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Abstract 

We describe a new approach for computing in- 
variant features in infrared (IR) images. Our ap- 
proach is unique in the field since it considers 
not just surface reflection and surface geometry 
in the specification of invariant features, but it 
also takes into account internal object composi- 
tion and thermal state which affect images sensed 
in the non-visible spectrum. We first establish 
a non-linear energy balance equation using the 
principle of conservation of energy at the sur- 
face of the imaged object. We then derive fea- 
tures that depend only on material parameters 
of the object and the sensed radiosity. These fea- 
tures are independent of the scene conditions and 
the scene-to-scene transformation of the “driving 
conditions” such as ambient temperature, and 
wind speed. The algorithm for deriving the in- 
variant features is based on the algebraic elim- 
ination of the transformation parameters from 
the non-linear relationships. The elimination ap- 
proach is a general method based on the extended 
Dixon resultant. Results on real IR imagery are 
shown to illustrate the performance of the fea- 
tures derived in this manner when used for an 
object recognition system that deals with multi- 
ple classes of objects. 

Introduction 
A very popular and increasingly affordable sensor 
modality is thermal imaging - where non-visible ra- 
diation is sensed in the long-wave infrared (LWIR) 
spectrum of 8pm to 14pm. The current generation 
of LWIR sensors produce images of contrast and res- 
olution that compare favorably with broadcast televi- 
sion quality visible light imagery. However, the images 
are no longer functions of only surface reflectance. As 
the wavelength of the sensor transducer passband in- 
creases, emissive effects begin to emerge as the dom- 
inant mode of electromagnetic energy exitance from 
object surfaces. The (primarily) emitted radiosity of 
LWIR energy has a strong dependence on internal com- 
position, properties, and state of the object such as 
specific heat, density, volume, heat generation rate 
of internal sources, etc. This dependence may be 
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exploited by specifying image-derived invariants that 
vary only if these parameters of the physical proper- 
ties vary. 

Here, we describe the use of the principle of con- 
servation of energy at the surface of the imaged ob- 
ject to specify a functional relationship between the 
object’s thermophysical properties (e.g., thermal con- 
ductivity, thermal capacitance, emissivity, etc.), scene 
parameters (e.g., wind temperature, wind speed, so- 
lar insolation), and the sensed LWIR image gray level. 
We use this functional form to derive invariant fea- 
tures that remain constant despite changes in scene 
parameters/driving conditions. In this formulation the 
internal thermophysical properties play a role that is 
analogous to the role of parameters of the tonics, lines 
and/or points that are used for specifying geometric 
invariants when analyzing visible wavelength imagery. 
Thus, in addition to the currently available techniques 
of formulating features that depend only on external 
shape and surface reflectance discontinuities, the phe- 
nomenology of LWIR image generation can be used to 
establish new features that “uncover” the composition 
and thermal state of the object, and which do not de- 
pend on surface reflectance characteristics. 

A general approach is described that enables the 
specification of invariant features that are satisfacto- 
rily justified in a thermophysical sense. The energy 
balance equation is inherently a non-linear form. We 
choose the variable labeling such that a polynomial is 
formed whose variables are the unknowns of the image 
formation and the coefficients are the object parame- 
ters. The choice of labels for the variables determines 
the form of the transformations from scene to scene. 
Consideration of the variable inter-dependencies spec- 
ifies the set of transformation to be a subgroup of the 
general linear group. 

A method based on elimination techniques is used 
to specify the features. Elimination methods eliminate 
a subset of variables from a finite set of polynomial 
equations to give a smaller set of polynomials in the 
remaining variables while keeping the solution set the 
same. Invariants can be computed using these meth- 
ods in three steps - (1) Set up the transformation equa- 
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Figure 1: The vehicles used to test the object recogni- 
tion approach, (from top left clockwise) car, van, truck 
1, and tank. The axis superimposed on the image show 
the object centered reference frames. The numbered 
points indicate the object surfaces used to form the 
measurement matrices. These points are selected such 
that there are a variety of different materials and/or 
surface normals within the set. 

tions relating the generic coefficients of the polynomial 
form before and after the action of the transformation 
subgroup, (2) Eliminate the transformation parame- 
ters from the transformation equations using any of 
the elimination methods, and finally, (3) Extract the 
invariants from the result of elimination from step 2. 

Using Elimination Methods for 
Computing Invariants 

Elimination methods are a general class of algorithms 
designed to eliminate a given set of variables from a 
finite system of polynomial equations. Some of the 
most general elimination methods are the Grijbner ba- 
sis method, characteristic set method, and various re- 
sultant methods see (Kapur & Lakshman 1992) for a 
survey. Such methods find applications in many areas 
of science and engineering and can be used to solve sys- 
tems of polynomial equations. They can also be used to 
automatically compute invariants of a given configura- 
tion (or quintic) under various transformation groups 
see (Kapur, Lakshman, & Saxena 1995). 

An absolute invariant is a rational function of the 
configuration parameters whose value remains con- 
stant under the action of a transformation group on 
this configuration. As a consequence, absolute invari- 
ants are very useful (Mundy & Zisserman 1992) in 
recognizing objects from images and building model- 
based object recognition libraries. Let p and q be 
the object and image parameters. Each absolute in- 
variant f/g generates a separable invariant relation, 
h(p, q) = f (p)g(q) - f (q)g(p). In other words, if these 
separable invariant relations can somehow be derived, 
then it may be possible to extract absolute invariants 

(which generate them) from them. 
The process of computing invariants using elimina- 

tion methods can be organized in three phases as fol- 
lows: 

Phase 1: Set up the transformation equations re- 
lating the image parameters to the object via the 
transformation parameters. 
Phase 2: Eliminate transformation parameters 
from the transformation equations to derive sepa- 
rable invariant relations. 
Phase 3: Extract the absolute invariants which 
generate the separable invariant relations. This is 
known as the separability problem. 

In phase 2, elimination methods such as Grobner 
basis algorithms, and in certain cases see (Kapur, Lak- 
shman, & Saxena 1995) resultant computations can be 
used to derive separable invariant relations. 

Given a separable invariant relation h(p, q), 
there exist many (algebraically dependent) invariants 
L f 12 which generate them, ie.: (f,

“
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g,
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, 
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c(PMq) - c(q)d(p) = h(P, q), 

f (p)g(q) - f WY(P) = h(P, a), 

k(p)l(q) - k(q)Kp) = h(P, a). 

But for a given ordering on the object parameters, 
there is a unique invariant I = f/g such that the: 
1. leading term of g is strictly larger than the leading 

term of f, 
2. leading term of f has zero coefficient in g and 
3. leading coefficient of g is 1 (ie. g is manic). 
To extract the absolute invariant from separable in- 
variant relations, the algorithm in (Kapur, Lakshman, 
& Saxena 1995) fixes an ordering on the object and 
image parameters, and targets this unique invariant as 
follows. Let pef and pe 9 be the leading terms of f(p) 
and g(p) respectively, and cf , the leading coefficient of 
f(p). Then, using the above properties of this unique 
invariant, the separable invariant relation can be ex- 
pressed as 

h(P, q) = f (p)g(q) - Y(P)f (9) 
= f(P) (q”g +. * 3 - Y(P) (cfqeJ + * * *> 
= f(P) qeg - Cf Y(P) qej + . * *. 

As is evident from the above expansion of the separable 
invariant relation as a polynomial in q, the numerator 
f(p) of the absolute invariant is the coefficient of the 
leading term qeg . Once f(p) is known, and the de- 
nominator g(p) is the coefficient of the term -cf qef 
and can be easily read off from h(p, q) once it has been 
sorted according to a predetermined ordering. 
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Figure 2: Energy exchange at the surface of the im- 
aged object. Incident energy is primarily in the visible 
spectrum. Surfaces loses energy by convection to air, 
via radiation to the atmosphere, and via conduction to 
the interior of the object. The elemental volume at the 
surface also stores a portion of the absorbed energy. 

A Thermophysical Approach to LWI 
Image Analysis 

At the surface of the imaged object (figure 2) energy 
absorbed by the surface equals the energy lost to the 
environment. 

w abs - - west 

Energy absorbed by the surface is given by 
(1) 

W abs = WI cos& CN, ) (2) 

where, WI is the incident solar irradiation on a hor- 
izontal surface, & is the angle between the direction 
of irradiation and the surface normal, and cys is the 
surface absorptivity which is related to the visual re- 
flectance ps by as = 1 - ps. Note that it is reasonable 
to use the visual reflectance to estimate the energy 
absorbed by the surface since approximately 90% of 
the energy in solar irradiation lies in the visible wave- 
lengths (Incropera & Dewitt 1981). 

The energy lost by the surface to the environment 
was given by 

west = Wcv + Wrad + Wend + Wst (3) 

The energy convected from the surface to the ambient 
air is given by WC,, = h(Ts - Tama) where, Tamb is the 
ambient air temperature, Ts is the surface temperature 
of the imaged object, and h is the average convected 
heat transfer coefficient for the imaged surface, which 
depends on the wind speed, thermophysical properties 
of the air, and surface geometry (Incropera & Dewitt 
1981). We note that surface temperature may be esti- 
mated from the thermal image based on an appropriate 
model of radiation energy exchange between the sur- 
face and the infrared camera. 

The radiation energy loss is computed from 
W rad = w(T,4 - T2mb), where u denotes the Stefan- 
Boltzmann constant. The energy conducted to the in- 
terior of the object is given by Wend = -E dT/dx, 
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where X: is the thermal conductivity of the material, 
and x is distance below the surface. Here, we as- 
sume that lateral energy conduction is insignificant 
compared to conduction along the direction normal to 
the surface. The increase in the stored, internal en- 
ergy of an elemental volume at the surface is given by 
wst = CT%, where CT denotes the lumped thermal 
capacitance of the object and is given by CT = DVc, 
D is the density of the object, V is the volume, and c 
is the specific heat. In the following section we use the 
energy conservation model described above to derive 
invariant features using ideas in algebraic elimination 
theory. 

Thermophysical Algebraic Invariants 
(TAI’s) 

The balance of energy expression, 

W abs = Wrad f Wcv + Wst + Wend (4 

is the governing equation in our approach for comput- 
ing invariant features. Each term in the above equation 
can be expanded, which results in equation 4 being ex- 
pressed as a polynomial. The choice of labels for the 
variables determines both the form of the polynomial 
and transformation form. Since an absolute invariant 
feature value is not affected by transformations of the 
variables, the variables of the form are chosen to be 
the unknown parameters of the image formation. The 
coefficients are, then, the known/hypothesized object 
parameters and sensed measurements. 

An Algebraic Invariance Formulation 
The balance of energy expression, equation 4, may be 
written in the non-linear form 

where the variables and coefficients are labeled as 

al = CT: 
a2 = CT 
a3 = k 
a4 =TA 
a5 = -cosB 
a6 = -u 

a7 = A 

Xl = E 

;;I 2 
R” =- x4 a 

x5 = WI% 

26 = Tamb 

(6) 

Thus, the polynomial chosen to represent equation 4 is 
a quintic form in six variables. 

Any pixel in a LWIR image of an object will yield a 
7-D measurement vector, a. The image measurement 
(gray value) specifies al and ad. The values for a2, a3, 
and a5 are known when the identity and pose of the 
object are hypothesized. The coefficient a7, related to 
the convection term, h, is explained in greater detail 
in the discussion section. The driving conditions, xi, 
i = (1. . .6} are the unknown scene parameters that 
change from scene to scene. 



Consider two different LWIR images of a scene ob- 
tained under different scene conditions and from differ- 
ent viewpoints. Consider N points on the object that 
are visible in both views. Assume (for the nonce) that 
the object pose for each view, and point correspon- 
dence between the two views are available (or hypothe- 
sized). A point in each view yields a measurement vec- 
tor 8. The ;th component of the vector is denoted ai, 
wherei= l,..., 7 as defined by eqn (6). Let the collec- 
tion of these vectors be denoted by ai,k, k = 1, . . . , N 
for the first scene/image and u:,k, k = 1, . . . , N for 
the second scene. In the same vein, consider an associ- 
ated set of driving condition vectors for the first scene. 
We express the collection as a$$ where k = 1, . . . , N 
and i = l,..., 6 as defined in eqn (6). Similarly, the 
driving condition vector from the second scene is de- 
noted x;,$. 

Thermop hysical Transformat ion 

Consider a set of N 5 6 points imaged from the surface 
of an object. This creates a set of N vectors xi,k, k = 
1 . ..N.i= l,..., 6 which define the driving conditions 
on the surface of the object in a scene at time t,. This 
forms a variable matrix of dimension 6 x N, call it 
X. These points are transformed from their values at 
time t, to their value at time t,+i, tn+l > t,, by a GL 
transformation, M, MX = X’. The transformation 
matrix M is 6 x 6. 

In order to determine the form of the transformation 
we view the components of a driving condition vector 
in terms of the inter-dependencies of the parameters. 
By doing so, superfluous parameters are eliminated. 
The dependency of the value of a variable at the cur- 
rent instance on other variables at a previous instance 
is established by the physical phenomena that cause 
scene-to-scene change in the different parameter val- 
ues. The dependencies are shown below (and explana- 
tions follow): 

variable . . xi = E 
2; = CL 

l& 
=ds 
=h 

The change in emissivity is independent of 

dependency 
Xl (4 
x2,x3,x4,x5(= %I 

&‘& 
x2, x3,54, x5(-& 2’ 

$4 (h) . r 

x5 (WI%> 

26 (T,ma) 

g, WI%) 
h, WI%) 

(7) 
the values 

of any of-the variables. Hence, it is dependent only 
on itself. The second component, x2, is the temporal 
derivative of the surface temperature. Its value at t,+l 
will be affected by all of the parameters at t, except 
emissivity and the ambient temperature. Physically, 
the temporal derivative is independent of the ambient 
temperature and the emissivity of the surface; however, 
it is dependent on (1) its previous value, (2) the spatial 
derivative of the temperature in the material, (3) the 
convection coefficient- (the surface patches propensity 

to convect into the air), (4) incident solar irradiation 
and surface absorptivity. The spatial derivative, x3, 
has the same dependencies that 22 has. The remaining 
variables, x4, x5, and 26 depend, physically, only on 
their own previous values. 

The variable inter-dependencies determine the ther- 
mophysical transformation. Thus the transformation 
of the variables of equation 5 can be represented by a 
subgroup of the GL group of the form 

ml1 0 0 0 0 0 

0 m22 m23 m24 m25 0 

M= i ; m32 m33 m34 m35 
0 

0 0 - m44 0 0 (8) 
0 0 0 0 m55 0 
0 0 0 0 0 m66 

Consider four points to compose X. Further explana- 
tion of the thermophysical behavior of these points is 
included in the discussion section. Each of the four 
points has seven components. Thus, the transforma- 
tion induced on the coefficients, ai, gives 28 constrain- 
ing equations. Since there are 12 parameters of the 
transformation, every additional constraining equation 
that is added to a set of 12 constraining equations gives 
rise to an invariant relationship. Thus, for a configura- 
tion of four points in the thermophysical space and 
a transformation consisting of 12 parameters, there 
are 28-12=16 invariant functions; however, a subset 
of these relations are physically trivial invariant rela- 
tionships. 

Given X, consisting of four copies of the equation 
5, the elimination technique described in section 2 was 
applied to the algebraic configuration. This results in 
the following non-trivial invariants: 

a2,1 a2,2 a2,3 

a3,l a3,2 a3,3 

I1 = I a4,1 a4,2 a4,3 I 

a2,2 a2,3 a2,4 
(9) 

a3,2 a3,3 a3,4 

a4,2 a4,3 a4,4 

a2,1 a2,2 a2,3 
a3,l a3,2 a3,3 

12 = a5,1 a5,2 z;‘; 

a2,2 a2,3 

a3,2 a3,3 a314 
a5,2 a5,3 a5,4 

where ai,k is the ith component of the kth point. 

Employing TAPS for 0 b ject Recognition 
The feature computation scheme formulated above 
is suitable for use in an obiect recognition system 
that employs a hypothesize-and-verify-strategy.” The 
scheme would consist of the following steps: 
1. extract geometric features, e.g., lines and tonics. 
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Figure 3: The truck 2 vehicle used in the recognition 
tests. The object centered coordinate axis is superim- 
posed on the image. The numbered points correspond 
to the point sets given in table 1. These points are 
selected such that there are a variety of different ma- 
terials and/or surface normals within the set. 

2. for image region, r, hypothesize object class, k, and pose 
using, for example, geometric invariants as proposed by 
Forsyth, et al (Forsyth et al. 1991), 

3. use the model of object k and project visible points la- 
beled i = 1,2,... onto image region r using scaled ortho- 
graphic projection, 

4. for point labeled a

’ 

in the image region, assign thermo- 
physical properties of point labeled i in the model of 
object k, 

5. use the gray levels at each point and the assigned ther- 
mophysical properties, to compute the measurement vec- 
tors, qk, and hence compute the feature 11 or 12, and 
fin&5 

6. compare feature 
the hypothesis. 

f

’

(r) 

with model prototype Fk to verify 

Experimental Results 
object Recognition using TAIs 
The method of computing thermophysical algebraic in- 
variants discussed above was applied to real LWIR im- 
agery acquired at different times of the day. Five types 
of vehicles were imaged: a van, two types of trucks, a 
military tank, and a car (figures 1). Several points were 
selected (as indicated in the figures) on the surfaces of 
different materials and/or orientation. The measure- 
ment vector given by eqn (6) was computed for each 
point, for each image/scene. 
’ The features described in section 4 require four 

points. Given a model of an object that has some & 
number of points defined, there is the possibility of 
forming Q different features. 

q=(f)(t) 
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(11) 

Point Set Mean 
72 1.000 
c4W,9~ 1.000 
{%3,4,8) 4.757 
{2,3,4,7) 4.746 
{8,%W~ 0.983 
{OW,fi~ 0.7361 
U%%W) 0.0795 
@,6,V) 1.057 

STD Quality 
o.o02(j o.0026 
0.0061 0.0061 
0.0352 0.0074 
0.0280 0.0059 
0.1951 0.1984 
0.1445 0.1963 
0.0146 0.1836 
0.0443 0.0419 

Table 1: Intra-class variation over time of the feature, 
Il, defined by equation 9 applied with the point sets 
given in column 1 for truck type 2. The features were 
evaluated at five time instances over two consecutive 
days, Day 1 - llam, 12pm, lpm, Day 2 - 9am, loam. 
Column 2 is the mean of the feature over the five time 
instances and column 3 shows the feature stability in 
terms of standard deviation. Column 4 shows the qual- 
ity factor defined as std divided by the mean. The 
points correspond to the points labeled in figure 3. 

The first criterion for finding a useful feature is stable 
intra-class behavior. Nearly all of the point choices had 
low variation in intra-class tests; tests where the same 
object is viewed under different scene conditions. For 
example, a test was performed on the truck in figure 
3. Table 1 shows the results for ten different features 
evaluated from truck 1. Although the performance of 
only ten features are shown, the performance is repre- 
sentative of the feature stability over all of the distinct 
point choices. 

As mentioned in section 4, one must consider inter- 
class behavior as well as intra-class behavior for an ob- 
ject recognition application of the features. To inves- 
tigate this we adopted the following procedure. Given 
an image of a vehicle, (1) assume the pose of the vehicle 
is known, then (2) use the front and rear wheels to es- 
tablish an object centered reference frame. The center 
of the rear wheel is used as the origin, and center of the 
front wheel is used to specify the direction and scaling 
of the axes. The coordinates of the selected points are 
expressed in terms of this 2D object-centered frame. 
For example, when a van vehicle is hypothesized for an 
image actually obtained of a car or some unknown ve- 
hicle, the material properties of the van are used, but 
image measurements are obtained from the image of 
the car at locations given by transforming the coordi- 
nates of the van points (in the van-centered coordinate 
frame) to the image frame computed for the unknown 
vehicle. 

Table 2 shows inter-class and intra-class variation 
when truck 1 is hypothesized. The data are gathered 
and images obtained at nine times during the daylight 
hours over a period of two days. The results show 
good inter-class separation and reasonable intra-class 
stability. Note that in the cases of wrong hypotheses, 
the feature values tend to be either indetermined or 



Hypothesis: 
Data From: 

11 am 
12 pm 
1 pm 
2 pm 
3 pm 
4 Pm 
5 pm 
9 am 
10 am 

Truck 1 
Van 
4.62 
1.00 
1.00 
1.00 
7.50 
1.00 
2.95 
1.00 
4.00 

Truck 1 Truck 1 Truck 1 
Car Truck 2 Tank 
1.00 -0.693 0.882 
1.00 15.74 -1.00 
NaN 1.00 2.846 
1.00 2.20 -1.00 
-1nf 1.00 1.00 
19.0 13.67 1.00 
51.0 1.71 4.20 
1.20 3.00 -1.00 
1.10 6.33 2.20 

Table 2: Mistaken hypothesis feature values shows 
inter-class variation for feature A-l, consisting of point 
set {1,2,3,7}. Th e model for truck one is hypothe- 
sized. The feature value is formed using the model of 
truck 1 and the data from the respective other vehicles. 
When this feature is applied to the correctly hypoth- 
esized data of truck 1 it has a mean value of 0.0159 
and a standard deviation of 0.0022. Thus feature, A-l, 
shows good separability when compared to the incor- 
rect hypothesis feature value listed in the table. 

unitary. This is a result of using the object centered 
coordinate system where the mistaken points fall on 
similar material types when dissimilar material types 
were expected. 

Discussion 
The approach described above is promising in that it 
makes available features that are (1) invariant to scene 
conditions, (2) able to separate different classes of ob- 
jects, and (3) b ased on physics based models of the 
many phenomena that affect LWIR image generation. 

Two aspects of the approach require further expla- 
nation. First, the factor, a7, from equation 6 was used 
in this formulation to expand the number of degrees 
of freedom in the algebraic expression of the balance 
of energy equation. Although it is not interpreted di- 
rectly as a physical parameter, it allows for the cre- 
ation of a proper form and has no effect on the phys- 
ical model. The motivation for including UT is that 
it is desirable to label as unknown variables both the 
convection parameter, h, and the ambient tempera- 
ture, Tama. These factors appear together in one of 
the terms of the balance of energy equation. With 
both factors labeled as variables, the coefficient can 
then only be unity, a7 = 1. The resulting labeling 
produces a form that loses important degrees of free- 
dom in the formation of invariant relations. Including 
a7 = A, implies that there is a scale of the temperature 
measurement, Ts, in the term a4 = Ts A. The transfor- 
mation, M, of the variables induces a transformation 
on the coefficients. For the coefficient in question the 
induced transformation can be written ai = m44u4. 
Since the features found in section 4 are invariant to 
transformations of the form 8 it is invariant to an addi- 
tional scale as in the action of the A parameter. Thus 

the term does not affect the relation of the physical 
model to the invariant feature. In addition, because 
a7 does not appear in the feature there is no need to 
physically interpret its value. 

Next, we consider the thermophysical justification of 
the transformation defined in the equation 

X’ = MX, (12) 
where X is a 6 x 4 collection of thermophysical vari- 
able vectors as defined in 6 at a time instance, t,, 
and X’ is the collection at a later time/scene &+I. 
The transformation M is defined in (8). The physical 
implication of such a transformation is that the four 
points in the thermophysical configuration are acted 
upon in the “same manner” by the environment. This 
is a reasonable assumption for the classes of objects 
under consideration. Note that if different types of 
surfaces are chosen (or points on surfaces with differ- 
ent surface orientations) the measurement vectors will, 
in general, be linearly independent. In other words, it 
is easy to select points such that the collection of mea- 
surement vectors span R6. Then the existence of a 
non-singular transformation of the form of, M, for any 
pair of scenes and for a subset of four such points is 
guaranteed. Physically, the effect of the convection co- 
efficient, solar irradiation and ambient temperature is 
consistent for the set of surface points. This fact taken 
with the fact that the emissivity can be considered rel- 
atively constant over time implies that it is reasonable 
to assume that equation (12) has physical justification. 
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