
HUNTER-GAT : Three Search Techniques Integrated for
Natural Language Semant its

Stephen Beale, Sergei Nirenburg and Kavi Mahesh
Computing Research Laboratory

Box 30001
New Mexico State University

Las Cruces, New Mexico 88003
sb,sergei,mahesh@crl.nmsu.edu

Abstract

This work’ integrates three related AI search tech-
niques - constraint satisfaction, branch-and-bound
and solution synthesis - and applies the result to se-
mantic processing in natural language (NL). We sum-
marize the approach as “Hunter-Gatherer:”

o branch-and-bound and constraint satisfaction allow
us to “hunt down” non-optimal and impossible so-
lutions and prune them from the search space.

e solution synthesis methods then “gather” all opti-
mal solutions avoiding exponential complexity.

Each of the three techniques is briefly described, as
well as their extensions and combinations used in our
system. We focus on the combination of solution syn-
thesis and branch-and-bound methods which has en-
abled near-linear-time processing in our applications.
Finally, we illustrate how the use of our technique in
a large-scale MT project allowed a drastic reduction
in search space.

Introduction
The number of possible semantic analyses in an
average-sized sentence in the Spanish corpus used
in the Mikrokosmos MT project is fifty six million,
six hundred eighty seven thousand, and forty. Com-
plex sentences have gone past the trillions. Exhaustive
search methods applied to real sentences routinely re-
quire several minutes to finish, with larger sentences
running more than a day. Clearly, techniques must be
developed to diffuse this exponential explosion.

Hunters and Gatherers in AI
Search is the most common tool for finding solutions
in artificial intelligence. The two paths to higher effi-
ciency in search are

1. Reducing the search space. Looking for sub-optimal
or impossible solutions. Removing them. Killing
them. “Hunting”

‘-Research reported in this paper was supported in part
by Contract MDA904-92-C-5189 from the U.S. Department
of Defense.

1056 Natural Language

2. Efficiently extracting answer(s) from the search
space. Collecting satisfactory answer(s). “Gather-
ing”

Much work has been done with regard to the hunters.
Finding and using heuristics to guide search has been
a major focus. Heuristics are necessary when other
techniques cannot reduce the size of the search space
to reasonable proportions. Under such circumstances,
“guesses” have to be made to guide the search engine
to the area of the search space most likely to contain
acceptable answers. “Best-first” search (see, among
many others, (Charniak et al. 1987)) is an example of
how to use heuristics.

The “hunting” techniques applied in this research
are most closely related to the field of constraint satis-
faction problems (CSP). (Beale 1996) overviews this
field and (Tsang 1993) covers it in depth. Further
references include (Mackworth 1977), (Mackworth &
Freuder 1985) and (Mohr & Henderson 1986).

“Gathering” has been studied much less in AI. Most
AI problems are content with a single “acceptable” an-
swer. Heuristic search methods generally are sufficient.
Certain classes of problems, however, demand all cor-
rect answers. “Solution synthesis” addresses this need.
Solution synthesis techniques (Freuder 1978; see also
Tsang & Foster 1990), iteratively combine (gather)
partial answers to arrive at a complete list of all cor-
rect answers. Often, this list is then rated according to
some separate criteria in order to pick the most suit-
able answer.

In a “blocks” world, CSP techniques and solution
synthesis are powerful mechanisms. Many “real-world”
problems, however, have a more complex semantics:
constraints are not “yes” or “no” but “maybe” and
“sometimes.” In NL, certain word-sense combinations
might make sense in one context but not in another.
This is the central problem with previous attempts at
using constraint analysis for NL disambiguation (Na-
gao 1992; Maruyama 1990).2 We need a method as
powerful as CSP for this more complex environment.

2For instance, Nagao eliminates an ownership meaning
on the basis that a file-system is not a human agent. As
shown in the next section, metonymy and other figurative

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Grupo Roche

ORGANIZATION

a traves de au compania en espana adquirir Dr. Andreu

LOCATION OWNER CCRPORATION LOdATlON NATIOM ACGWRE HUMAN
INS’TRUMENT SOCIAL-EVENT DURING LEARN ORGANIZA TloN

Figure 1: Example Sentence

Our proposal is to 1) use constraint dependency in-
formation to partition problems into appropriate sub-
problems, 2) combine (gather) results from these sub-
problems using a new solution synthesis technique, and
3) prune (hunt) these results using branch-and-bound
techniques. The rest of this paper addresses each of
these issues in turn.

Constraint Satisfaction Hunters in NL

NL problems can be almost always viewed as bundles of
tightly constrained sub-problems, each of which com-
bine at higher, relatively constraint-free levels to pro-
duce a complete solution. Beale (1996) argues that
syntactic and semantic constraints effectively partition
discourse into clusters of locally interacting networks.
Here, we summarize those results and report how so-
lution synthesis and branch-and-bound techniques can
improve search efficiency.

Figure 1 illustrates the basic lexical ambiguities in
a very simple Spanish sentence from the corpus pro-
cessed by our semantic analyzer. In the figure the
Spanish words and phrases are shown with their read-
ings, expressed as corresponding concepts in the under-
lying ontology. An exhaustive decision tree for this sen-
tence would include 36 possible combinations of word
senses, but, when some fairly obvious “literal” seman-
tic constraints are imposed and propagated using arc
consistency, all but one of the paths can be eliminated.

Unfortunately, a literal imposition of constraints
does not work in NL. For example, a traves de, in a
truves de su companiu could very well be location,
even though a literal constraint would expect compu-
niu to be a place, because corporation names are often
used metonymically to stand for “the place of the cor-
poration:”

I walked to IBM.
I walked to where IBM’s building is.

Therefore, the fact that compuniu is not literally a
place does not rule out the location interpretation.
In fact, in certain contexts, the location interpretation
might be preferred. Constraint satisfaction techniques
such as arc-consistency, therefore, will be of limited
value.

Figure 2 gives a different view of this same NL prob-
lem by graphically displaying the constraint dependen-
cies present in Figure 1. These dependencies can be

language often overrides such constraints.

Adquirir

Grupu

en ESpalk3

Figure 2: Constraint Dependencies in Sample Sentence

identified simply by iterating through the list of con-
straints, retrieved from the Mikrokosmos lexicon and
ontology (Beale, Nirenburg & Mahesh 1995), and link-
ing any words involved in the same constraint. In Fig-
ure 2, three relatively independent sub-parts can be
identified. If these sub-parts, or “circles” in our termi-
nology, could be identified, the processing involved in
finding a complete solution could be decomposed into
three sub-problems. In this paper we assume such a de-
composition is possible so that we may concent,rate on
describing the methods used to combine results from
individual circles to form larger and larger solutions,
the largest of which will be the solution to the ent,ire
problem.

Solution Synthesis Gatherers in NL
Freuder (1978) introduced Solution Synthesis (SS) as a
means to “gather up” all solutions for a CSP without
resorting to traditional search methods. Freuder’s al-
gorithm (SS-FREUDER) created a set of two-variable
nodes that contained combinations of every two vari-
ables. These two-variable nodes were then combined
into three-variable nodes, and so on, until a node con-
taining all the variables, i.e. the solution, was synthe-
sized. At each step, constraints were propagated down
and then back up the “tree” of synthesized nodes.

Tsang improved on this scheme with the Essex Al-
gorithms (SS-ESSEX). Th ese algorithms assumed that
a list of the variables could be made, after which
two-variable nodes were created only between adjacent
variables in the list. Higher order nodes were then
synthesized as usual, starting from the two-variable
nodes. Tsang noted that some orderings of the original
list would prove more efficient than others, most no-
tably a “Minimal Bandwidth Ordering” (MBO), which
seeks to minimize the distance between constrained
variables.

Semantics & Discourse 1057

The work described here extends and generalizes the
concept of MBO. The basic idea of synthesizing solu-
tion sets one order higher than their immediate an-
cestors is discarded. Instead, solution synthesis op-
erates with maximally interacting groupings (circles)
of variables of any order and extends to the highest
levels of synthesizing. Tsang only creates second or-
der nodes from adjacent variables in a list, with the
original list possibly ordered to maximize second order
interactions. After that, third and higher order nodes
are blindly created from combinations of second order
nodes. We extend MB0 to the higher levels. The cir-
cles of co-constrained variables described in the previ-
ous section guide the synthesis process from beginning
to end.

The main improvement of this approach comes from
a recognition that much of the work in SS-FREUDER
and SS-ESSEX was wasted on finding valid combi-
nations of variables which were not related. Even
though relatively few words in a sentence are con-
nected through constraints, SS-FREUDER looks for
valid combinations of every word pair. Depending on
the ordering used, many irrelevant combinations can
also be inspected by SS-ESSEX. Furthermore, the ES-
SEX algorithm tends to carry along unneeded ambigu-
ity. If two related variables are not adjacent in the ES-
SEX algorithm, their disambiguating power will not be
applied until they happen to co-occur in a higher-order
synthesis.3 The current work combines the efficiency of
the ESSEX algorithms with the early disambiguation
power of the Freuder method.

Our SS-GATHERER algorithm only expends energy
on variables directly related by constraints. For in-
stance, for the example in Figure 2, three “base” circles
would be formed:

1. adquirir, grupo roche, dr andreu
2. adquirir, a traves de, compania
3. compania, en, espana

The last two are synthesized into a larger circle:

ad+, a traves de, compania, en, espana, su

This is then synthesized with the first “base” circle
above to give the answer to the complete problem.

The bulk of disambiguation occurs in the lower or-
der circles which were chosen to maximize this phe-
nomenon. The correct solution to the example prob-
lem was obtained by SS-GATHERER in only five steps.
SS-Freuder uses hundreds of extra nodes for this exam-
ple and SS-ESSEX, 31 extra nodes. Focusing the syn-
thesizer on circles that yield maximum disambiguation
power produces huge savings while still guaranteeing
the correct solution.

One objection that could be raised to this process is
that more work might be needed to create higher-level

3Freuder’s algorithm does not have this disadvantage,
because all combinations of variables are created, though
at great expense.

nodes. For instance, if each variable had three possi-
ble values, one needs to test 9 (32) combinations for
each second-order node, but 27 (33) combinations for
third order nodes.4 If two second-order nodes could be
created that would form a third-order node, and each
second order node could be completely disambiguated
to a single solution, then the third order node could
be created without any combinatorics, yielding a total
of 18 combinations (9 + 9) that were searched in the
case of three values for each variable. Directly creat-
ing the third-order node requires the 27 combinations
to be searched. However, if the second order nodes do
not disambiguate, nothing is gained from them. For
this reason, base circles can be further sub-divided into
groups of second-order nodes, if those second-order
nodes are connected in the constraint graph.

The algorithm below accepts a list of Circles, ordered
from smaller to larger. Each circle has the sub-circles
from which it is made identified.

1 PROCEDURE SS-GATHERER(Circles)
2 FOR each Circle in Circles
3 PROCESS-CIRCLE(Circle)

4 PROCEDURE PROCESS-CIRCLE(Circle)
;;Each Circle in form (Vars-in-Circle Sub-Circles)

5 Output-Plans < -- nil
6 Incoming-Non-Circles < -- REMOVE all

variables in Sub-Circles from Vars-In-Circle
7 Non-Circle-Combos < - -

Get-Combos(Incoming-Non-Circles)
8 Circle-Combos < --

Combine-Circles{ Sub-Circles)
9 FOR each Non-Circle-Combo in Non-Circle-Combos
10 FOR each Circle-Combo in Circle-Combos

;; each incoming circle has consistency
;; info stored in arrays:

11 AC-Info < -- access arc constraint
info from input circles

12 Plan < -- add Non-Circle-Combo
to Circle-Combo

;; Plan is a potential solution for this Circle
;; with a value assigned to each variable.

13 IF Arc-Consistent(Plan,AC-Info) THEN
14 Output-Plans < -- Output-Plans + Plan
15 ;; update AC-Info for this circle
16 RETURN Output-Plans

The Get-Combos procedure (line 7) simply produces
all combinations of value assignments for the input
variables. This procedure has complexity O(ux), where
x is the number of variables in the input Incoming-Non-
Circles, and a is the maximum number of values for a
variable. In the worst case, x will be n; this is the
case when the initial circle contains all the variables

41t should be pointed out that sometimes second or-
der nodes are used in SS-GATHERER, if the dependency
structure calls for them. Incidentally, there is nothing spe-
cial about third-order nodes in SS-GATHERER, although
NL constraints seem to produce them the most. It is quite
possible that even higher-order nodes could be the starting
point.

1058 Natural Language

and no sub-circles. Of course, this is simply an ex-
haustive search, not Solution Synthesis. In practice,
the circles usually contain no more than two variables
not involved in input sub-circles, the exceptions almost
always pertaining to the base circle, in which case the
combine-circles procedure does not add complexity.

The Combine-Circles procedure (line 8) combines
all consistent5 plans already calculated for each in-
put Sub-Circle. In the worst case, where each Sub-
Circle contained a single variable, and Sub-Circles con-
t ained every variable, then the time complexity would
be O(an),” where a is the maximum size of a vari-
able domain. This is unavoidable, and is the nature
of CSPs. However, if the number of circles in Sub-
Circles is limited to c, and each circle has at most
p possible Plans, then the complexity of this step is
O(p’). This step dominates the time complexity of
SS-GATHERER. The next section illustrates how this
number can be reduced to a “near” constant value.

The FOR loops in lines 9 and 10 simply combine the
possible Plan-Combos from the Incoming-Non-Circles
with the Circle-Combos calculated for the Sub-Circles.
The worst-case time complexity is no worse than the
worst-case time complexity for either Combine-Circles
or Get-Var-Combos. If Get-Var-Combos produces
an combinations, then Combine-Circles will produce
none, and vice-versa. In practice, Combine-Circles pro-
duces pc combinations while Plan-Combos produces a
constant7 number of combinations. The total complex-
ity of PROCESS-CIRCLE is therefore O(p’). Again,
this number can be reduced to a “near” constant, as
shown below. The complexity of SS-GATHERER,
then, is O(p”) times the number of circles, which is pro-
portional to the number of variables, n. If O(pc) can be
shown to be a “near” constant, then SS-GATHERER
has time complexity that is “near” linear with respect
to the number of variables.

For each synthesis, arc consistency may be per-
formed (line 13). As discussed above, however, un-
modified CSP techniques such as arc-consistency are
not usually helpful in problems with non binary-valued
constraints. The next section presents a computational
substitute that will produce similar efficiency for these
kinds of problems.

Using Branch-and-Bound in an Uncertain
World
The key observation that enables the application of
branch-and-bound to solution synthesis problems is
that some variables in a synthesis circle are unaffected
by variables outside the circle. For example, in the

51f one circle has a Plan1 with the assignment < A, X >
(value X assigned to variable A) and another Circle has a
Plan2 with the assignment < A, Y >, then Plan1 and Plan2
are not consistent and cannot be combined.

‘Combining n variables each with a possible values.
7us, where x is the number of variables in Incoming-

Non-Circles, usually 1 or at most 2, except for base circles.

first circle of Figure 2, (Adquirir, Grupo-Roche, Dr-
Andreu), neither Grupo-Roche nor Dr-Andreu is con-
nected (through constraints) to any other variables
outside the circle. This will allow us to optimize,
or reduce, this circle with respect to these two vari-
ables. The reduction process uses branch-and-bound
techniques.

Implementing this type of branch-and-bound is quite
simple using the apparatus of the previous sections. It
is a simple matter to determine if, for a given circle, a
variable is connected, through constraints, to variables
outside the circle. To implement SS-GATHERER with
branch-and-bound, we first need to add to the inputs
a list of variables that are affected outside the circle.

All that is needed to complete the upgrade of SS-
GATHERER is the addition of one procedure and a
modification to SET-UP-CONSTRAINTS, the initial-
ization procedure (not shown) so that it sets up the
consistency arrays based not on yes-no constraints but
rather on values from the 0 to 1 scale. The best ap-
proach is to set a THRESHold below which a con-
straint score should be considered “not satisfied.” This
will allow the CSP mechanism to eliminate combina-
tions with low-scoring constraint scores.
binations will be allowed to go through.

All other com-

1 PROCEDURE PROCESS-CIRCLE(Circle)
. . .
16a REDUCE-PLANS(Output-Plans Constrained-Vars)
16 RETURN Output-Plans

17 PROCEDURE REDUCE-PLANS(Plans Constr-Vars)
18 FOR each Plan in Plans
19 Affected-Assignments < -- all value assgnmnts

from Plan that involve a Constr-Var
20 IF Affected-Assignments is NIL THEN

;;This will only happen for the topmost circle
21
22
23

Affected-Assignments < -- TOP
This-Score < - - Get-Score(Plan)
Best-Score < --

Best-Score[Affected-Assignments]
24
25

IF (This-Score > Best-Score) THEN
Best-Score[Affected-Assignments] < --

This-Score
26 Best-Plan[Affected-Assignments] < -- Plan
27 RETURN the list of all Best-Plans

Why does this work ? First of all, each previously
processed circle has been reduced, so that the input
Circle-Combos will only contain reduced plans. In
REDUCE-PLANS, then, we want to keep all possi-
ble combinations of variables that are affected out-
side the circle. Line 19 calculates what these affected
combinations are for the input plan. The Best-Score
and Best-Plan arrays are then indexed by this (con-
sistently ordered) list of combinations. The goal is
that, for each possible combination of assignments of
variables affected outside the circle, find the Plan that
maximizes that combination. Because all of the other,
Unconstrained-Vars, are not affected outside the cir-
cle, we can find the Plan that maximizes each of the

Semantics & Discourse 1059

combinations that are affected outside the circle.
In the first circle, (Adquirir, Grupo-Roche, Dr-

Andreu), only adquirir is affected outside the cir-
cle. Because there exist other constraints that are
not in this circle, we cannot choose a final value for
adquirir. We will need to retain plans for both pos-
sible value assignments: < adquirir, aquire > and
< adquirir, learn >. On the other hand, Grupu
Roche and Dr. Andreu are not constrained outside
the circle. All of the constraints involving them are
taken care of within the circle. For this reason, we
can find the value assignments of Grupo Roche and
Dr. Andreu that produce the maximum score for the
< adquirir, aquire > assignment, and then find the
value assignments that produce the maximum score for
the < adquirir, learn >. All other plans involving non-
optimal combinations can be discarded. “Scores” are
calculated by comparing constraints, such as a learn
concept requiring an animate agent, with the actual
relationships between the value assignments under con-
sideration.

It must be stressed here that discarding the non-
optimal plans in no way incurs risk of finding sub-
optimal solutions. These are not heuristic decisions
being made which might be wrong. Branch-and-bound
techniques such as these simply prune off areas of the
search space in which optimal solutions can be guaran-
teed not to be found. The only non-certainty present
is in the scoring of constraints, which is an inexact
science; however, once given a set of scores, these tech-
niques are guaranteed to give the optimal value assign-
ment combinations.

Branch-and-Bound Results To illustrate how
Branch-and-Bound dramatically reduces the search
space, consider the results of applying it to the sample
sentence.

Circle In-Circles In-Combos Reduced-Combos
--- ---

1 none 2*2*1 = 4 2
---------------------~---~--~---~-~~---~-~~

2 none 2*2*2 = 8 4

3 none 2*2*1 = 4 2

4 2 and 3 synth only 2
------I------------------------------------

5 1 and 4 synth only 1
-----------------------~-~~--~--~~-~~~~~--~ ---------------------~-~-~~-~--~~~--~-~~---

The total number of combinations examined is the
sum of the input combos; in this case 4+8+4=16.
Compare this to an exhaustive search, which would ex-
amine (2*1*2*2*2*1*2*1) = 32 combinations. As the
input problem size increases, the savings are even more
dramatic. This happens because the problem is broken
up into manageable sub-parts; the total complexity of
the problem is the sum of the individual complexi-

1060 Natural Language

i
;
\ ..-...~

Figure 3: Cross Dependencies

ties. Without these techniques, the overall complexity
is the product of the individual complexities. This
is the central fact that supports our claim that the
number of circles in Sub-Circles is limited to a “near”
constant, leading to a “near” linear time complexity
for the whole algorithm.

The only way multiplicative growth can occur in SS-
GATHERER is when there are constraints across trees,
as in Figure 3. In that Figure, several of the circles
cannot be fully reduced due to interactions outside the
circle. Variable A in Circle 1 cannot be fully reduced’
because of Arc a. Note, however, that when Circle 4
is synthesized, Variable A can be reduced because, at
that point, it does not interact outside the larger circle.
In Circle 4, Variable B cannot be reduced because it
interacts with Variable C. Likewise, Variable C cannot
be reduced in Circle 2 because of its interaction with
Variable B. In all of these cases, ambiguity must be
carried along until no interactions outside the circle
exist. For Variables B and C, that does not occur until
Circle 6, the entire problem, is processed.

Practically speaking, though, NL problems gener-
ally do not allow interactions such as Arc a and Arc
b ’ “Governed” (Haegeman 1991) interactions such as .
Variable D directly constraining Variable A can occa-
sionally occur, but these only delay reduction to the
next higher circle. Thus, some local multiplicative ef-
fects can occur, but over the problem as a whole, the
complexity is additive.

To illustrate this point, consider what happens as
the size of the problem increases. The following table
shows actual results of analyses of various size prob-
lems. We have tested the SS-GATHERER algorithm
extensively on a wide variety of sentences in the con-
text of the Mikrokosmos Machine Translation Project.
Over 70 sentences have been analyzed (a relatively
large corpus for knowledge-based MT). The claims of
near-linear time processing and guaranteed optimal so-

8By “fully reduced” we mean all child variables max-
imized with respect to a single parent, which cannot be
reduced because it connects higher up in the tree.

’ “Long-distance” dependencies do exist, but are rela-
tively rare.

lutions have been
representative:

verified. These three sentences are

Sentence A Sentence B Sentence C

plans 79 95 119
exh. combos 7,864,320 56,687,040 235 billion
SS-GATHERER 179 254 327

It is interesting to note that a 20% increase in the
number of total plans lo (79 to 95) results in a 626%
increase (7.8M to 56M) in the number of exhaustive
combinations possible, but only a 42% increase (179
to 254) in the number of combinations considered by
SS-GATHERER. As one moves on to even more com-
plex problems, a 25% increase (95 to 119) in the num-
ber of plans catapults the exhaustive complexity by
414,600% (56M to 235B) and yet only increases the
SS-GATHERER complexity by 29% (254 to 327). As
the problem size increases, the minor effects of “local
multiplicative” influences diminish with respect to the
size of the problem. We expect, therefore, the behav-
ior of this algorithm to move even closer to linear with
larger problems (i.e. discourse). And, again, it is im-
portant to note that SS-GATHERER is guaranteed to
produce the same results as an exhaustive search.

Although time measurements are often misleading,
it is important to state the practical outcome of this
type of control advancement. Prior to implementing
SS-GATHERER, our analyzer failed to complete pro-
cessing large sentences. The largest sentence above was
analyzed for more than a day with no results. Using
SS-GATHERER, on the other hand, the same sentence
was finished in 17 seconds. It must be pointed out as
well that this is not an artificially selected example. It
is a real sentence occurring in natural text, and not an
overly large sentence at that.

Conclusion
We have presented a new control environment for pro-
cessing Natural Language Semantics. By combining
and extending the AI techniques known as constraint
satisfaction, solution synthesis and branch-and-bound,
we have reduced the search space from billions or more
to thousands or less. This paper has concentrated on
the combination of branch-and-bound “hunters” with
solution synthesis “gatherers.”

In the past, the utility of Knowledge-based seman-
tics has been limited, subject to arguments that it only
works in “toy” environments. Recent efforts at increas-
ing the size of knowledge bases, however, have created
an imbalance with existing control techniques which
are unable to handle the explosion of information. We
believe that this methodology will enable such work.
Furthermore, because this work is a generalization of
a control strategy used for simpler binary constraints,

“The total number of plans corresponds to the total
number of word senses for all the words in the sentence.

we believe that it is applicable to a wide variety of real-
life problems. We intend to test this control paradigm
on problems outside NLP.

References
Beale, S. 1996. Hunter-Gatherer: Applying Con-
straint Satisfaction, Branch-and-Bound and Solution
Synthesis to Natural Language Semantics, Techni-
cal Report, MCCS-96-289, Computing Research Lab,
New Mexico State Univ.

Beale, S. and Nirenburg, S. 1995. Dependency-
Directed Text Planning. In Proceedings of the 1995
International Joint Conference on Artificial Intelli-
gence, Workshop on Multilingual Text Generation,
13-21. Montreal, Quebec.
Beale, S.; Nirenburg, S. and Mahesh, K. 1995. Se-
mantic Analysis in the Mikrokosmos Machine Trans-
lation Project. In Proceedings of the 2nd Symposium
on Natural Language Processing, 297-307. Bangkok,
Thailand.
Charniak, E; Riesbeck, C.K.; McDermott D.V. and
Meehan, J.R. 1987. Artifkial Intelligence Program-
ming. Hillsdale, NJ: Erlbaum.
Freuder, E.C. 1978. Synthesizing Constraint Expres-
sions. Communications ACM 21(11): 958-966.
Haegeman, L. 1991. An Introduction to Government
and Binding Theory. Oxford, U.K.: Blackwell Pub-
lishers. - -
Lawler, E.W. and Wood, D.E. 1966. Branch-and-
Bound Methods: a Survey. Operations Research 14:
699-719.
Mackworth, A.K. 1977. Consistency in Networks of
Relations. Artificial Intelligence 8(1): 99-118.
Mackworth, A.K. and Freuder, E.C. 1985. The Com-
plexity of Some Polynomial Consistency Algorithms
for Constraint Satisfaction Problems. Artificial Inted-
ligence 25: 65-74.
Maruyama, H. 1990. Structural Disambiguation with
Constraint Propagation. In Proceedings 28th Confer-
ence of the Association for Computational Linguis-
tics, 31-38. Pittsburgh, Pennsylvania.
Mohr, R. and Henderson, T.C. 1986. Arc and Path
Consistency Revisited. Artificial Intelligence 28: 225-
233.
Nagao, K. 1992. A Preferential Constraint Satisfac-
tion Technique for Natural Language Analysis. In
Proceedings 10th European Conference on Artificial
Intelligence, 523-527. Vienna.
Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. London: Academic Press.
Tsang, E. and Foster, N. 1990. Solution Synthesis in
the Constraint Satisfaction Problem, Technical Re-
port, CSM-142, Dept. of Computer Science, Univ. of
Essex.

Semantics & Discourse 1061

