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Abstract 

This paper presents recent work using the CHILL 
parser acquisition system to automate the con- 
struction of a natural-language interface for data- 
base queries. CHILL treats parser acquisition as 
the learning of search-control rules within a logic 
program representing a shift-reduce parser and 
uses techniques from Inductive Logic Program- 
ming to learn relational control knowledge. Start- 
ing with a general framework for constructing a 
suitable logical form, CHILL is able to train on a 
corpus comprising sentences paired with database 
queries and induce parsers that map subsequent 
sentences directly into executable queries. Exper- 
imental results with a complete database-query 
application for U.S. geography show that CHILL 
is able to learn parsers that outperform a pre- 
existing, hand-crafted counterpart. These results 
demonstrate the ability of a corpus-based system 
to produce more than purely syntactic represent- 
ations. They also provide direct evidence of the 
utility of an empirical approach at the level of a 
complete natural language application. 

Introduction 
Empirical or corpus-based methods for constructing 
natural language systems has been an area of grow- 
ing research interest in the last several years. The 
empirical approach replaces hand-generated rules with 
models obtained automatically by training over lan- 
guage corpora. Recent approaches to constructing 
robust parsers from corpora primarily use statistical 
and probabilistic methods such as stochastic grammars 
(Black, Lafferty, & Roukaos 1992; Periera & Shabes 
1992; Charniak & Carroll 1994) or transition networks 
(Miller et al. 1994). Several current methods learn 
some symbolic structures such as decision trees (Black 
et al. 1993; Magerman 1994; Kuhn & De Mori 1995) 
and transformations (Brill 1993). Zelle and Mooney 
(1993, 1994) h ave proposed a method called CHILL 
based on the relational learning techniques of Inductive 
Logic Programming. 
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To date, these systems have been demonstrated 
primarily on the problem of syntactic parsing, group- 
ing the words of a sentence into hierarchical constitu- 
ent structure. Since syntactic analysis is only a small 
part of the overall problem of understanding, these ap 
proaches have been trained on corpora that are “arti- 
ficially” annotated with syntactic information. Simil- 
arly, they are typically evaluated with artificial metrics 
of parsing accuracy. While such metrics can provide 
rough comparisons of relative capabilities, it is not 
clear to what extent these measures reflect differences 
in performance on real language-processing tasks. The 
acid test for empirical approaches is whether they allow 
the construction of better natural language systems, or 
perhaps allow for the construction of comparable sys- 
tems with less overall effort. This paper reports on the 
experience of using CHILL to engineer a natural lan- 
guage front-end for a database-query task. 

A database-query task was a natural choice as it 
represents a significant real-world language-processing 
problem that has long been a touch-stone in NLP re- 
search. It is also a nontrivial problem of tractable size 
and scope for actually carrying out evaluations of em- 
pirical approaches. Finally, and perhaps most import- 
antly, a parser for database queries is easily evaluable. 
The bottom line is whether the system produces a cor- 
rect answer for a given question, a determination which 
is straight-forward for many database domains. 

Learning to Parse DB queries 
Overview of CHILL 
Space does not permit a complete description of the 
CHILL system here. The relevant details may be found 
in (Zelle & Mooney 1993; 1994; Zelle 1995). What 
follows is a brief overview. 

The input to CHILL is a set of training instances con- 
sisting of sentences paired with the desired parses. The 
output is a shift-reduce parser that maps sentences into 
parses. CHILL treats parser induction as a problem of 
learning rules to control the actions of a shift-reduce 
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parser expressed as a Prolog program. Control-rules 
are expressed as definite-clause concept definitions. 
These rules are induced using a general concept learn- 
ing system employing techniques from Inductive Logic 
Programming (ILP) a subfield of machine learning that 
addresses the problem of learning definite-clause logic 
descriptions from examples (Lavraz & Dz’eroski 1994; 
Muggleton 1992). 

The central insight in CHILL is that the general op- 
erators required for a shift-reduce parser to produce 
a given set of sentence analyses are directly inferable 
from the representations themselves. For example, if 
the target is syntactic analysis, the fact the the parser 
requires a reduction to combine a determiner and a 
noun to form an NP follows directly from the existence 
of such an NP in the training examples. However, just 
inferring an appropriate set of operators does not pro- 
duce a correct parser, because more knowledge is re- 
quired to apply operators 
of parsing an example. 

accurately during the course 

The current context of a parse is contained in the 
contents of the stack and the remaining input buffer. 
CHILL uses parses of the training examples to figure out 
the contexts in which each of the inferred operators is 
and is not applicable. These contexts are then given to 
a general induction algorithm that learns rules to clas- 
sify the contexts in which each operator should be used. 
Since the contexts are arbitrarily-complex parser-states 
involving nested (partial) constituents, CHILL employs 
an ILP learning algorithm which can deal with struc- 
tured inputs and produce relational concept descrip- 
tions. 

Figure 1 shows the basic components of CHILL. 
During Parser Operator Generation, the training ex- 
amples are analyzed to formulate an overly-general 
shift-reduce parser that is capable of producing parses 
from sentences. The initial parser is overly-general in 
that it produces a great many spurious analyses for 
any given input sentence. In Example Analysis, the 
training examples are parsed using the overly-general 
parser to extract contexts in which the various parsing 
operators should and should not be employed. Control- 
Rule Induction then employs a general ILP algorithm 
to learn rules that characterize these contexts. Finally, 
Program Specialization “folds” the learned control- 
rules back into the overly-general parser to produce the 
final parser. 

Previous experiments have evaluated CHILL'S per- 
formance in learning parsers to perform case-role pars- 
ing (Zelle & Mooney 1993) and syntactic parsers for 
portions of the ATIS corpus (Zelle & Mooney 1994; 
1996). These experiments have demonstrated that 
CHILL works as well or better than neural-network or 

Control Exampks 
I 

Figure 1: The CHILL Architecture 

statistical approaches on comparable corpora. 

Parsing DB Queries 

Overview of the Problem For the database-query 
task, the input to CHILL consists of sentences paired 
with executable database queries. The query lan- 
guage considered here is a logical form similar to 
the types of meaning representation typically pro- 
duced by logic grammars (Warren & Pereira 1982; 
Abramson 8z Dahl 1989). The semantics of the rep- 
resentation is grounded in a query interpreter that ex- 
ecutes queries and retrieves relevant information from 
the database. The choice of a logical query language 
rather than the more ubiquitous SQL was made because 
the former provides a more straight-forward, compos- 
itional mapping from natural language utterances-a 
property that is necessary for the CHILL approach. 
The process of translating from an unambiguous logical 
form into other query formats is easily automated. 

The domain of the chosen database is United States 
geography. The choice was motivated by the availabil- 
ity of an existing natural language interface for a simple 
geography database. This system, called Geobase was 
supplied as an example application with a commercial 
Prolog available for PCs, specifically Turbo Prolog 2.0 
(Borland International 1988). Having such an example 
provides a database already coded in Prolog for which 
a front-end can be built; it also serves as a convenient 
benchmark against which CHILL'S performance can be 
compared. 
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What is the capital of the state with the largest population? 
answer (C, (capital (S ,C) , largest (P, (state 6) , 
population(S,P))))). 

What are the major cities in Kansas? 
answer(C, (major(C), city(C), loc(C,S), 
equal(S,stateid(kansas) 1)). 

Type Form Example 
country countryid(Name) countryid(usa) 
city cityid(Name, State) cityid(austin,tx) 
state stateidclame) stateidctexas) 
river riverid(Name) riverid(colorado1 
place placeid(Name) placeidcpacif ic) 

Figure 2: Sample Database Queries Figure 3: Basic Objects in Geoquery 

The Geobase data contains about 800 Prolog facts 
asserting relational tables for basic information about 
U.S. states, including: population, area, capital city, 
neighboring states, major rivers, major cities, and 
highest and lowest points along with their elevation. 
Figure 2 shows some sample questions and associated 
query representations. 

Development of the database application required 
work on two components: a framework for parsing 
into the logical query representations, and a specific 
query language for the geography database. The first 
component is domain-independent and consists of al- 
gorithms for parsing operator generation and example 
analysis to infer the required operators and parse the 
training examples. The resulting parsing framework is 
quite general and could be used to generate parsers for 
a wide range of logic-based representations. 

The second component, which is domain specific, is 
a query language having a vocabulary sufficient for ex- 
pressing interesting questions about geography. The 
database application itself comprises a parser produced 
by CHILL coupled with an interpreter for the query 
language. The specific query language for these exper- 
iments (hereafter referred to as Geoquery) was initially 
developed by considering a sample of 50 sentences. A 
simple query interpreter was developed concurrently 
with the query language, thus insuring that the rep 
resentations were grounded in the database-query task. 

The Query Language, Geoquery The query lan- 
guage considered here is basically a first-order logical 
form augmented with some higher-order predicates or 
meta-predicates, for handling issues such as quantifica- 
tion over implicit sets. This general form of representa- 
tion is useful for many language processing tasks. The 
particular constructs of Geoquery, however, were not 
designed around any notion of appropriateness for rep 
resentation of natural language in general, but rather 
as a direct method of compositionally translating Eng- 
lish sentences into unambiguous, logic-oriented data- 
base queries. 

The most basic constructs of the query representa- 
tion are the terms used to represent the objects refer- 
enced in the database and the basic relations between 
them. The basic forms are listed in Figure 3. The 

objects of interest are states, cities, rivers and places 
(either a high-point of low-point of a state). Cities 
are represented using a two argument term with the 
second argument containing the abbreviation of the 
state. This is done to insure uniqueness, since dif- 
ferent states may have cities of the same name (e.g. 
cityid(columbus,oh) vs. cityid(columbus,ga)). 
This convention also allows a natural form for express- 
ing partial information; a city known only by name is 
given an uninstantiated variable for its second term. 

Form 
capital(C) 

Predicate 
C is a capital (city). 
C is a city. 
X is major. 
P is a place. 
R is a river. 
S is a state. 

city(C) 
major(X) 
place (PI 
river(R) 
state 6) 
capital(C) 
area6 ,A) 
capital (S ,C) 
equal (V , C) 
density(S,D) 
elevation(P,E) 
high-point (S ,P) 
higher(Pl,P2) 
loc(X,Y) 
low-point (S ,P) 
len(R,L) 
next-to 61 ,S2) 
size(X,Y) 
traverse (R, S) 

C is a capital (city). 
The area of S is A. 
The capital of S is C. 
variable V is ground term C. 
The (population) density of S is P 
The elevation of P is E. 
The highest point of S is P. 
Pl’s elevation is greater than P2’s. 
X is located in Y. 
The lowest point of S is P. 
The length of R is L. 
Sl is next to S2. 
The size of X is Y. 
R traverses S. 

Figure 4: Basic Predicates in Geoquery 

The basic relations are shown in Figure 4. The 
equal/2 predicate is used to indicate that a certain vari- 
able is bound to a ground term representing an object 
in the database. For example, a phrase like “the cap 
italofTexas” translates to (capital(S,C), equal@, 
stateid(texas) )) rather than the more traditional 
capital(stateid(texas) ,C). The use of equal al- 
lows objects to be introduced at the point where they 
are actually named in the sentence. 

Although the basic predicates provide most of the ex- 
pressiveness of Geoquery, meta-predicates are required 
to form complete queries. A list of the implemented 
meta-predicates is shown in Figure 5. These predicates 
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Form Explanation 
answer (V , Goal) V is the variable of interest in Goal. 
largest (V, Goal) Goal produces only the solution 

that maximizes the size of V 
smallest (V ,Goal) Analogous to largest. 
highest (V ,Goal) Like largest (with elevation). 
lowest (V ,Goal) Analogous to highest. 
longest (V , Goal) Like largest (with length). 
shortest(V,Goal) Analogous to longest. 
c0udD,God,C) c is count of unique bindings for D 

that satisfy Goal. 
most (X,D,Goal) Goal produces only the X 

that maximizes the count of D 
fewest (X,D,Goal) Analogous to most. 

Figure 5: Meta-Predicates in Geoquery 

are distinguished in that they take completely-formed 
conjunctive goals as one of their arguments. The most 
important of the meta-predicates is answer/S. This 
predicate serves as a “wrapper” for query goals indic- 
ating the variable whose binding is of interest (i.e. an- 
swers the question posed). The other meta-predicates 
provide for the quantification over and selection of ex- 
tremal elements from implicit sets. 
A Parsing Framework for Queries Although the 
logical representations of Geoquery look very differ- 
ent from parse-trees or case-structures on which CHILL 
has been previously demonstrated, they are amenable 
to the same general parsing scheme as that used for 
the shallower representations. Adapting CHILL to work 
with this representation requires only the identification 
and implementation of suitable operators for the con- 
struction of Geoquery-style analyses. 

The parser is implemented by translating parsing ac- 
tions into operator clauses for a shift-reduce parser. 
The construction of logical queries involves three dif- 
ferent types of operators. Initially, a word or phrase 
at the front of the input buffer suggests that a cer- 
tain structure should be part of the result. The ap 
propriate structure is pushed onto the stack. For ex- 
ample, the word “capital” might cause the capital/2 
predicate to be pushed on the stack. This type of op 
eration is performed by an introduce operator. Ini- 
tially, such structures are introduced with new (not co- 
referenced) variables. These variables may be unified 
with variables appearing in other stack items through 
a co-reference operator. For example, the first argu- 
ment of the capital/2 structure may be unified with 
the argument of a previously introduced state/ I pre- 
dicate. Finally, a stack item may be embedded into 
the argument of another stack item to form conjunct- 
ive goals inside of meta-predicates; this is performed 
by a conjoin operation. 

For each class of operator, the overly-general op 
erators required to parse any given example may be 
easily inferred. The necessary introduce operators 
are determined by examining what structures occur 
in the given query and which words that can intro- 
duce those structures appear in the training sentence. 
Co-reference operators are constructed by finding the 
shared variables in the training queries; each shar- 
ing requires an appropriate operator instance. Fi- 
nally, con join operations are indicated by the term- 
embedding exhibited in the training examples. It is 
important to note that only the operator generation 
phase of CHILL is modified to work with this repres- 
entation; the control-rule learning component remains 
unchanged. 

As an example of operator generation, the first 
query in Figure 2 gives rise to four introduce oper- 
ators: “capital” introduces capital/a, “state” intro- 
duces state/i, “largest” introduces largest/2 and 
“population” introduces populat iox&. The initial 
parser-state has answer/2 on the stack, so its intro- 
duction is not required. The example generates four 
co-reference operators for the variables (e.g., when 
capital/2 is on the top of the stack, its second ar- 
gument may be unified with the first argument of 
answer/Z, which is below it). Finally, the example 
produces four conjoin operators. When largest/2 
is on the top of the stack, state/i is “lifted” into the 
second argument position from its position below in the 
stack. Conversely, when population/2 is on the top of 
the stack, it is “dropped” into the second argument of 
largest/2 to form the conjunction. Similar operators 
embed capital/2 and largest/2 into the conjunction 
that is the second argument of answer/Z. 

Experimental Results 
Experiments 
A corpus of 250 sentences was gathered by submitting 
a questionnaire to 50 uninformed subjects. For evalu- 
ation purposes, the corpus was split into training sets of 
225 examples with the remaining 25 held-out for test- 
ing. CHILL was run using default values for various 
parameters. 

Testing employed the most stringent standard for ac- 
curacy, namely whether the application produced the 
correct answer to a question. Each test sentence was 
parsed to produce a query. This query was then ex- 
ecuted to extract an answer from the database. The 
extracted answer was then compared to the answer 
produced by the correct query associated with the test 
sentence. Identical answers were scored as a correct 
parsing, any discrepancy resulted in a failure. Figure 6 
shows the average accuracy of CHILL’S parsers over 10 
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ably does not represent a state-of-the-art standard for 
natural language database query systems, neither is it a 
“straw man.” Geobase uses a semantics-based parser 
which scans for words corresponding to the entities and 
relationships encoded in the database. Rather than re- 
lying on extensive syntactic analysis, the system at- 
tempts to match sequences of entities and associations 
in sentences with an entity-association network describ- 
ing the schemas present in the database. The result is a 
relatively robust parser, since many words can simply 
be ignored. That CHILL performs better after training 
on a relatively small corpus is an encouraging result. 

Figure 6: Geoquery: Accuracy 

trials using different random splits of training and test- 
ing data. The line labeled “Geobase” shows the average 
accuracy of the Geobase system on these 10 testing sets 
of 25 sentences. The curves show that CHILL outper- 
forms the existing system when trained on 175 or more 
examples. In the best trial, CHILL's induced parser 
comprising 1100 lines of Prolog code achieved 84% ac- 
curacy in answering novel queries. 

In this application, it is important to distinguish 
between two modes of failure. The system could either 
fail to parse a sentence entirely, or it could produce a 
query which retrieves an incorrect answer. The parsers 
learned by CHILL for Geoquery produced few spuri- 
ous parses. At 175 training examples, CHILL produced 
3.2% spurious parses, dropping to 2.3% at 200 ex- 
amples. This compares favorably with the 3.8% rate 
for Geobase. 

Discussion 
These results are interesting in two ways. First, they 
show the ability of CHILL to learn parsers that map 
sentences into queries without intermediate syntactic 
parsing or annotation. This is an important consider- 
ation for empirical systems that seek to reduce the lin- 
guistic expertise needed to construct NLP applications. 
Annotating corpora with useful final representations is 
a much easier task than providing detailed linguistic 
annotations. One can even imagine the construction of 
suitable corpora occurring as a natural side-effect of at- 
tempting to automate processes that are currently done 
manually (e.g. collecting examples of the queries pro- 
duced by database users in the normal course of their 
work). 

Second, the results demonstrate the utility of an em- 
pirical approach at the level of a complete natural- 
language application. While the Geobase system prob- 

Related Work 
As noted in the introduction, most work on corpus- 
based parsing has focused on the problem of syn- 
tactic analysis rather than semantic interpretation. 
However, a number of groups participating in the 
ARPA-sponsored ATIS benchmark for speech under- 
standing have used learned rules to perform some 
semantic interpretation. The Chronus system from 
AT&T (Pieraccini et al. 1992) used an approach based 
on stochastic grammars. Another approach employ- 
ing statistical techniques is the Hidden Understanding 
Models of Miller, et. al. (1994). Kuhn and De Mori 
(1995) have investigated an approach utilizing semantic 
classification trees, a variation on decision trees famil- 
iar in machine learning. 

These approaches differ from work reported here in 
that learning was used in only a one component of a 
larger hand-crafted grammar. The ATIS benchmark 
is not an ideal setting for the evaluation of empirical 
components per se, as overall performance may be sig- 
nificantly affected by the performance of other com- 
ponents in the system. Additionally, the hand-crafted 
portions of these systems encompassed elements that 
were part of the learning task for CHILL. CHILL learns 
to map from strings of words directly into query rep- 
resentations without any intermediate analysis; thus, it 
essentially automates construction of virtually the en- 
tire linguistic component. We also believe that CHILL'S 
relational learning algorithms make the approach more 
flexible, as evidenced by the range of representations 
for which CHILL has successfully learned parsers. Ob- 
jective comparison of various approaches to empirical 
NLP is an important area for future research. 

Future Work and Conclusions 
Clearly, there are many open questions regarding the 
practicality of using CHILL for the development of NLP 
systems. Experiments with larger corpora and other 
domains are indicated. Another interesting avenue of 
investigation is the extent to which performance can 
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be improved by corpus “manufacturing.” Since an ini- 
tial corpus must be annotated by hand, one method 
of increasing the regularity in the training corpus (and 
hence the generality of the resulting parser) would be 
to allow the annotat0.r to introduce related sentences. 
Although this approach would require extra effort from 
the annotator, it would be far easier than annotating an 
equal number of random sentences and might produce 
better results. 

The development of automated techniques for lex- 
icon construction could also broaden the applicability 
of CHILL. Currently, the generation of introduce op- 
erators relies on a hand-built lexicon indicating which 
words can introduce various predicates. Thompson 
(1995) has demonstrated an initial approach to corpus- 
based acquisition of lexical mapping rules suitable for 
use with CHILL-Style parser acquisition systems. 

We have described a framework using ILP to learn 
parsers that map sentences into database queries us- 
ing a training corpus of sentences paired with queries. 
This method has been implemented in the CHILL sys- 
tem, which treats parser acquisition as the learning of 
search-control rules within a logic program represent- 
ing a shift-reduce parser. Experimental results with 
a complete application for answering questions about 
U.S. geography show that CHILL's parsers outperform 
a pre-existing hand-crafted counterpart. These results 
demonstrate CHILL's ability to learn semantic map 
pings and the utility of an empirical approach at the 
level of a complete natural-language application. We 
hope these experiments will stimulate further research 
in corpus-based techniques that employ ILP. 
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