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Abstract 

We propose novel gaze control algorithms for active percep- 
tion in mobile autonomous agents with directable, foveated 
vision sensors. Our agents are realistic artificial animals, 
or animats, situated in physics-based virtual worlds. Their 
active perception systems continuously analyze photoreal- 
istic retinal image streams to glean information useful for 
controlling the animat

’

s 

eyes and body. The vision system 
computes optical flow and segments moving targets in the 
low-resolution visual periphery. It then matches segmented 
targets against mental models of colored objects of interest. 
The eyes saccade to increase acuity by foveating objects. 
The resulting sensorimotor control loop supports complex 
behaviors, such as predation. 

Introduction 
Animals are active observers of their environment (Gibson 
1979). This fact has inspired a trend in the computer vi- 
sion field popularly known as “

active 

vision” (Bajcsy 1988; 
Ballard 1991; Swain & Stricker 1993). Unfortunately, ef- 
forts to create active vision systems for physical robots 
have been hampered by hardware and processor limita- 
tions. The recently proposed animat vision paradigm (Ter- 
zopoulos & Rabie 1995) offers an approach to developing 
biomimetic active vision systems that does not rely on robot 
hardware. Instead of physical robots, animat vision pre- 
scribes the use of virtual robots that take the form of arti- 
ficial animals, or animats, situated in physics-based virtual 
worlds. Animats are autonomous virtual agents possess- 
ing mobile, muscle-actuated bodies and brains with motor, 
perception, behavior and learning centers. In the percep- 
tion center of the animat

’

s 

brain, computer vision algo- 
rithms continually analyze the incoming perceptual infor- 
mation. Based on this analysis, the behavior center dis- 
patches motor commands to the animat

’

s 

body, thus form- 
ing a complete sensorimotor control system. Animat vision, 
implemented entirely in software, has several important ad- 
vantages over conventional “

hardware 

vision”, at least for 
research purposes (refer to (Terzopoulos & Rabie 1995; 
Terzopoulos 1995) for a discussion). 

In many biological eyes, the high-acuity foveacovers only 
a small fraction of a visual field whose resolution decreases 
monotonically towards the periphery. Spatially nonuniform 
retinal imaging provides opportunities for increased compu- 
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Figure 1: Artificial fishes swimming among aquatic plants 
in a physics-based virtual marine environment. 

tational efficiency through economization of photoreceptors 
and focus of attention, but it forces the visual system to solve 
problems that do not generally arise with a uniform field of 
view. A key problem is determining where to redirect the 
fovea when a target of interest appears in the periphery. In 
this paper we present a solution to this problem through the 
exploitation of motion and color information. 

Motion and color play an important role in animal per- 
ception. Birds and insects exploit optical flow for obstacle 
avoidance and to control their ego-motion (Gibson 1979). 
Some species of fish are able to recognize the color signa- 
tures of other fish and use this information in certain piscene 
behaviors (Adler 1975). The human visual system is highly 
sensitive to motion and color. We tend to focus our attention 
on moving colorful objects. Motionless objects whose col- 
ors blend in to the background are not as easily detectable, 
and several camouflage strategies in the animal kingdom 
rely on this fact (Cedras & Shah 1995). 

Following the animat vision paradigm, the motion and 
color based gaze control algorithms that we propose in this 
paper are implemented and evaluated within artificial fishes 
in a virtual marine world (Fig. 1). The fish animats are the 
result of research in the domain of artificial life (see (Ter- 
zopoulos, Tu, & Grzeszczuk 1994) for the details). In the 
present work, the fish animat serves as an autonomous mo- 
bile robot situated in a photorealistic, dynamic environment. 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



Our new gaze control algorithms significantly enhance the 
prototype animat vision system that we implemented in prior 
work (Terzopoulos & Rabie 1995) and they support more 
robust vision-guidednavigation abilities in the artificial fish. 
We review the animat vision system in the next section be- 
fore presenting our new work on integrating motion and 
color analysis for animat perception in subsequent sections. 

A Prototype Animat Vision System 
The basic functionality of the animat vision system, which 
is described in detail in (Terzopoulos & Rabie 1995), starts 
with binocular perspective projection of the color 3D world 
onto the animat’s 2D retinas. Retinal imaging is accom- 
plished by photorealistic graphics rendering of the world 
from the animat’s point of view. This projection respects 
occlusion relationships among objects. It forms spatially 
variant visual fields with high resolution foveas and progres- 
sively lower resolution peripheries. Based on an analysis of 
the incoming color retinal image stream, the visual center of 
the animat’s brain supplies saccade control signals to its eyes 
to stabilize the visual fields during locomotion, to attend to 
interesting targets based on color, and to keep moving tar- 
gets fixated. The artificial fish is thus able to approach and 
track other artificial fishes visually. Fig. 2 provides a block 
diagram of the active vision system showing two main mod- 
ules that control retinal image stabilization and foveation of 
the eyes. 

Eyes and Retinal Imaging 
The artificial fish has binocular vision. The movements of 
each eye are controlled through two gaze angles (6,4) which 
specify the horizontal and vertical rotation of the eyeball, 
respectively. The angles are given with respect to the head 
coordinate frame, such that the eye is looking straight ahead 
when 0 = 4 = 0’. 

Each eye is implemented as four coaxial virtual cameras 
to approximate the spatially nonuniform, foveal/peripheral 
imaging capabilities typical of biological eyes. Fig. 3(a) 
shows an example of the 64 x 64 images that are rendered 
by the coaxial cameras in each eye (rendering employs the 
GL library and graphics pipeline on Silicon Graphics work- 
stations). The level 1 = 0 camera has the widest field of 
view (about 120’) and the lowest resolution. The resolution 
increases and the field of view decreases with increasing 
1. The highest resolution image at level I = 3 is the fovea 
and the other images form the visual periphery. Fig. 3(b) 
shows the 5 12 x 5 12 binocular retinal images cornposited 
from the coaxial images at the top of the figure. To reveal 
the retinal image structure in the figure, we have placed a 
white border around each magnified component image. Vi- 
sion algorithms which process the four 64 x 64 component 
images are 16 times more efficient than those that process a 
uniform 5 12 x 5 12 retinal image. 

Foveation by Color Object Detection 
The brain of the artificial fish stores a set of color models 
of objects that are of interest to it. For instance, if the fish 
is by habit a predator, it would possess models of prey fish. 
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Figure 2: The animat vision system. The flow of the gaze 
control algorithm is from right to left. A: Update gaze angles 
(0,+) and saccade using these angles, B: Search current 
level for model target and if found localize it, else search 
lower level, C: Select level to be processed (see text), F: 
Reduce field of view for next level and render, M: Compute 
a general translational displacement vector (u, v) between 
images I(t - 1) and I(t), S: Scale the color histogram of 
the model for use by the current level. 

The mental models are stored as a list of 64 x 64 RGB color 
images. 

To detect and localize any target that may be imaged in 
the low resolution periphery of its retinas, the animat vision 
system of the fish employs an improved version of a color 
indexing algorithm proposed by Swain (Swain & Ballard 
1991).’ Since each model object has a unique color his- 
togram signature, it can be detected in the retinal image by 
histogram intersection and localized by histogram backpro- 
jection. 

Saccadic Eye Movements 
When a target is detected in the visual periphery, the eyes 
will saccade to the angular offset of the object to bring 
it within the fovea. With the object in the high resolution 
fovea, a more accurate foveation is obtained by a second pass 
of histogram backprojection. A second saccade typically 
centers the object accurately in both left and right foveas, 
thus achieving vergence. 

Module A in Fig. 2 performs the saccades by incrementing 

‘Our improvements, which include iterative model histogram 
scaling and weighted histograms, make the technique much more 
robust against the large variations in scale that occur in our ap- 
plication. The details of the improved algorithm are presented in 
(Terzopoulos & Rabie 1995). 
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Figure 3: Binocular retinal imaging (monochrome versions of original color images). (a) 4 component images; I = 0, 1,2, 
are peripheral images; I = 3 is fovea1 image. (b) Cornposited retinal images (borders of cornposited component images are 
shown in white). 

the gaze angles (6,4) 
required gaze direction. 

in order to rotate the eyes to the 

Visual Field Stabilization using Optical Flow 
It is necessary to stabilize the visual field of the artificial 
fish because its body undulates as it swims. Once a target 
is verged in both foveas, the stabilization process (Fig. 2) 
assumes the task of keeping the target foveated during lo- 
comotion. 

Stabilization is achieved by computing the overall transla- 
tional displacement (u, V) of intensities between the current 
fovea1 image and that from the previous time instant, and 
updating the gaze angles to compensate. The displacement 
is computed as a translational offset in the retinotopic coor- 
dinate system by a least squares minimization of the optical 
ff ow between image frames at times t and t - 1 (Horn 1986). 

The optical flow stabilization method is robust only for 
small displacements between frames. Consequently, when 
the displacement of the target between frames is large 
enough that the method is likely to produce bad estimates, 
the foveation module is invoked to re-detect and re-foveate 
the target as described earlier. 

Each eye is controlled independently during foveation and 
stabilization of a target. Hence, the two retinal images must 
be correlated to keep them verged accurately on the target. 
Referring to Fig. 4, the vergence angle is 0~ = (0~ - 0~) 
and its magnitude increases as the fish comes closer to the 
target. Therefore, once the eyes are verged on a target, it is 

Fixation 

I- 

Left Eye 

I 

Right Eye 

Figure 4: Gaze angles and range to target geometry. 

straightforward for the vision system 
to the target from the gaze angles. 

to estimate the range 

Vision-Guided Navigation 
The artificial fish can also employ the gaze direction (i.e., 
the gaze angles) while the eyes are fixated on a target to 
navigate towards the target. The t9 angles are used to com- 
pute the left/right turn angle 0~ shown in Fig. 4, and the 4 
angles are similarly used to compute an up/down turn angle 
c$p. The fish

’

s 

turn motor controllers are invoked to exe- 
cute a left/right turn- right-turn-MC for an above-threshold 
positive t!?p and left-turn-MC for negative BP-with IBp 1 as 
parameter. Up/down turn motor commands are issued to 
the fish

’

s 

pectoral fins, with an above-threshold positive 

1092 Perception 



where (u, V) is the computed optical flow and q5p interpreted as “up” and negative as “down”. The motor 
controllers are explained in (Terzopoulos, Tu, & Grzeszczuk 
1994). 

on The remainder of 
integrating color and 

the paper presents 
motion analysis in 

our new work 
active vision. 

Integrating Motion and Color for Attention 
Selective attention is an important mechanism for dealing 
with the combinatorial aspects of search in vision (Tsotsos et 
al. 1995). Deciding where to redirect the fovea can involve 
a complex search process (Tsotsos et al. 1995; Rimey & 
Brown 1992; Maver & Bajcsy 1990). In this section we offer 
an efficient solution which integrates motion and color to 
increase the robustness of our animat’s perceptual functions. 

Motion and color have been considered extensively in the 
literature in a variety of passive vision systems, but rarely 
have they been integrated for use in dynamic perception 
systems. The conjunction of color and motion cues has 
recently been exploited to produce more exact segmenta- 
tions and for the extraction of object contours from natural 
scenes (Dubuisson & Jain 1993). Color and motion fea- 
tures of video images have been used for color video image 
classification and understanding (Gong & Sakauchi 1992). 

Integrating motion and color for object recognition can 
improve the robustness of moving colored object recogni- 
tion. Motion may be considered a bottom-up alerting cue, 
while color can be used as a top-down cue for model-based 
recognition (Swain, Kahn, & Ballard 1992). Therefore, in- 
tegrating motion and color can increase the robustness of the 
recognition problem by bridging the gap between bottom- 
up and top-down processes, thus, improving the selective 
attention of dynamic perceptual systems such as the animat 
vision system that we are developing. 

Where to Look Next 

Redirecting gaze when a target of interest appears in the 
periphery can be a complex problem. One solution would 
be to section the peripheral image into smaller patches or 
focal probes (Burt et al. 1989) and search of all the probes. 
The strategy will work well for sufficiently small images, 
but for dynamic vision systems that must process natural or 
photorealistic images the approach is not effective. 

We choose a simple method based on motion cues to help 
narrow down the search for a suitable gaze direction (Cam- 
pani, Giachetti, & Torre 1995). We create a saliency image 
by initially computing a reduced optical flow field between 
two stabilized peripheral image frames (an advantage of the 
multiresolution retina is the small 64 x 64 peripheral im- 
age). Then an affine motion model is fitted to the optical 
flow using a robust regression method that will be described 
momentarily. The affine motion parameters are fitted to 
the dominant background motion. A saliency map is de- 
termined by computing an error measure between the affine 
motion parameters and the estimated optical flow as follows: 

%4x, Y) = a + bx + cy, 

%h Y) = d+ex+ffy (2) 

is the affine flow at retinal image position (x, y). The 
saliency image S is then convolved with a circular disk 
of area equal to the expected area of the model object of 
interest as it appears in the peripheral image.2 

The blurring of the saliency image emphasizes the model 
object in the image. The maximum in S is taken as the 
location of the image probe. The image patches that serve 
as probes in consecutive peripheral frames form the image 
sequence that is processed by the motion segmentation mod- 
ule described later. Fig. 5 shows four consecutive peripheral 
images with the image probes outlined by white boxes. The 
blurred saliency image is shown at the end of the sequence 
in Fig. 5. Clearly the maximum (brightness) corresponds to 
the fast moving blue fish in the lower right portion of the 
peripheral image. 

Robust Optical Flow 
A key component of the selective attention algorithm is 
the use of optical flow. Given a sequence of time-varying 
images, points on the retina appear to move because of the 
relative motion between the eye and objects in the scene 
(Gibson 1979). The vector field of this apparent motion is 
usually called optical flow (Horn 1986). Optical flow can 
give important information about the spatial arrangement of 
objects viewed and the rate of change of this arrangement. 

For our specific application, however, we require effi- 
ciency, robustness to outliers, and an optical flow estimate 
at all times. Recent work by Black and Anandan (Black 
& Anandan 1990; 1993) satisfies our requirements. They 
propose incremental minimization approaches using robust 
statistics for the estimation of optical flow which are geared 
towards dynamic environments. As is noted by Black, the 
goal is incrementally to integrate motion information from 
new images with previous optical flow estimates to obtain 
more accurate information about the motion in the scene 
over time. A detailed description of this method can be 
found in (Black 1992). Here we describe our adaptation of 
the algorithm to the animat vision system. 

Ideally optical flow is computed continuously” as the ani- 
mat navigates in its world, but to reduce computational cost 
and to allow for new scene features to appear when no in- 
teresting objects have attracted the attention of the animat, 
we choose to update the current estimate of the optical flow 
every four frames. The algorithm is however still “con- 
tinuous” because it computes the current estimate of the 
optical flow at time t using image frames at t-3, t-2, t-l, and 
t in a short-time batch process. Fig. 6 shows this more 

2Reasonably small areas suffice, since objects in the 64 x 
64 peripheral image are typically small at peripheral resolution. 
Methods for estimating appropriate areas for the object, such as 
Jagersand’s information theoretic approach (Jagersand 1995), may 
be applicable. 

3By continuously, we mean that there is an estimate of the 
optical flow at every time instant. 
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Figure 5: Four consecutive peripheral images with image probes outlined by white squares. Saliency image (right), with 
bright areas indicating large motions. 
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Figure 6: Incremental estimation of robust optical flow over 
time. 

clearly. This arrangement requires storage of the previous 
three frames for use by the estimation module. 

The flow at t + 1 is initialized with a predicted flow 
computed by forward warp of the flow estimate at t by 
itself4 and then the optical flow at t + 4 is estimated by 
spatiotemporal regression over the four frames. 

We compute our optical flow estimate by incrementally 
minimizing the cost function 

E(u, v) = XDED(% q+k&+, V)+~TJ%(U, 4, (3) 

where EEL> is the data conservation constraint and is given 
in terms of the intensity constraint equation as 

ED = Pa&-& + VIP + b), (4) 

and Es is the spatial coherence constraint and is given as 

Es = x Epus(u-u(m,n))+po,(v-v(m,n))l, (5) 
m,nEN 

where N is the 4-connected neighbors of the current pixel 
position. We formulate our temporal continuity constraint 
ET by imposing some coherence between the current flow 
estimate and its previous and next estimate: 

ET =PuT(U-UBW)+puT(U-UFW), (6) 

where u = (u, V) is the current optical flow estimate at time 
t, UBW is the previous estimate at t - 1 obtained by setting 
it to the most recent estimate, and UFW is a prediction 
of what the optical flow will be at t + 1 and is computed 

by forward warp of the current estimate by itself.5 The 
X parameters in (3) control the relative importance of the 
terms, and the pa functions in the above equations are taken 
to be the Lorentzian robust estimator: 

Pu(4 = hl (1 + ; (x,

‘

) 

) (7) 

and its influence function, $a (2)) is the first derivative with 
respect to 2. This function characterizes the bias that a 
particular measurement has on the solution (Hampel 1974; 
Black & Anandan 1993). 

This robust formulation of our cost function E causes it to 
be non-convex. A local minimum can, however, be obtained 
using a gradient-based optimization technique. We choose 
the successive over relaxation minimization technique. The 
iterative equations for minimizing E are 

i+1- i 
u - 

I-J dE 

u -T,m 
(8) 

where 1 < ~1 < 2 is an over-relaxation parameter that con- 
trols convergence. A similar iterative equation for v is 
obtained by replacing u with v in (8). The terms T,, TV are 
upper bounds on the second partial derivatives of E, and 
can be given as 

T, = (9) 

and similarly for T.. by replacing u with v and x with v. 
The partial derivative in (8) is 

dE - = ~,~,

‘

&-,(U~~ 

+ VIy + It)+ 
dU 

As c 1clus(u - U(T 4) + 

m,nEN 

AT [&T (u - WV) + ‘

Iclu& 

- WV)], (10) 

and similarly for dE/dv. 
The above minimization will generally converge to a local 

minimum. A global minimum may be found by construct- 
ing an initially convex approximation to the cost function 

4The flow estimate is being used to warp itself, thus predicting 
what the motion will be in the future. 

5Note that UBW can also be estimated by backward warping 
of u by itself. 
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Figure 7: The robust optical flow vectors estimated for the 
four image probe sequence (Fig. 5). Large vectors indicate 
large motion of the fish object. 

by choosing initial values of the 0 parameters to be suf- 
ficiently large (equal to the maximum expected outlier in 
the argument of pi (*)), so that the Hessian matrix of E is 
positive definite at all points in the image. The minimum is 
then tracked using the graduated non-convexity (GNC) con- 
tinuation method (Blake & Zisserman 1987) by decreasing 
the values of the 0 parameters from one iteration to the 
next, which serves to gradually return the cost function to 
its non-convex shape, thereby introducing discontinuities in 
the data, spatial, and temporal terms. These discontinuities 
are, however, dealt with by the robust formulation and are 
rejected as outliers, thus producing more accurate optical 
flow estimates. The values of the X parameters are deter- 
mined empirically (typically AD = 10, As = XT = 1). 

To deal with large motions in the image sequence, we per- 
form the minimization using a coarse-to-fine flow-through 
strategy. A Gaussian pyramid (Burt & Adelson 1983) is 
constructed for each image in the sequence, and minimiza- 
tion starts at the coarsest level and flows through to the 
finest resolution level. Our flow-through technique is based 
on the assumption that displacements which are less than 1 
pixel are estimated accurately at each individual level and 
thus need not be updated from a coarser level’s estimate, 
while estimates that are greater than 1 pixel are most prob- 
ably more accurately computed at the coarser level, and are 
updated by projecting the estimate from the coarser level. 

This incremental minimization approach foregoes a large 
number of relaxation iterations over a 2 frame sequence 
in favor of a small number of relaxation iterations over a 
longer sequence. Fig. 7 shows the optical flow estimated 
for the sequence of four image probes of Fig. 5. The figure 
clearly shows the complex motion of the target fish. It is a 
non-trivial task to segment such motions. 

Motion Segmentation and Color Recognition 
For the animat to recognize objects moving in its periphery 
it must first detect their presence by means of a saliency 
map as described earlier. Once it detects something that 
might be worth looking at, it must then segment its region 
of support out from the whole peripheral image and then 
match this segmentation with mental models of important 

ROF I*; 

Figure 8: Incremental motion segmentation and object 
recognition using multi-resolution robust optical flow (ROF) 
estimation, affine parametric motion segmentation and color 
object recognition. 

objects. Fig. 8 shows the steps involved in an incremental 
segmentation of the detected object over the duration of the 
four probe images as explained above. 

Segmentation of the optical flow at each time instant is 
performed by fitting an affine parametric motion model to 
the robust optical flow (ROF) estimated so far at the current 
time instant. This is done by incrementally minimizing the 
cost function given as 

E(a, h c, 4 e, f) = Ex(a, h c) + E,(d) e, f), (11) 
where (a, b, c, d, e, f) are the affine motion parameters. Ez 
and E, are formulated using robust estimation to account 
for outliers 

E, = c p&x(x, Y) - 4x, Y)L 
xc,yER 

E, = x P&y(X,Y) - V(X,Y)), (12) 
x,YER 

where R is the current region of support of the segmented 
object (initially equal to the full frame image size). v, and 
vy are horizontal and vertical affine motion flow vectors 
according to (2). ( u, v) is the ROF estimated at the cur- 
rent instant, and p0 (x) is taken to be the Lorentzian robust 
estimator. We use successive over relaxation and GNC to 
minimize this cost function by using a small number of it- 
erations over a sequence of four image probes and updating 
the segmentation at every time instant. 

The estimated affine motion parameters at the current 
time instant are then used to update the segmentation by 
calculating an error norm between the affine flow estimate 
(vx, vY) and the ROF estimate as in (1). This norm is 
then thresholded by an appropriate threshold taken to be the 
minimum outlier in the affine fit. The updated segmentation 
serves as the region of support R for the next frame’s affine 
minimization step. 
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If more than one moving object is present in the probe 
sequence, the current segmentation is subtracted from the 
image, and another affine motion model is fitted to the re- 
maining pixels thus segmenting other moving objects. To 
clean up the segmentation (in case some pixels where mis- 
classified as outliers) a 9 x 9 median filter is passed over the 
segmentation mask to fill in missing pixels and remove mis- 
classified outliers. Fig. 9 shows the segmented background 
(showing two objects as outliers) and the segmentation of 
the outlier pixels into the object of interest (a blue fish). 

At the end of the motion segmentation stage, the seg- 
mented objects are matched to color models using the color 
histogram intersection method. If a match occurs, the cur- 
rent estimate of the ROF is set to zero thus accounting for 
the dynamic changes in the system, otherwise the ROF is 
used to initialize the optical flow at the next time step as 

Segmented Background Segmented Object 

Figure 9: Results of incremental motion segmentation mod- 
ule. 

shown in Fig. 6. 
If the model object matches the peripheral segmented re- 

gion, the animat localizes the recognized object using color 
histogram backprojection and foveates it to obtain a high- 
resolution view. It then engages in appropriate behavioral 
responses. 

Behavioral Response to a Recognized Target 

physics-based, virtual marine world inhabited by lifelike 
artificial fishes that emulate the appearance, motion, and 
behavior of real fishes in their natural habitats. We have 
successfully implemented a set of active vision algorithms 
for artificial fishes that integrate motion and color analy- 
sis to improve focus of attention and enable the animat to 
better understand and interact with its dynamic virtual en- 
vironment. 

The behavioral center of the brain of the artificial animal 
assumes control after an object is recognized and fixated. 
If the object is classified as food the behavioral response 
would be to pursue the target in the fovea with maximum 
speed until the animat is close enough to open its mouth and 
eat the food. If the object is classified as a predator and the 
animat is a prey fish, then the behavioral response would 
be to turn in a direction opposite to that of the predator and 
swim with maximum speed. Alternatively, an object in the 
scene may serve as a visual frame of reference. When the 
animat recognizes a reference object (which may be another 
fish) in its visual periphery, it will fixate on it and track it in 
smooth pursuit at an intermediate speed. Thus, the fixation 
point acts as the origin of an object-centered reference frame 
allowing the animat to stabilize its visual world and explore 
its surroundings. 

Fig. 10 shows a sequence of retinal images taken from 
the animat

’

s 

left eye. The eyes are initially fixated on a red 
reference fish and thus the images are stabilized. In frame 
283 to 286 a blue fish swims close by the animat

’

s 

right 
side. The animat recognizes this as a reference fish and 
thus saccades the eyes to foveate the fish. It tracks the fish 
around, thereby exploring its environment. By foveating 
different reference objects, the animat can explore different 
parts of its world. 

Fig. 11 shows a plot of the (6~) 0~) gaze angles and turn 
angle between frames 200 and 400. It is clear from the 
figure that the animat was first fixated on the red fish which 
was to the left of the animat (negative gaze angles), and at 
frame 286 and subsequent frames the animat is foveated on 
the blue fish which is to its right (positive gaze angles). 

Conclusion and Future Work 
We have presented computer vision research carried out 
within an animat vision framework which employs a 
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In future work we will endeavor to increase the arsenal 
of active vision algorithms to support the whole behavioral 
repertoire of artificial fishes. The animat approach allows 
us to do this step by step without compromising the com- 
plete functionality of the artificial fish. It is our hope that 
the vision system that we are developing will also provide 
insights relevant to the design of active vision systems for 
physical robotics. 
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Figure 10: Retinal image sequence from the left eye of the predator (top) and overhead view (bottom) of the predator as it 
pursues a red reference fish (frames 283-285). A blue reference fish appears in the predator

’

s 

right periphery and is recognized, 
fixated, and tracked (frames 286-300). The white lines indicate the gaze direction. 
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Figure 11: Gaze angles as the animat changes reference 
points at frame 286 from left (negative angles) to right (pos- 
itive angles). 
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