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Abstract 

This work’ integrates three related AI search tech- 
niques - constraint satisfaction, branch-and-bound 
and solution synthesis - and applies the result to se- 
mantic processing in natural language (NL). We sum- 
marize the approach as “Hunter-Gatherer:” 

o branch-and-bound and constraint satisfaction allow 
us to “hunt down” non-optimal and impossible so- 
lutions and prune them from the search space. 

e solution synthesis methods then “gather” all opti- 
mal solutions avoiding exponential complexity. 

Each of the three techniques is briefly described, as 
well as their extensions and combinations used in our 
system. We focus on the combination of solution syn- 
thesis and branch-and-bound methods which has en- 
abled near-linear-time processing in our applications. 
Finally, we illustrate how the use of our technique in 
a large-scale MT project allowed a drastic reduction 
in search space. 

Introduction 
The number of possible semantic analyses in an 
average-sized sentence in the Spanish corpus used 
in the Mikrokosmos MT project is fifty six million, 
six hundred eighty seven thousand, and forty. Com- 
plex sentences have gone past the trillions. Exhaustive 
search methods applied to real sentences routinely re- 
quire several minutes to finish, with larger sentences 
running more than a day. Clearly, techniques must be 
developed to diffuse this exponential explosion. 

Hunters and Gatherers in AI 
Search is the most common tool for finding solutions 
in artificial intelligence. The two paths to higher effi- 
ciency in search are 

1. Reducing the search space. Looking for sub-optimal 
or impossible solutions. Removing them. Killing 
them. “Hunting” 

‘-Research reported in this paper was supported in part 
by Contract MDA904-92-C-5189 from the U.S. Department 
of Defense. 
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2. Efficiently extracting answer(s) from the search 
space. Collecting satisfactory answer(s). “Gather- 
ing” 

Much work has been done with regard to the hunters. 
Finding and using heuristics to guide search has been 
a major focus. Heuristics are necessary when other 
techniques cannot reduce the size of the search space 
to reasonable proportions. Under such circumstances, 
“guesses” have to be made to guide the search engine 
to the area of the search space most likely to contain 
acceptable answers. “Best-first” search (see, among 
many others, (Charniak et al. 1987)) is an example of 
how to use heuristics. 

The “hunting” techniques applied in this research 
are most closely related to the field of constraint satis- 
faction problems (CSP). (Beale 1996) overviews this 
field and (Tsang 1993) covers it in depth. Further 
references include (Mackworth 1977), (Mackworth & 
Freuder 1985) and (Mohr & Henderson 1986). 

“Gathering” has been studied much less in AI. Most 
AI problems are content with a single “acceptable” an- 
swer. Heuristic search methods generally are sufficient. 
Certain classes of problems, however, demand all cor- 
rect answers. “Solution synthesis” addresses this need. 
Solution synthesis techniques (Freuder 1978; see also 
Tsang & Foster 1990), iteratively combine (gather) 
partial answers to arrive at a complete list of all cor- 
rect answers. Often, this list is then rated according to 
some separate criteria in order to pick the most suit- 
able answer. 

In a “blocks” world, CSP techniques and solution 
synthesis are powerful mechanisms. Many “real-world” 
problems, however, have a more complex semantics: 
constraints are not “yes” or “no” but “maybe” and 
“sometimes.” In NL, certain word-sense combinations 
might make sense in one context but not in another. 
This is the central problem with previous attempts at 
using constraint analysis for NL disambiguation (Na- 
gao 1992; Maruyama 1990).2 We need a method as 
powerful as CSP for this more complex environment. 

2For instance, Nagao eliminates an ownership meaning 
on the basis that a file-system is not a human agent. As 
shown in the next section, metonymy and other figurative 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Grupo Roche 

ORGANIZATION 

a traves de au compania en espana adquirir Dr. Andreu 

LOCATION OWNER CCRPORATION LOdATlON NATIOM ACGWRE HUMAN 
INS’TRUMENT SOCIAL-EVENT DURING LEARN ORGANIZA TloN 

Figure 1: Example Sentence 

Our proposal is to 1) use constraint dependency in- 
formation to partition problems into appropriate sub- 
problems, 2) combine (gather) results from these sub- 
problems using a new solution synthesis technique, and 
3) prune (hunt) these results using branch-and-bound 
techniques. The rest of this paper addresses each of 
these issues in turn. 

Constraint Satisfaction Hunters in NL 

NL problems can be almost always viewed as bundles of 
tightly constrained sub-problems, each of which com- 
bine at higher, relatively constraint-free levels to pro- 
duce a complete solution. Beale (1996) argues that 
syntactic and semantic constraints effectively partition 
discourse into clusters of locally interacting networks. 
Here, we summarize those results and report how so- 
lution synthesis and branch-and-bound techniques can 
improve search efficiency. 

Figure 1 illustrates the basic lexical ambiguities in 
a very simple Spanish sentence from the corpus pro- 
cessed by our semantic analyzer. In the figure the 
Spanish words and phrases are shown with their read- 
ings, expressed as corresponding concepts in the under- 
lying ontology. An exhaustive decision tree for this sen- 
tence would include 36 possible combinations of word 
senses, but, when some fairly obvious “literal” seman- 
tic constraints are imposed and propagated using arc 
consistency, all but one of the paths can be eliminated. 

Unfortunately, a literal imposition of constraints 
does not work in NL. For example, a traves de, in a 
truves de su companiu could very well be location, 
even though a literal constraint would expect compu- 
niu to be a place, because corporation names are often 
used metonymically to stand for “the place of the cor- 
poration:” 

I walked to IBM. 
I walked to where IBM’s building is. 

Therefore, the fact that compuniu is not literally a 
place does not rule out the location interpretation. 
In fact, in certain contexts, the location interpretation 
might be preferred. Constraint satisfaction techniques 
such as arc-consistency, therefore, will be of limited 
value. 

Figure 2 gives a different view of this same NL prob- 
lem by graphically displaying the constraint dependen- 
cies present in Figure 1. These dependencies can be 

language often overrides such constraints. 

Adquirir 

Grupu 

en ESpalk3 

Figure 2: Constraint Dependencies in Sample Sentence 

identified simply by iterating through the list of con- 
straints, retrieved from the Mikrokosmos lexicon and 
ontology (Beale, Nirenburg & Mahesh 1995), and link- 
ing any words involved in the same constraint. In Fig- 
ure 2, three relatively independent sub-parts can be 
identified. If these sub-parts, or “circles” in our termi- 
nology, could be identified, the processing involved in 
finding a complete solution could be decomposed into 
three sub-problems. In this paper we assume such a de- 
composition is possible so that we may concent,rate on 
describing the methods used to combine results from 
individual circles to form larger and larger solutions, 
the largest of which will be the solution to the ent,ire 
problem. 

Solution Synthesis Gatherers in NL 
Freuder (1978) introduced Solution Synthesis (SS) as a 
means to “gather up” all solutions for a CSP without 
resorting to traditional search methods. Freuder’s al- 
gorithm (SS-FREUDER) created a set of two-variable 
nodes that contained combinations of every two vari- 
ables. These two-variable nodes were then combined 
into three-variable nodes, and so on, until a node con- 
taining all the variables, i.e. the solution, was synthe- 
sized. At each step, constraints were propagated down 
and then back up the “tree” of synthesized nodes. 

Tsang improved on this scheme with the Essex Al- 
gorithms (SS-ESSEX). Th ese algorithms assumed that 
a list of the variables could be made, after which 
two-variable nodes were created only between adjacent 
variables in the list. Higher order nodes were then 
synthesized as usual, starting from the two-variable 
nodes. Tsang noted that some orderings of the original 
list would prove more efficient than others, most no- 
tably a “Minimal Bandwidth Ordering” (MBO), which 
seeks to minimize the distance between constrained 
variables. 
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The work described here extends and generalizes the 
concept of MBO. The basic idea of synthesizing solu- 
tion sets one order higher than their immediate an- 
cestors is discarded. Instead, solution synthesis op- 
erates with maximally interacting groupings (circles) 
of variables of any order and extends to the highest 
levels of synthesizing. Tsang only creates second or- 
der nodes from adjacent variables in a list, with the 
original list possibly ordered to maximize second order 
interactions. After that, third and higher order nodes 
are blindly created from combinations of second order 
nodes. We extend MB0 to the higher levels. The cir- 
cles of co-constrained variables described in the previ- 
ous section guide the synthesis process from beginning 
to end. 

The main improvement of this approach comes from 
a recognition that much of the work in SS-FREUDER 
and SS-ESSEX was wasted on finding valid combi- 
nations of variables which were not related. Even 
though relatively few words in a sentence are con- 
nected through constraints, SS-FREUDER looks for 
valid combinations of every word pair. Depending on 
the ordering used, many irrelevant combinations can 
also be inspected by SS-ESSEX. Furthermore, the ES- 
SEX algorithm tends to carry along unneeded ambigu- 
ity. If two related variables are not adjacent in the ES- 
SEX algorithm, their disambiguating power will not be 
applied until they happen to co-occur in a higher-order 
synthesis.3 The current work combines the efficiency of 
the ESSEX algorithms with the early disambiguation 
power of the Freuder method. 

Our SS-GATHERER algorithm only expends energy 
on variables directly related by constraints. For in- 
stance, for the example in Figure 2, three “base” circles 
would be formed: 

1. adquirir, grupo roche, dr andreu 
2. adquirir, a traves de, compania 
3. compania, en, espana 

The last two are synthesized into a larger circle: 

ad+, a traves de, compania, en, espana, su 

This is then synthesized with the first “base” circle 
above to give the answer to the complete problem. 

The bulk of disambiguation occurs in the lower or- 
der circles which were chosen to maximize this phe- 
nomenon. The correct solution to the example prob- 
lem was obtained by SS-GATHERER in only five steps. 
SS-Freuder uses hundreds of extra nodes for this exam- 
ple and SS-ESSEX, 31 extra nodes. Focusing the syn- 
thesizer on circles that yield maximum disambiguation 
power produces huge savings while still guaranteeing 
the correct solution. 

One objection that could be raised to this process is 
that more work might be needed to create higher-level 

3Freuder’s algorithm does not have this disadvantage, 
because all combinations of variables are created, though 
at great expense. 

nodes. For instance, if each variable had three possi- 
ble values, one needs to test 9 (32) combinations for 
each second-order node, but 27 (33) combinations for 
third order nodes.4 If two second-order nodes could be 
created that would form a third-order node, and each 
second order node could be completely disambiguated 
to a single solution, then the third order node could 
be created without any combinatorics, yielding a total 
of 18 combinations (9 + 9) that were searched in the 
case of three values for each variable. Directly creat- 
ing the third-order node requires the 27 combinations 
to be searched. However, if the second order nodes do 
not disambiguate, nothing is gained from them. For 
this reason, base circles can be further sub-divided into 
groups of second-order nodes, if those second-order 
nodes are connected in the constraint graph. 

The algorithm below accepts a list of Circles, ordered 
from smaller to larger. Each circle has the sub-circles 
from which it is made identified. 

1 PROCEDURE SS-GATHERER(Circles) 
2 FOR each Circle in Circles 
3 PROCESS-CIRCLE(Circle) 

4 PROCEDURE PROCESS-CIRCLE(Circle) 
;;Each Circle in form (Vars-in-Circle Sub-Circles) 

5 Output-Plans < -- nil 
6 Incoming-Non-Circles < -- REMOVE all 

variables in Sub-Circles from Vars-In-Circle 
7 Non-Circle-Combos < - - 

Get-Combos(Incoming-Non-Circles) 
8 Circle-Combos < -- 

Combine-Circles{ Sub-Circles) 
9 FOR each Non-Circle-Combo in Non-Circle-Combos 
10 FOR each Circle-Combo in Circle-Combos 

;; each incoming circle has consistency 
;; info stored in arrays: 

11 AC-Info < -- access arc constraint 
info from input circles 

12 Plan < -- add Non-Circle-Combo 
to Circle-Combo 

;; Plan is a potential solution for this Circle 
;; with a value assigned to each variable. 

13 IF Arc-Consistent(Plan,AC-Info) THEN 
14 Output-Plans < -- Output-Plans + Plan 
15 ;; update AC-Info for this circle 
16 RETURN Output-Plans 

The Get-Combos procedure (line 7) simply produces 
all combinations of value assignments for the input 
variables. This procedure has complexity O(ux), where 
x is the number of variables in the input Incoming-Non- 
Circles, and a is the maximum number of values for a 
variable. In the worst case, x will be n; this is the 
case when the initial circle contains all the variables 

41t should be pointed out that sometimes second or- 
der nodes are used in SS-GATHERER, if the dependency 
structure calls for them. Incidentally, there is nothing spe- 
cial about third-order nodes in SS-GATHERER, although 
NL constraints seem to produce them the most. It is quite 
possible that even higher-order nodes could be the starting 
point. 
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and no sub-circles. Of course, this is simply an ex- 
haustive search, not Solution Synthesis. In practice, 
the circles usually contain no more than two variables 
not involved in input sub-circles, the exceptions almost 
always pertaining to the base circle, in which case the 
combine-circles procedure does not add complexity. 

The Combine-Circles procedure (line 8) combines 
all consistent5 plans already calculated for each in- 
put Sub-Circle. In the worst case, where each Sub- 
Circle contained a single variable, and Sub-Circles con- 
t ained every variable, then the time complexity would 
be O(an),” where a is the maximum size of a vari- 
able domain. This is unavoidable, and is the nature 
of CSPs. However, if the number of circles in Sub- 
Circles is limited to c, and each circle has at most 
p possible Plans, then the complexity of this step is 
O(p’). This step dominates the time complexity of 
SS-GATHERER. The next section illustrates how this 
number can be reduced to a “near” constant value. 

The FOR loops in lines 9 and 10 simply combine the 
possible Plan-Combos from the Incoming-Non-Circles 
with the Circle-Combos calculated for the Sub-Circles. 
The worst-case time complexity is no worse than the 
worst-case time complexity for either Combine-Circles 
or Get-Var-Combos. If Get-Var-Combos produces 
an combinations, then Combine-Circles will produce 
none, and vice-versa. In practice, Combine-Circles pro- 
duces pc combinations while Plan-Combos produces a 
constant7 number of combinations. The total complex- 
ity of PROCESS-CIRCLE is therefore O(p’). Again, 
this number can be reduced to a “near” constant, as 
shown below. The complexity of SS-GATHERER, 
then, is O(p”) times the number of circles, which is pro- 
portional to the number of variables, n. If O(pc) can be 
shown to be a “near” constant, then SS-GATHERER 
has time complexity that is “near” linear with respect 
to the number of variables. 

For each synthesis, arc consistency may be per- 
formed (line 13). As discussed above, however, un- 
modified CSP techniques such as arc-consistency are 
not usually helpful in problems with non binary-valued 
constraints. The next section presents a computational 
substitute that will produce similar efficiency for these 
kinds of problems. 

Using Branch-and-Bound in an Uncertain 
World 
The key observation that enables the application of 
branch-and-bound to solution synthesis problems is 
that some variables in a synthesis circle are unaffected 
by variables outside the circle. For example, in the 

51f one circle has a Plan1 with the assignment < A, X > 
(value X assigned to variable A) and another Circle has a 
Plan2 with the assignment < A, Y >, then Plan1 and Plan2 
are not consistent and cannot be combined. 

‘Combining n variables each with a possible values. 
7us, where x is the number of variables in Incoming- 

Non-Circles, usually 1 or at most 2, except for base circles. 

first circle of Figure 2, (Adquirir, Grupo-Roche, Dr- 
Andreu), neither Grupo-Roche nor Dr-Andreu is con- 
nected (through constraints) to any other variables 
outside the circle. This will allow us to optimize, 
or reduce, this circle with respect to these two vari- 
ables. The reduction process uses branch-and-bound 
techniques. 

Implementing this type of branch-and-bound is quite 
simple using the apparatus of the previous sections. It 
is a simple matter to determine if, for a given circle, a 
variable is connected, through constraints, to variables 
outside the circle. To implement SS-GATHERER with 
branch-and-bound, we first need to add to the inputs 
a list of variables that are affected outside the circle. 

All that is needed to complete the upgrade of SS- 
GATHERER is the addition of one procedure and a 
modification to SET-UP-CONSTRAINTS, the initial- 
ization procedure (not shown) so that it sets up the 
consistency arrays based not on yes-no constraints but 
rather on values from the 0 to 1 scale. The best ap- 
proach is to set a THRESHold below which a con- 
straint score should be considered “not satisfied.” This 
will allow the CSP mechanism to eliminate combina- 
tions with low-scoring constraint scores. 
binations will be allowed to go through. 

All other com- 

1 PROCEDURE PROCESS-CIRCLE(Circle) 
. . . 
16a REDUCE-PLANS(Output-Plans Constrained-Vars) 
16 RETURN Output-Plans 

17 PROCEDURE REDUCE-PLANS( Plans Constr-Vars) 
18 FOR each Plan in Plans 
19 Affected-Assignments < -- all value assgnmnts 

from Plan that involve a Constr-Var 
20 IF Affected-Assignments is NIL THEN 

;;This will only happen for the topmost circle 
21 
22 
23 

Affected-Assignments < -- TOP 
This-Score < - - Get-Score( Plan) 
Best-Score < -- 

Best-Score[Affected-Assignments] 
24 
25 

IF (This-Score > Best-Score) THEN 
Best-Score[Affected-Assignments] < -- 

This-Score 
26 Best-Plan[Affected-Assignments] < -- Plan 
27 RETURN the list of all Best-Plans 

Why does this work ? First of all, each previously 
processed circle has been reduced, so that the input 
Circle-Combos will only contain reduced plans. In 
REDUCE-PLANS, then, we want to keep all possi- 
ble combinations of variables that are affected out- 
side the circle. Line 19 calculates what these affected 
combinations are for the input plan. The Best-Score 
and Best-Plan arrays are then indexed by this (con- 
sistently ordered) list of combinations. The goal is 
that, for each possible combination of assignments of 
variables affected outside the circle, find the Plan that 
maximizes that combination. Because all of the other, 
Unconstrained-Vars, are not affected outside the cir- 
cle, we can find the Plan that maximizes each of the 
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combinations that are affected outside the circle. 
In the first circle, (Adquirir, Grupo-Roche, Dr- 

Andreu), only adquirir is affected outside the cir- 
cle. Because there exist other constraints that are 
not in this circle, we cannot choose a final value for 
adquirir. We will need to retain plans for both pos- 
sible value assignments: < adquirir, aquire > and 
< adquirir, learn >. On the other hand, Grupu 
Roche and Dr. Andreu are not constrained outside 
the circle. All of the constraints involving them are 
taken care of within the circle. For this reason, we 
can find the value assignments of Grupo Roche and 
Dr. Andreu that produce the maximum score for the 
< adquirir, aquire > assignment, and then find the 
value assignments that produce the maximum score for 
the < adquirir, learn >. All other plans involving non- 
optimal combinations can be discarded. “Scores” are 
calculated by comparing constraints, such as a learn 
concept requiring an animate agent, with the actual 
relationships between the value assignments under con- 
sideration. 

It must be stressed here that discarding the non- 
optimal plans in no way incurs risk of finding sub- 
optimal solutions. These are not heuristic decisions 
being made which might be wrong. Branch-and-bound 
techniques such as these simply prune off areas of the 
search space in which optimal solutions can be guaran- 
teed not to be found. The only non-certainty present 
is in the scoring of constraints, which is an inexact 
science; however, once given a set of scores, these tech- 
niques are guaranteed to give the optimal value assign- 
ment combinations. 

Branch-and-Bound Results To illustrate how 
Branch-and-Bound dramatically reduces the search 
space, consider the results of applying it to the sample 
sentence. 

------------------------------------------- 
Circle In-Circles In-Combos Reduced-Combos 
------------------------------------------- ------------------------------------------- 

1 none 2*2*1 = 4 2 
---------------------~---~--~---~-~~---~-~~ 

2 none 2*2*2 = 8 4 
------------------------------------------- 
3 none 2*2*1 = 4 2 
------------------------------------------- 
4 2 and 3 synth only 2 
------I------------------------------------ 

5 1 and 4 synth only 1 
-----------------------~-~~--~--~~-~~~~~--~ ---------------------~-~-~~-~--~~~--~-~~--- 

The total number of combinations examined is the 
sum of the input combos; in this case 4+8+4=16. 
Compare this to an exhaustive search, which would ex- 
amine (2*1*2*2*2*1*2*1) = 32 combinations. As the 
input problem size increases, the savings are even more 
dramatic. This happens because the problem is broken 
up into manageable sub-parts; the total complexity of 
the problem is the sum of the individual complexi- 
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Figure 3: Cross Dependencies 

ties. Without these techniques, the overall complexity 
is the product of the individual complexities. This 
is the central fact that supports our claim that the 
number of circles in Sub-Circles is limited to a “near” 
constant, leading to a “near” linear time complexity 
for the whole algorithm. 

The only way multiplicative growth can occur in SS- 
GATHERER is when there are constraints across trees, 
as in Figure 3. In that Figure, several of the circles 
cannot be fully reduced due to interactions outside the 
circle. Variable A in Circle 1 cannot be fully reduced’ 
because of Arc a. Note, however, that when Circle 4 
is synthesized, Variable A can be reduced because, at 
that point, it does not interact outside the larger circle. 
In Circle 4, Variable B cannot be reduced because it 
interacts with Variable C. Likewise, Variable C cannot 
be reduced in Circle 2 because of its interaction with 
Variable B. In all of these cases, ambiguity must be 
carried along until no interactions outside the circle 
exist. For Variables B and C, that does not occur until 
Circle 6, the entire problem, is processed. 

Practically speaking, though, NL problems gener- 
ally do not allow interactions such as Arc a and Arc 
b ’ “Governed” (Haegeman 1991) interactions such as . 
Variable D directly constraining Variable A can occa- 
sionally occur, but these only delay reduction to the 
next higher circle. Thus, some local multiplicative ef- 
fects can occur, but over the problem as a whole, the 
complexity is additive. 

To illustrate this point, consider what happens as 
the size of the problem increases. The following table 
shows actual results of analyses of various size prob- 
lems. We have tested the SS-GATHERER algorithm 
extensively on a wide variety of sentences in the con- 
text of the Mikrokosmos Machine Translation Project. 
Over 70 sentences have been analyzed (a relatively 
large corpus for knowledge-based MT). The claims of 
near-linear time processing and guaranteed optimal so- 

8By “fully reduced” we mean all child variables max- 
imized with respect to a single parent, which cannot be 
reduced because it connects higher up in the tree. 

’ “Long-distance” dependencies do exist, but are rela- 
tively rare. 



lutions have been 
representative: 

verified. These three sentences are 

Sentence A Sentence B Sentence C 

# plans 79 95 119 
exh. combos 7,864,320 56,687,040 235 billion 
SS-GATHERER 179 254 327 

It is interesting to note that a 20% increase in the 
number of total plans lo (79 to 95) results in a 626% 
increase (7.8M to 56M) in the number of exhaustive 
combinations possible, but only a 42% increase (179 
to 254) in the number of combinations considered by 
SS-GATHERER. As one moves on to even more com- 
plex problems, a 25% increase (95 to 119) in the num- 
ber of plans catapults the exhaustive complexity by 
414,600% (56M to 235B) and yet only increases the 
SS-GATHERER complexity by 29% (254 to 327). As 
the problem size increases, the minor effects of “local 
multiplicative” influences diminish with respect to the 
size of the problem. We expect, therefore, the behav- 
ior of this algorithm to move even closer to linear with 
larger problems (i.e. discourse). And, again, it is im- 
portant to note that SS-GATHERER is guaranteed to 
produce the same results as an exhaustive search. 

Although time measurements are often misleading, 
it is important to state the practical outcome of this 
type of control advancement. Prior to implementing 
SS-GATHERER, our analyzer failed to complete pro- 
cessing large sentences. The largest sentence above was 
analyzed for more than a day with no results. Using 
SS-GATHERER, on the other hand, the same sentence 
was finished in 17 seconds. It must be pointed out as 
well that this is not an artificially selected example. It 
is a real sentence occurring in natural text, and not an 
overly large sentence at that. 

Conclusion 
We have presented a new control environment for pro- 
cessing Natural Language Semantics. By combining 
and extending the AI techniques known as constraint 
satisfaction, solution synthesis and branch-and-bound, 
we have reduced the search space from billions or more 
to thousands or less. This paper has concentrated on 
the combination of branch-and-bound “hunters” with 
solution synthesis “gatherers.” 

In the past, the utility of Knowledge-based seman- 
tics has been limited, subject to arguments that it only 
works in “toy” environments. Recent efforts at increas- 
ing the size of knowledge bases, however, have created 
an imbalance with existing control techniques which 
are unable to handle the explosion of information. We 
believe that this methodology will enable such work. 
Furthermore, because this work is a generalization of 
a control strategy used for simpler binary constraints, 

“The total number of plans corresponds to the total 
number of word senses for all the words in the sentence. 

we believe that it is applicable to a wide variety of real- 
life problems. We intend to test this control paradigm 
on problems outside NLP. 
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