar, its extreme overgeneration. In 
particular, the following fact is true: 

Let x be the set of the tree-bank parts of speech 
minus the following parts of speech: forward and 
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Sentence Data 
Lengths Used Precision Recall Accuracy 
2-16 Testing 89.6 87.1 95.0 

Training 90.7 88.6 95.4 
2-25 Testing 85.5 83.3 91.2 

Training 86.7 84.0 91.6 
2-40 Testing 82.0 80.0 88.0 

Training 83.7 81.1 88.6 

Figure 5: Parsing results for the tree-bank grammar 

backward single quote mark (neither of which oc- 
curred in our corpus) 9 sym (symbol), u h (interjec- 
tion), o (final punctuation), and ). Any string in 
x* (where “*” is the normal Kleene star operator) 
is a legitimate prefix to a sentence in the language 
of our tree-bank-grammar, and furthermore, any 
non-terminal may start immediately following x*. 

In other words, our grammar effectively rules out no 
strings at all, and every possible part of speech can 
start at almost any point in the sentence. The proof 
of this fact is by induction on the length of the string 
and is straightforward but tedious3 

Of course, that our grammar comes up with some 
parse for a sentence does not mean that it is immune 
to missing rules. However, we can show that possi- 
ble missing rules are not a first-order problem for our 
grammar by applying it to sentences from the training 
corpus. This gives an upper bound on the performance 
we can expect when we have all of the necessary rules 
(and the correct probabilities). The results are given 
in Figure 5. Looking at the data for all sentences of 
length less than or equal to 40, we see that having all 
of the necessary rules makes little difference. 

We noted earlier that the tree-bank grammar not 
only overgenerates, but also places almost no con- 
straints on what part of speech may occur at any point 
in the sentence. This fact suggests a second reason for 
the bad reputation of such grammars - they can be 
hard on parsers. We noticed this when, in preliminary 
testing on the training corpus9 a significant number of 
sentences were not parsed - this despite the fact that 
our standard parser used a simple best-first mecha- 
nism. That is, the parser chooses the next constituent 
to work on by picking the one with the highest “figure 
of merit.” In our case this is the geometric mean of 
the inside probability of the constituent. 

Fortunately, we have been also working on improved 
best-first chart parsing and were able to use some new 

3So tedious that after proving this fact for the tree-bank 
grammar used in the fkst draft of this paper, we could not 
muster the enthusiasm necessary to confirm it for the cur- 
rent grammar. However, since the new grammar is larger 
than that in the earlier draft, the above theorem or a sim- 
ilar one will surely hold. 
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techniques on our tree-bank grammar. We achieved 
the performance indicated in Figure 2 using the fol- 
lowing figure of merit for a constituent Nj,k , that is, 
a constituent headed by the ith non-terminal, which 
covers the terms (parts of speech) tj . . . tk - 1 

P($,k I to,n) sa P(Ni I tj-l)P@j,k I WP@k I N”) (2) 
&j,k+d 

Here p(tj,k+l) is the probability of the sequence of 
terms tj . . .tk and is estimated by a tri-tag model, 
p(i!j,k ] N”) is the inside probability of Nj,k and is 
computed in the normal.fashion (see, e.g., [4] ), and 
p(N’ ] Q-r) and p(i!k I NZ) are estimated by gathering 
statistics from the training corpus. 

It is not our purpose here to discuss the advan- 
tages of this particular figure of merit (but see [3]). 
Rather, we simply want to note the difficulty of ob- 
taining parses, not to mention high-probability parses, 
in the face of extreme ambiguity. It is possible that 
some of the negative “common wisdom” about tree- 
bank grammars stems from this source. 

Right-branching Bias 
Earlier we noted that we made one modification to 
our grammar/parser other than the purely efficiency- 
related ones discussed in the last section. This modi- 
fication arose from our long standing belief that our 
context-free parsers seemed, at least from our non- 
systematic observations, to tend more toward center- 
embedding constructions than is warranted in En- 
glish. It is generally recognized that English is a right- 
branching language. For example, consider the follow- 
ing right-branching bracketing of the sentence “The cat 
licked several pans.” 

( (The (cat (licked (several pans)))) .) 
While the bracketing starting with “cat” is quite ab- 
surd, note how many of the bracketings are cor- 
rect. This tendency has been exploited by Brill’s [2] 
“transformational parser,” which starts with the right- 
branching analysis of the sentence and then tries to 
improve on it. 

On the other hand, context-free grammars have 
no preference for right-branching structures. Indeed, 
those familiar with the theory of computation will rec- 
ognize that the language anbn, the canonical center 
embedded language, is also the canonical context-free 
language. It seemed to us that a tree-bank grammar, 
because of the close connection between the “gold- 
standard” correct parses and the grammar itself, of- 
fered an opportunity to test this hypothesis. 

As a starting point in our analysis, note that a right- 
branching parse of a sentence has all of the closing 
parentheses just prior to the final punctuation. We call 
constituents that end just prior to the final punctua- 
tion “ending constituents” and the rest “middle con- 
stituents.” We suspect that our grammar has a smaller 



propensity to create ending constituents than is war- 
ranted by correct parses. If this is the case, we want 
to bias our probabilities to create more ending con- 
stituents and fewer middle ones. 

The “unbiased” probabilities are those assigned by 
the normal PCFG rules for assigning probabilities: 

P(4 = PWW 
CET 

Here 7r is a parse of the tag sequence, c is a non- 
terminal constituent of this parse, and rule(c) is the 
grammar rule used to expand this constituent in the 
parse. Assume that our unbiased parser makes 2 per- 
cent of the constituents ending constituents whereas 
the correct parses have 9 percent, and that conversely 
it makes u-percent of ihe constituents middle con- 
stituents whereas the correct parse has v percent. 

it 
We hypothesized that y > z-and u > v. Furthermore 
seems reasonable to bias the probabilities to account 

for the underproduction of ending constituents by di- 
viding out by 2 to get an “uninfluenced” version and 
then multiplying by-the correct probability y to make 
the influence match the reality (and similarly for mid- 
dle constituents). This gives the‘ following equation for 
the probability of a parse: 

P(4 = 
Y/X if c is ending 
v/u otherwise (4) 

CET 
Note that the deviation of this equation from the stan- 
dard context-free case is heuristic in nature: it derives 
not from any underlying principles, but rather from 
our intuition. The best way to understand it is simply 
to note that if the grammar tends to underestimate the 
number of ending constituents and overestimate mid- 
dle constituents,the above equation will multiply the 
former by g/x, a number greater than one, and the 
latter by-VI& a number less than one. 

Furthermore, if we assume that on the average the 
total number of constituents is the same in both the 
map parse and the tree-bank parse (a pretty good as- 
sumption), and 
rect -parses) 

that y and u (the numbers for the cor- 
are collected from the training data, we 

need collect only one further number, which we have 
chosen as the ending factor E = y/x. 

To test our theory, we estimated s 
out data. It came out 1.2 (thus confirming, at least 
for this test sample, our hypothesis that the map 
parses would underestimate the number of ending con- 
stituents). We modified our parse probability equation 
to correspond to Equation 4. The data we reported 
earlier is the result. Not using this bias yields the “Un- 
biased” data shown here: 

from some held- 

Precision Recall Accuracy 
With bias 82.0 80.0 88.0 
Unbiased 79.6 77.3 85.4 
Difference 2.4 2.7 2.6 

The data is for sentences of lengths 2-40. The differ- 
ences are not huge, but they are significant - both in 

the statistical sense and in the sense that they make 
up a large portion of the improvement over the other 
grammars in Figure 4. Furthermore, the modification 
required to the parsing algorithm is trivial (a few lines 
of code), so the improvement is nearly free. 

It is also interesting to speculate whether such a bias 
would work for grammars other than tree-bank gram- 
mars. On the one hand, the arguments that lead one 
to suspect a problem with context-free grammars are 
not peculiar to tree-bank grammars. On the other, 
mechanisms like counting the percentage of ending con- 
stituents assume that the parser’s grammar and that 
of the gold standard are quite similar, as otherwise 
one is comparing incomparables. Some experimenta- 
tion might be warranted. 

Conclusion 
We have presented evidence that tree-bank grammars 
perform much better than one might at first expect 
and, in fact, seem to outperform other non-word-based 
grammars/parsers. We then suggested two possible 
reasons for the mistaken impression of tree-bank gram- 
mars9 inadequacies. The first of these is the fear that 
missing grammar rules will prove fatal. Here we ob- 
served that our grammar was able to parse all of our 
test data, and by reparsing the training data have 
showed that the real limits of the parsers’ performance 
must lie elsewhere (probably in the lack of informa- 
tion provided by the tags alone). The second pos- 
sible reason behind the mistaken current wisdom is 
the high level of ambiguity of Penn tree-bank gram- 
mars. The ambiguity makes it hard to obtain a parse 
because the number of possible partial constituents is 
so high, and similarly makes it hard to find the best 
parse even should one parse be found. Here we sim- 
ply pointed to some work we have done on best-first 
parsing and suggested that this may have tamed this 
particular problem. Last, we discussed a modification 
to the probabilities of the parses to encourage more 
right-branching structures and showed how this led to 
a small but significant improvement in our results. We 
also noted that the improvement came at essentially 
no cost in program complexity. 

However, because of the informational poverty of tag 
sequences, we recognize that context-free parsing based 
only upon tags is not sufficient for high precision, re- 
call, and accuracy. It seems clear to us that we need 
to include lexical items in the information mix upon 
which we base our statistics. Certainly the 86% pre- 
cision and recall achieved by Magerman [6] supports 
this contention. On the other hand, [6] abjures gram- 
mars altogether, preferring a more complicated (or at 
least, more unusual) mechanism that, in effect, makes 
up the rules as it goes along. We would suggest that 
the present work, with its accuracy and recall of about 
Sl%, indicates that the new grammatical mechanism 
is not the important thing in those results. That is to 
say, we estimate that introducing word-based statis- 
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tics on top of our tree-bank grammar should be 
to make up the 5% gap. Showing this is the next 
of our research. 

able 
step 
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