
eft-corner Unification-base 

Steven L. Lytinen and Nor&o Tomuro 
DePaul University 

School of Computer Science, Telecommunications and Information Systems 
243 S. Wabash Ave. 

Chicago IL 60604 
lytinen@cs.depaul.edu 

Abstract 

In this paper, we present an efficient algorithm for 
parsing natural language using unification grammars. 
The algorithm is an extension of left-corner parsing, a 
bottom-up algorithm which utilizes top-down expec- 
tations. The extension exploits unification grammar’s 
uniform representation of syntactic, semantic, and do- 
main knowledge, by incorporating all types of gram- 
matical knowledge into parser expectations. In par- 
ticular, we extend the notion of the reochcsbility ta- 
ble, which provides information as to whether or not 
a top-down expectation can be realized by a potential 
subconstituent, by including all types of grammatical 
information in table entries, rather than just phrase 
structure information. While our algorithm’s worst- 
case computational complexity is no better than that 
of many other algorithms, we present empirical test- 
ing in which average-case linear time performance is 
achieved. Our testing indicates this to be much im- 
proved average-case performance over previous left- 
corner techniques. 

Introduction 
A family of unification-based grammars has been de- 
veloped over the last ten years, in which the trend 
has been to represent syntactic and semantic infor- 
mation more uniformly than in previous grammatical 
formalisms. In these grammars, many different types 
of linguistic information, including at least some kinds 
of syntactic and semantic constraints, are encoded as 
feature structures. In the most extreme versions, such 
as HPSG (Pollard and Sag, 1994), and our own previ- 
ous work (Lytinen, 1992), feature structures are used 
to encode, all syntactic and semantic information in a 
completely uniform fashion. 

Standard approaches to unification-based parsing do 
not reflect this uniformity of knowledge representation. 
Often a unification-based parser is implemented using 
an extension of context-free parsing techniques, such 
as chart parsing or left corner parsing. The context- 
free (phrase structure) component of the grammar is 
used to drive the selection of rules to apply, and the 
additional feature equations of a grammar rule are ap- 
plied afterward. The result remains a syntax-driven 

approach, in which in some sense semantic interpre- 
tation (and even the application of many syntactic 
constraints) is performed on the tree generated by the 
context-free component of the unification grammar. 

This standard approach to unification-based parsing 
is not efficient. Worst-case complexity must be as bad 
as context-free parsing (O(n3)) and perhaps worse, due 
to the additional work of performing unifications. Em- 
pirical examinations of unification-based parsers have 
indicated nonlinear average case performance as well 
(Shann, 1991; Carroll, 1994). Other popular parsing 
algorithms, such as Tomita’s algorithm (Tomita, 1986)) 
also fail to achieve average-case linear performance, 
even without the inclusion of semantic interpretation. 

Our hypothesis is that a uniform approach to pro- 
cessing will result in a more efficient parsing algorithm. 
To test this hypothesis, we have developed a further 
extension of left-corner parsing for unification gram- 
mars. The extension exploits unification grammar’s 
uniform representation, by incorporating all types of 
grammatical knowledge into parser expectations. In 
particular, we have extended the notion of the recschcs- 
bility table, which provides information as to whether 
or not a top-down expectation can be realized by a po- 
tential subconstituent, by including all types of gram- 
matical information in table entries, rather than just 
phrase structure information.’ We have implemented 
the extended left-corner parsing algorithm within our 
unification-based NLP system, called LINK (Lytinen, 
1992). 

To evaluate the efficiency of our algorithm, we have 
tested LINK on a corpus of example sentences, taken 
from the Fifth Message Understanding Competition 
(MUC-5) (Sundh eim, 1993). This corpus consists of a 
set of newspaper articles describing new developments 
in the field of microelectronics. Since we competed 
in MUC-5 using a previous version of LINK, we were 
able to test our left-corner algorithm using a knowl- 
edge base that was developed independent of the algo- 

‘The extended reachability table will be referred to as 
a reachability net, since the additional complexity of table 
entries requires it to be implemented as a discrimination 
network. 

Learning 1037 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



S rule 

trans 

Figure 1: Example LINK grammar rules 

rithm, and compare its performance on this corpus di- 
rectly to the performance of more standard approaches 
to unification-based parsing. A regression analysis of 
the data indicates that our algorithm has achieved lin- 
ear average-case performance on the MUC-5 corpus, a 
substantial improvement over other unification-based 
parsing algorithms. 

This paper is organized as follows: first we present 
the uniform knowledge representation used in LINK to 
represent syntactic, semantic, and domain knowledge. 
We then discuss LINK’s parsing algorithm. Finally, 
we present results of empirical testing, and discuss its 
implications. 

LINK’s Knowledge Representation 
All knowledge is encoded in LINK’s unification gram- 
mar in the form of feature structures. A feature consists 
of a name and a value. Values may either be atomic or 
may themselves be feature structures. A feature struc- 
ture may also have an atomic label. Thus, each rule 
in LINK’s knowledge base can be thought of as a di- 
rected acyclic graph (DAG), whose edges corresponds 
to feature names, and whose nodes correspond to fea- 
ture values. 

Figure 1 shows a few simple LINK rules. The S 
rule encodes information about one possible structure 
of a complete sentence. The cat feature of the root 
indicates that this rule is about the syntactic category 
S. The numbered arcs lead to subconstituents, whose 
syntactic categories are NP and VP respectively. Im- 
plicit in the numbering of these features is the order 
in which the subconstituents appear in text. In addi- 
tion, this rule indicates that the VP functions as the 
head of the sentence, that the NP is assigned as the 
subj of the sentence, and that the NP and VP share 

ca$ sem&m 

FOOD 
EAT 

Entry for “apple” Entry for “ate” 

ANIMATE FObD 

EAT frame 

Figure 2: Example LINK lexical entries and frames 

the same agr feature (which encodes the number and 
person featires which must agree between a verb and 
its subject). Each of the other two rules displayed in 
figure 1 describes one possible structure for a NP and 
a VP, respectively. Other rules exist for the other 
possible structures of these constituents. 

The purpose of the head feature is to bundle a group 
of other features together. This makes it easier for a 
constituent to inherit a group of features from one of 
its subconstituents, or vice versa. In this case, the agr 
feature is passed up from the noun and verb to the NP 
and VP constituents, to be checked for compatibility 
in the S rule. In the other direction, the subj feature is 
passed down to the verb, where its semantics is checked 
for compatibility with the semantics of the verb (see 
figure 2). 

Other rules in LINK’s knowledge base encode lexical 
and domain information, such as those in figure 2. Lex- 
ical rules typically provide many of the feature values 
which are checked for compatibility in the grammar 
rules. For example, the entry for ate indicates that 
this verb is transitive, and thus may be used with the 
VP rule in figure 1. Lexical items also provide seman- 
tic information, under the sem feature. Thus, “ate” 
refers to a frame called EAT, and “apple” refers to a 
FOOD. 

The operation responsible for checking compatibility 
of features is unification, which can be thought of as the 
combining of information from two DAGs. The result 
of unifying two DAGs is a DAG with all features from 
both of the original DAGs. Two DAGs fail to unify if 
they share a feature with incompatible values. 

Domain knowledge is encoded in frame definition 
rules, such as the EAT frame. A node whose cat 
feature has a frame definition must unify with the def- 
inition. As a result, semantic type-checking is per- 

1038 Natural Language 



Figure 3: LINK reachability net entry 

formed during parsing, resulting in the construction 
of a semantic interpretation. In these example rules, 
since the lexical entry for “ate” unifies the subj of the 
verb with the actor of its semantic representation, this 
means the subject of ate must be HUMAN. 

Note that LINK’s knowledge base is completely uni- 
form. All rules, including grammar rules, lexical en- 
tries, and frame definitions, are represented as DAGs. 
Moreover, within a DAG there is no structural dis- 
tinction between syntactic and semantic information. 
While certain naming conventions are used in the rules 
for different kinds of features, such as using the cat fea- 
ture for the syntactic category of a constituent and the 
sem feature for its semantic representation, these con- 
ventions are only for mnemonic purposes, and play no 
special role in parsing. 

Parsing 
The Reachability Net 
Context-free left-corner parsers generate top-down ex- 
pectations in order to filter the possible constituents 
that are constructed via bottom-up rule application. 
In order to connect top-down and bottom-up informa- 
tion, a reuchubility table is used to encode what con- 
tituents can possibly realize a top-down expectation. 
The table is constructed by pre-analyzing the gram- 
mar in order to enumerate the possible left corner con- 
stituents of a particular syntactic category. For exam- 
ple, possible left corners of a NP (noun phrase) might 
include DET, ADJ, and N (noun), but not PREP. 
In most left-corner unification-based parsers (e.g., see 
Carroll, 1994)) the reachability table is the same: only 
the syntactic labels of an expectation and a potential 
subconstituent are used as indices into the table, which 
then provides information as to which rules may lead 
to the satisfaction of the expectation. 

In LINK, an extended reuchubility net is used, in 
which entire DAGs, rather than just syntactic labels, 
serve both as indices and entries. During grammar pre- 
compilation in LINK, net entries are constructed by 
connecting each possible expectation (represented as a 
DAG) with possible constituents that could be found 
in a sentence to realize the expectation (also DAGs). 
A net entry is generated for each possible consituent, 
which is placed in the Ic (left corner) arc of the expec- 
tation. For example, figure 3 shows the entry for the 

: next expectation 

Figure 4: A portion of the parse of the sentence frag- 
ment “John ate.. .” 

situation in which a VP is expected and a transitive 
verb is encountered. 

The use of the reachability net sometimes enables 
LINK to prune incorrect parses earlier than they oth- 
erwise would be. For example, consider the sentence 
“John slept .” After the word “John,” the expecta- 
tion is for a VP to follow. Upon encountering “slept”, 
a standard reachability table would indicate that two 
possible rules could apply: the VP rule for transitive 
verbs pictured in figure 1, and a similar rule for intran- 
sitive verbs. Application of the transitive rule would 
result in a unification failure, assuming that “slept” 
is marked as intransitive, while the intransitive rule 
would succeed. In LINK, because net entries contain 
more than just syntactic category information, only 
the intransitive verb rule is retrieved in this situation, 
because the marking of “slept” as intransitive is part 
of the DAG which is used as an index into the net. 
Thus, the unification failure is avoided. 

Because all features are utilized in retrieval of net 
entries, semantics can also come into play in the se- 
lection of rules. For example, figure 4 shows the VP 
constituent from the parse of the sentence fragment 
“John ate . ..“. At this point, the expectation is for an 
NP which means FOOD. This semantic information 
may be used in lexical disambiguation, in the case of 
an ambiguous noun. For instance, the word “apple” 
at this point would be immediately disambiguated to 
mean FOOD (as opposed to COMPUTER) by this 
expectation. Structural ambiguities may also be imme- 
diately resolved as a result of the semantic information 
in expectations. For example, consider the sentence 
fragment “The course taught.. .“. Upon encountering 
“taught”, a standard left-corner parser would attempt 
to apply at least two grammar rules: the VP rule for 
transitive verbs (see figure l), and another rule for re- 
duced relative subclauses. In LINK, assuming the ex- 
istence of a TEACH frame whose ACTOR should 
be a HUMAN, the transitive VP rule would not be 
retrieved from the reachability net, since the semantics 

Learning 1039 



cat cat 

s Ic 
S head 

-%’ 9 

1 

NP 
word ca 

of the algorithm. At the beginning of a sentence, the 

cat 

first DAG in figure 5 is constructed if the word “the” 
is the first word of a sentence. This DAG is matched 

head 

cat 1 2 
against entries in the reachability net, retrieving the 

cat sub] 
entry shown. This entry indicates that the NP rule 

head should be applied, resulting in the third DAG shown 
DET the DET 

N 
in figure 5. At this point, the algorithm identifies N 
at the end of lc 2 path as the expectation for the the 

Index into teachability table Table entry next word. 
In LINK, a constituent under the lc arc is only im- 

cat 

IC 
S head 

8 

NP 
cat sub) 

ca 

plicitly connected to the expectation (i.e., the expec- 

head 

cat 1 2 
stituents under Ie arc are found, if the root DAG and 
the DAG under its Ic arc unify, it means that the ex- 
pectation has been fully realized. One possible action 

e : next expectation 

tation is not completed yet). After all the subcon- 

war head 

DET at this point is to replace the root with its lc arc and 
the N continue. This action corresponds to the decision that 
Result of rule appllcatlon a constitutent is complete. 

Figure 5: Net entries and DAGs constructed while 
parsing the word “the” 

of “The course taught” do not agree with the ACTOR 
constraint of TEACH. 

The Parsing Algorithm 

Empirical Results 
To test the performance of our parsing algorithm, we 
selected a random set of sentences from the MUC-5 
corpus, and parsed them using two different versions 
of LINK. One version used the extended reachability 
net as described above; the second version used a stan- 
dard reachability table, in which only phrase structure 
information was utilized. 

At the beginning of the parse of a sentence, LINK con- 
structs an expectation for an S (a complete sentence). 
As the parse proceeds left-to-right, LINK constructs all 
possible interpretations that are consistent with top- 
down expectations at each point in the sentence. A 
rule is applied as soon as its left corner is found in 
the sentence, assuming the reachability net sanctions 
the application of that rule given the current expecta- 
tions. A single-word lookahead is also used to further 
constrain the application of rules. 

LINK’s parsing algorithm extends the standard left- 
corner parsing in the way top-down constraints are 
propagated down to the lower subconstituents. When 
a subconstituent is completed (often called a complete 
edge in chart parsing), it is connected to the current 
expectation through the Ic 1 path. Then, that expec- 
tation is used to retrieve the possible rule(s) to apply 
from the net. If the unification succeeds (creating an 
active edge with the dot just after the first constituent), 
the algorithm first checks to see if an expectation for 
the next word is generated (i.e., there are more con- 
stituents to be found after the dot). If there is a new 
expectation, the iteration stops. Otherwise, the DAG 
under lc arc is complete. That DAG is demoted to lc 
1 path, and the process is repeated. This way, the gap 
between the expectation and the input word is incre- 
mentally filled in a bottom-up fashion, while the top- 
down constraints are fully intact at each level. Thus, 
the top-down constraints are applied at the earliest 
possible time. 

Some simple examples will illustrate the key aspects 

Both versions of LINK were run using a pre-existing 
knowledge base, developed for the MUC-5 competition. 
2 Thus, both versions successfully parsed the same set 
of 131 sentences from the random sample. These 131 
sentences formed the basis of the performance analysis. 

Performance was analyzed in terms of several fac- 
tors. First, a left-corner parser can be thought of 
as performing several “primitive” actions: rule in- 
stantiation and subsequent “dot” advancing, indicat- 
ing the status of a partially matched grammar rule 
(i e . how many of the right-hand side constituents of 
the’kule have matched constituents in the sentence). 
These two actions involve different operations in the 
implementation. 3 A rule is instantiated when a con- 
stituent in the text (either a lexical item or a com- 
pleted edge) matches with its left-corner child on the 
right-hand side. This action involves retrieving the 
rules from the reachability net and unifying the two 
constituents. On the other hand, when the dot is 
advanced, the subconstituent only needs to trace the 
pointer back to the (partially filled) parent DAG which 
predicted that constituent at the position right after 
the dot. Also, since all the expected features were al- 
ready propagated down when the prediction was made, 
the subconstituent can be simply replaced into the rule. 

‘In order to improve the coverage of the domain, we 
added to LINK’s original MUC-5 knowledge base for this 
test. 

3Both of these actions correspond to the construction of 
an edge in chart parsing. 

1040 Natural Language 



y= 26.02 x 
40007 

lwo. . 
-. .- .- 

---- 
__.__._. - 

I .- ..-. _ __.__. 
_ __.- 

-;-..- _.--- 
_ __:_ 

-2 

__ -...‘a’-- : -, ” 

-. -’ 0, i I L t --r$“fg, ,.- 

0 10 20 30 40 

yc.74~"2 +23.12x 
4WO- 

Figure 6: Actions vs. sentence length in LINK using 
extended and standard reachability tables 

For performance monitoring purpose, those two actions 
are recorded separately. 

Figure 6 shows plots of the number of actions exe- 
cuted during a parse vs. sentence length for LINK us- 
ing the standard and extended reachability nets. The 
number of actions also includes failures; i.e., rule in- 
stantiations or dot advances which were attempted but 
in which unification failure occurred (see discussion of 
rule failures in Parsing section). A best regression 
model analysis4, using the adjusted R2 metric, indi- 
cates that when using the extended reachability net, 
LINK achieved linear performance in this respect (R2 
= .599).5 This is an encouraging result, because pars- 
ing time in context-free chart parsing is linearly pro- 
portional to the number of edges entered in the chart. 
When using the standard reachability table, a best 
regression analysis indicates a small quadratic com- 
ponent to the best-fitting curve (adjusted R2 = .682 
vs. .673 for the best linear model). When compar- 
ing best-fit linear models, on average LINK performed 

41n all analyses, best-fitting curves were restricted to 
those with no constant coefficient (i.e., only curves which 
pass through the origin). Intuitively, this makes sense when 
analyzing actions vs. sentence length, since parsing a sen- 
tence containing 0 words requires no actions. 

5Although not shown, performance was also analyzed 
for a no-lookahead version of this algorithm. The action 
vs. sentence length result was also linear, but with a much 
steeper slope. 

Figure 7: CPU time vs. sentence length in LINK using 
extended and standard reachability tables 

40% more actions using the standard reachability table 
than when using the extended reachability net. 

Figure 7 shows plots of CPU time used vs. sentence 
length for the two versions of LINK. The best regres- 
sion model in both cases for this variable is quadratic.6 
Thus, the number of primitive actions taken by the 
parser is not linearly proportional to processing time, 
as it would be for a context-free parser. Average CPU 
time is 20% longer with the standard reachability ta- 
ble than with the extended reachability net. Thus, this 
analysis indicates that we have achieved a considerable 
speed-up in performance over the standard left-corner 
technique.7 

Further analysis indicated that a potential source 
of nonlinear performance in our system is the need 
to copy DAGs when multiple interpretations are pro- 
duced. If the reachability net indicates that more than 
one rule can be applied at some point in the parse, it 

61ntuitively, the best model of CPU time vs. sentence 
length may contain a constant coefficient, since the algo- 
rithm may include some constant-time components; how- 
ever, when allowing for a constant coefficient, the best re- 
gression model results in a negative value for the constant. 
Thus, we did not allow for constant coefficients in the best 
models. 

7 We speculate that the difference of the reduction ra- 
tio between the number of actions and CPU time comes 
from the processing overhead by other parts of the system, 
such as the added complexity of looking up entries in the 
reachability net. 

Learning 1041 



I y = 967.9 x 

Figure 8: CPU time vs. sentence length in LINK using 
extended reachability net and improved DAG copying 

is necessary to copy the DAG representing the parse so 
far, so that the alternate interpretations can be con- 
structed without interference from each other. Indeed, 
a regression analysis of the number of DAGs generated 
during a parse vs. sentence length using the extended 
reachability net indicates that a quadratic model is the 
best for this variable (R2 = .637). 

To remedy this problem, we re-implemented the 
version of LINK using the extended reachability net, 
this time using a more efficient algorithm for copying 
DAGs. Our approach is similar to the lazy unification 
algorithm presented in (Godden, 1983). Space con- 
straints prohibit us from describing the copying algo- 
rithm in detail. The same set of 131 test sentences was 
parsed again, and the results were analyzed in a sim- 
ilar fashion. The modified copying algorithm did not 
affect the number of actions vs. sentence length, since 
copying had no effect on which rules could or could 
not be applied. However, it did have a marked effect 
on the CPU time performance of the system. Figure 
8 shows the plot of CPU time vs. sentence length for 
the lazy version of LINK. On average, the lazy copy- 
ing algorithm achieved an additional 43% reduction 
in average CPU time per parse, and an average to- 
tal speedup of 54% when compared to the version of 
LINK which used the standard reachability table. In 
addition, a regression analysis indicates a linear rela- 
tionship between CPU time and sentence length for 
the lazy version of LINK (adjusted R2=.726, vs. an 
adjusted R2 of .724 for a quadratic model “). 

Related Work 
Efficient Parsing Algorithms 

Many previous efforts have been focused on the con- 
struction of efficient parsing algorithms, Some deter- 
ministic algorithms such as Marcus’ (1980) parser and 

8While the adjusted R2 figures for the linear and 
quadratic models are very close, statistical analysis indi- 
cates that the quadratic coefficient in the latter model is 
not significantly different from 0. 

Register Vector Grammar (Blank, 1989) achieve lin- 
ear time complexity. However, because linear time is 
achieved due to the restrictions imposed by determin- 
ism, those algorithms consequently limit the generative 
capacity of the grammar. Our approach, on the other 
hand, does not limit the generative capacity of our sys- 
tem’s unification grammar. 

Some nondeterministic algorithms have been de- 
veloped which utilize efficient encoding techniques. 
Chart-parsing algorithm uses a chart (or table) to 
record the partial constituents in order to eliminate 
redundant search. Earley’s algorithm (Earley, 1970), a 
variant of chart-parsing, is proven to run in time O(n3) 
for general context-free grammars. Tomita’s General- 
ized LR parsing algorithm (GLR) (Tomita, 1986,199l) 
uses a precompiled table, an extension of LR parse ta- 
ble, to guide the search at any given point in the parse. 
GLR also employs other efficient encoding techniques 
such as graph-structured stack and packed shared for- 
est. However, the worst case complexity of GLR is 
proven to be no better than Earley’s algorithm (John- 
son, 1991). 

In (Shann, 1991), the performance of several varia- 
tions of chart-parsing algorithms is empirically tested 
and compared. In this report, left-corner parsing (LC) 
with a t’op-down filtering strategy ranked the high- 
est, and scored even or better in timing than Tomita’s 
GLR. In particular, top-down filtering seemed to make 
a significant contribution to reducing the parse time. 
The timing results of this report, however, shows that 
neither LC nor GLR achieved linear performance in 
average case. 

Parsing Algorithms for Unification 
Grammars 

In (Shieber, 1992), a generalized grammar formalism 
is developed for the class of unification grammars, 
and an abstract parsing algorithm is defined. This 
abstract algorithm involves three components: pre- 
diction, in which grammar rules are used to predict 
subsequent constituents that should be found in a 
sentence; scanning, in which predictions are matched 
against the input text; and completion, in which pre- 
dictions are matched against fully realized subcon- 
stituents. Shieber leaves the prediction component 
intentially vague; depending on the specificity of the 
predictions generated,g the algorithm behaves as a 
bottom-up parser, a top-down parser, or some com- 
bination thereof. On one extreme, if no information 
is used, the predictor does not propagate any expec- 
tations; hence, the algorithm is in essence equivalent 
to bottom-up parsing. If the predictor limits itself to 
only the phrase structure information in unification 
rules, then the algorithm is analogous to traditional 
(syntax-driven) left-corner parsing. Our algorithm can 

‘A prediction is created 
applied by the predictor. 

after the filtering function p is 

1042 Natural Language 



be characterized as a version of this abstract algorithm 
in which the most extreme prediction component is 
used, one in which all possible information is included 
in the predictions. 

Top-down Filtering 
Shieber (1985) h s ows how Earley’s algorithm can be 
extended to unification-based grammars, and the ex- 
tended algorithm in effect gives a greater power in per- 
forming top-down filtering. He proposes restriction, a 
function which selects a set of features by which top- 
down prediction is propagated. By defining the restric- 
tion to select more features (eg. subcategorization, gap 
or verb form feature) than just phrase structure cate- 
gory, those features are used to prune unsuccessful rule 
application at the earliest time. Although with a very 
small example, a substantial effect on parsing efficiency 
by the use of of restriction is reported. 

Another approach taken in (Maxwell and Kaplan, 
1994) encodes some (functional) features directly in 
the context-free symbols (which requires the grammar 
modification), thereby allowing those features to be 
propagated down by the predictor operation of the Ear- 
ley’s algorithm. Not only does this strategy enable the 
early detection of parse failure, it can also help exploit 
the efficiency of the context-free chart-parsing (O(n3)) 
in unification-based systems. In their report, despite 
the increased number of rules, the modified grammar 
showed an improved efficiency. 

Early detection of failure is accomplished in LINK in 
a more pricipled way, by simply including all informa- 
tion in reachability net entries rather than deciding in 
an ad hoc fashion which constraints to encode through 
subcategorization and which to encode as features. 

Conclusion and Future Work 
We have presented a unification-based parser which 
achieves a significant improvement in performance over 
previous unification-based systems. After incorporat- 
ing an improved version of DAG copying into the 
parser, our extended left-corner algorithm achieved 
average-case linear-time performance on a random 
sample of sentences from the MUC-5 corpus. This is a 
significant improvement over standard left-corner pars- 
ing techniques used with unification grammars, both in 
terms of average-case complexity and overall average 
speed. The improvement is indicated by our own com- 
parative analysis, as well as by comparing our results 
with empirical testing done by others on standard left- 
corner parsers and other algorithms such as Tomita’s 
algorithm (e.g., Shann, 1991). 

Linear time performance was not achieved without 
the addition of an improved DAG copying algorithm. 
Further analysis is required to determine more pre- 
cisely how much of the improvement in performance 
is due to the extended reachability net and how much 
is due to the improved DAG copying. However, our 
testing indicates that, even without improved copying, 

the extended reachability net 
provements in performance as 
a standard reachability table. 

achieves significant im- 
compared to the use of 

Acknowledgement 
The authors would like to thank Joseph Morgan for 
very useful comments and help on the statistical anal- 
ysis of the experiment data. - 

References 

Blank, G. (1989). A Finite and Real-Time Proces- 
sor for Natural Language. Communications of the 
ACM, 32 10) p. 1174-1189. 

Carroll, J. I 1994). Relating complexity to practical 
performance in parsing with wide-coverage unifica- 
&on grammars. In Proceedings of the 32nd Annual 
Meeting of the Association for Computational Lin- 
guistics. 

Earley, J. (1970). A n efficient context-free parsing al- 
gorithm. Communications of the ACM, 13(2). 

Godden, K. (1990). Lazy unification. In Proceedings 
of the 28th Annual Meeting of the Association for 
Computational Linguistics, Pittsburgh PA, pp. 180- 
187. 

Johnson, M. (1991). Th e computational complexity of 
GLR parsing. In Tomita, 1991, pp. 35-42. 

Lytinen, S. (1992). A unification-based, integrated 
natural language processing system. Computers 
and Mathematics with Applications, 23(6-g), pp. 
403-418. 

Marcus, M. (1980). A theory of syntactic recognition 
for natural language, Cambridge, MA: MIT Press. 

Maxwell, J. and Kaplan, R. (1994). The interface be- 
tween phrasal and functional constraints, Compu- 
tational Linguistics, 19 (4). 

Pollard, C. and Sag, I. (1994). Head-driven Phrase 
Structure Grammar. Stanford, CA: Center for the 
Study of Language and Information. The Univer- 
sity of Chicago Press. 

Shann, P. (1991). Experiments with GLR and chart 
parsing. In Tomita, 1991, p. 17-34. 

Shieber, S. (1985). Using restriction to extend 
parsing algorithms for complex-feature-based for- 
malisms. In Proceedings of the 23rd Annual Meet- 
ing of the Association for Computational Linguis- 
tics, Chicago, IL, pp. 145-152. 

Shieber, S. (1992). Constraint-based Grammar For- 
malisms. Cambridge, MA: MIT Press. 

Sundheim, B. (1993). P roceedings of the Fifth Message 
Understanding Conference (MUC-5). San Fran- 
cisco: Morgan Kaufmann Publishers. 

Tomita, M. (1986). E’cient Parsing for Natural Lan- 
guage. Boston: Kluwer Academic Publishers. 

Tomita, M. (1991). G eneralized LR Parsing. Boston: 
Kluwer Academic Publishers. 

Learning 1043 


