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Abstract 

Approxhate world models are coarse descriptions 
of the elements of a scene, and are intended to be 
used in the selection and control of vision routines 
in a vision system. In this paper we present a con- 
trol architecture in which the approximate mod- 
els represent the complex relationships among the 
objects in the world, allowing the vision routines 
to be situation or context specific. Moreover, be- 
cause of their reduced accuracy requirements, ap- 
proximate world models can employ qualitative 
information such as those provided by linguistic 
descriptions of the scene. The concept is demon- 
strated in the development of automatic cameras 
for a TV studio - SmartCams. Results are shown 
where SmartCams use vision processing of real 
imagery and information written in the script of 
a TV show to achieve TV-quality framing. 

Introduction 
It has been argued - e.g. in (Strat & Fischler 1991) 
- that in any given situation most visual tasks can 
be performed by a relatively simple visual routine. For 
example: finding the ground reduces to finding a large 
(body-relative) horizontal plane if the observer is ver- 
tical and there are no other large horizontal planes. 
The difficulty in general, of course, is how to know the 
current state of the world without having to do all the 
detailed visual tasks first. The numerous possibilities 
for the fundamental relationships between objects in 
the scene is as much responsible for the complexity of 
vision as is the difficulty of the visual routines them- 
selves. 

The goal of this paper is to argue that vision systems 
should separate these two sources of complexity by us- 
ing coarse models of the objects in the scene called 
approximate world models. This proposal is based on 
the observation that the real world does not need to be 
fully and accurately understood to detect many situa- 
tions where a specific vision method is likely to succeed 
or fail. For instance, full and precise 3D reconstruction 
of the human body is not necessary to detect occlusion 
if the objective of the system is just to recognize faces 
of people walking through a gate. 
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A main feature of approximate world models is that 
their imprecision facilitates the use of incomplete and 
inaccurate sources of information such as linguistic de- 
scriptions of the elements and actions in a scene. In 
fact, we show in this paper that linguistic information 
can play a pivotal role in providing the contextual in- 
formation needed to simplify the vision tasks. 

We are employing approximate world models in the 
development of SmartCams, automatic TV cameras 
able to frame subjects and objects in a studio accord- 
ing to the verbal requests from the TV director. Our 
SmartCams are tested in the domain of a cooking show. 
The script of the show is available to SmartCams (in 
a particular format), and the cameras are shown to 
be able to produce TV-quality framing of subjects and 
objects. 

Approximate World Models 
Approximate world models are coarse descriptions of 
the main elements of a scene to be used in the selec- 
tion and control of vision routines. These models are to 
be incorporated into vision-based systems built from a 
collection of different, simple, task-specific vision rou- 
tines whose application is controlled according to the 
conditions described by the approximate world models. 

This proposal comes from the observation that 
a common reason for the failure of vision routines 
- especially, view-based methods - is related to the 
complex geometric relationships among objects in the 
world. For example, often template-based tracking 
routines produce wrong results due to partial occlu- 
sion. In such situations, a crude 3-D reconstruction 
of the main objects in the scene can determine if the 
tracked object is in a configuration where occlusion is 
probable. 

The advantages of using approximate models are at 
least three-fold. First, coarse reconstruction of the 3-D 
is arguably within the grasp of current computer vision 
capabilities. Second, as shown in this paper, control of 
task-specific vision routines can be based on inaccu- 
rate and incomplete information. And third, as we 
will demonstrate, reducing the accuracy requirements 
enables the use of qualitative information which might 
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be available to the vision system. 
Coarse and/or hierarchical descriptions have been 

used before in computer vision (Bobick & Bolles 1992; 
Marr & Nishihara 1978). Particularly, Bobick and 
Bolles employed a multi-level representational system 
where different queries were answered by different rep- 
resentations of the same object. Part of the novelty of 
our work is related to the use of the models in the dy- 
namic selection of appropriate vision methods accord- 
ing to the world situation. And compared to other ar- 
chitectures for context-based vision systems, like Strat 
and Fischler’s Condor system, (Strat & Fischler 1991), 
approximate world models provide a much more clear 
distinction between the vision component and the 3-D 
world component. 

It is interesting to situate our scheme in the ongo- 
ing debate about reconstructionist vs. purposive vision 
discussed in (Tarr & Black 1994) and in the replies in 
the same issue. Our proposal falls between the strictly 
reconstructionist and purely purposive strategies. We 
are arguing that reconstruction should exist at the ap- 
proximate level to guide purposive vision routines: by 
building an approximate model of the scene vision sys- 
tems can use task-specific, purposive vision routines 
which work reliably in some but not all situations. 

Using Approximate World Models 
in Vision Systems 

To formalize the control exercised by the approximate 
world models in a vision system, we define applicability 
conditions for each vision routine: the set of assump- 
tions, that, if true in the current situation, warrants 
faith in the correctness of the results of that routine. 

The idea is to have each vision routine encapsulated 
in an applicability rule, which describes pre-conditions 
(IF portion of the rule), application constraints (THEN 
portion), and post-conditions (TEST IF), in terms of 
general properties about the targeted object, other ob- 
jects in the scene, the camera’s point of view, and the 
result of the vision routine. 

cording to the instructions in the THEN portion of the 
applicability rule which may also include information 
about routine parameters. The RESULT is then checked 
in the TEST IF portion of the rule, reducing the possi- 
bility that an incomplete specification of pre-conditions 
generates incorrect results. For instance, in the case of 
“extract-narrowest-moving-blob”, often the lack of 
actual object movement makes the routine return tiny, 
incorrectly positioned regions which are filtered out by 
the post-conditions. 

As an example, fig. 1 depicts the applicability rule of 
a vision routine, “extract-narrowest-movingblob”, 
and how the rule is applied in a given situation. 
The routine “extract-narrowest-moving-blob” is 
designed to detect moving regions in a sequence of 
two consecutive frames using simple frame differenc- 
ing, and then to divide the result into two areas, of 
which the narrowest is returned. 

It is important to differentiate the concept of ap- 
plicability rules from rule-based or expert-system ap- 
proaches to computer vision (Draper et al. 1987; 
Tsotsos 1985). Although we use the same keywords 
(IF, THEN), the implied control structure has no re- 
semblance to a traditional rule-based system: there is 
no inference or chaining of results. More examples of 
applicability rules can be found in (Bobick & Pinhanez 
1995). 

A Working Example: SmartCams 

To use such a rule, the vision system consults the ap- 
proximate model of TARGET (in the example case, the 
head of a person) to obtain an estimation of its pro- 
jection into the image plane of the camera, and also 
to confirm if TARGET is moving. Moreover, the system 
also looks for other moving objects close to TARGET, 
constructing an approximate view model of the cam- 
era’s view. 

Our approach of using approximate world models is be- 
ing developed in a system we are constructing for the 
control of TV cameras. The ultimate objective is to 
develop a camera for TV that can operate without the 
cameraman, changing its attitude, zoom, and position 
to provide specific images upon human request. We 
call these robot-like cameras SmartCams. A “cooking 
show” is the first domain in which we are experiment- 
ing with our SmartCams. 

If the conditions are satisfied by the approximate The basic architecture of a SmartCam is shown in 
view model, the routine is applied on the imagery ac- fig. 2. Considering the requirements of this application, 

Approximate moving 
View Model object 

TARQET inside view 

THEiN 
APPLY vision routine 
Vuctract-narrowemt- 
moving-blob" 

TEST IF 

Final Result 

Figure 1: Example of an applicability rule for a vision rou- 
tine and how the information from the approximate world 
model is used. 
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0 TV director 

SmartCam --- 

APPROXIMATE WORLD MODEL 

scri 

wide-angle images 

Figure 2: The architecture of a SmartCam. The bottom 
part of the figure shows the structure of the modules re- 
sponsible for maintaining the approximate world models. 

the approximate world model represents the subjects 
and objects in the scene as 3-D blocks, cylinders, and 
ellipsoids, and uses symbolic frame-based representa- 
tions (slots and keywords). The symbolic description 
of an object includes information about to which class 
of objects the object belongs, its potential use, and its 
roles in the current actions. 

The 3-D representations are positioned in a 3-D vir- 
tual space corresponding to the TV studio. The cam- 
eras

’ 

calibration parameters area also approximately 
known. The precision can be quite low, and in our 
system the position of an object might be off by an 
amount comparable to its size. 

For example, if there is a bowl present in the studio, 
its approximate world model is composed by a 3-D geo- 
metric model of the bowl and by a frame-like symbolic 
description. The 3-D geometric model approximates 
the shape of the bowl, and is positioned in the vir- 
tual space according to the available information. The 
objects in the approximate world model belong to dif- 
ferent categories. For example, a bowl is a member of 
the “handleable objects” category. As so, its frame 

Figure 3: Example of response to the call “close-up 
chef” by two different cameras, side and center. The 
left images show the projection of the approximate models 
on the wide-angle images. The right images display the re- 
sult of vision routines as highlighted regions, compared to 
the predicted position according to the approximate model 
of the head and the trunk, shown as rectangles. 

includes slots which describe whether the bowl is being 
handled by a human, and, if so, there is a slot which 
explicitly points to him/her. 

The system which produced the results shown in this 
paper does not use real moving cameras, but simulates 
them using a moving window on wide-angle images of 
the set. Several performances of a 5-minute scene as 
viewed by three wide-angle cameras were recorded and 
digitized. The SmartCam output image is generated 
by extracting a rectangular window of some size from 
the wide-angle images. 

In fig. 3 we can see a typical result in the Smart- 
Cam domain where the inaccuracy of the approxi- 
mate world models does not affect the final results 
obtained by the vision routines. Two SmartCams, 
side and center, were tasked to provide a close-up of 
the chef. Although the geometric model correspond- 
ing to the chef is quite misaligned, as can be seen by 
its projection into the wide-angle images of the scene 
(left side), both S martcams, using routines similar to 
“

extract-narrowest-moving-blob

”

, 

produce correct 
results (the highlighted areas on the right of fig.3). 
Other examples of applicability rules and results can 
be found in (Bobick & Pinhanez 1995). 

Building and Maintaining Approximate 
World Models 

Having shown how the information contained in ap- 
proximate world models can be exploited by a vision 
system performing tasks in a dynamic environment, a 
fundamental issue remains: how does one construct an 
initial model and then maintain such a model as time 
progresses and the scene changes. 
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Contextual and semantic information is rarely em- 
ployed in model construction because of its inability to 
provide accurate geometric data. If the geometric ac- 
curacy requirements are relaxed, as it is in the case of 
approximate world models, semantic information can 
be used to predict possible positions and attitudes of 
objects. 

Furthermore, we view one of the roles of contextual 
knowledge to be that of providing the basic relation- 
ships between objects in a given configuration of the 
world. For example, while pounding meat the chef re- 
mains behind the table, positioned near the cutting 
board, and the meat mallet is manipulated by the 
hands. As long as such a context remains in force, 
these relationships hold, and the job of maintaining the 
approximate world model reduces to, predominantly, 
a problem of tracking incremental changes within a 
known situation. 

Occasionally, though, there are major changes in the 
structure of the world which require a substantial up- 
date in the structure of the approximate models. For 
example, a new activity may have begun, altering most 
expectations, including, for example, the possible loca- 
tion of objects, which objects are possibly moving, and 
which objects are likely to be co-located making visual 
separation unlikely (and, more interestingly, unneces- 
sary). In our view, the intervals between major con- 
textual changes correspond to the fundamental actions 
performed by the subjects in the scene; the contex- 
tual shifts themselves reflect the boundaries between 
actions. 

Thus, maintaining approximate world models re- 
quires two different methods of updating: one re- 
lated to the tracking of incremental changes within a 
fixed context, and the other responsible for perform- 
ing the substantial changes in the context required at 
the boundaries between different actions. Of course, it 
is also necessary to have methods to obtain the initial 
approximate model. The three required mechanisms 
are briefly discussed below. 

Initializing Approximate World Models 

Whenever a vision system is designed using approxi- 
mate models, it is necessary to face the issue of how 
the models are initialized when the system is turned 
on. Current computer vision methods can be employed 
in the initialization process, if the system is allowed a 
reasonable amount of time to employ powerful vision 
algorithms without contextual information. 

In our current version of the SmartCams the 3-D 
models of the subjects and objects are determined and 
positioned manually in the first frame of the scene. All 
changes to the model after the first frame are accom- 
plished automatically using vision and processing the 
linguistic information as described later in this paper. 

Tracking Incremental Changes 
As proposed, while a particular action is taking place 
it is presumed that the basic relationships among the 
subjects and objects do not change. During such pe- 
riods most of the updating of the approximate mod- 
els can be accomplished by methods able to detect in- 
cremental changes, such as visual tracking algorithms. 
Though simple, those small updates are vital to main- 
tain the approximate model in an useful state, since 
approximate position information is normally an es- 
sential part of the applicability conditions of the task- 
specific vision routines. 

In the SmartCam domain, the update of the incre- 
mental changes in the approximate world model, and 
especially in its 3-D representations, is accomplished 
by vision tracking routines able to detect movements of 
the main components of the scene, as shown in the bot- 
tom part of the diagram in fig. 2. The two-dimensional 
motions of an object detected by each of the wide-angle 
cameras are integrated to determine the movement of 
the object in the 3-D world. More details can be found 
in (Bobick & Pinhanez 1995). 

Note that the use of an approximate world model 
may require additional sensing and computation which 
might not be performed to directly address current per- 
ceptual tasks: e.g. the position of the body of the 
chef is maintained even though the current task may 
only involve framing the hands. We believe that this 
additional cost is compensated by the increase in the 
competence of the vision routines. 

Actions and Structural Changes 
Tracking algorithms are likely to fail whenever there 
is a drastic change in the structure of the scene, as, 
for example when a subject leaves the scene. If this 
situation is recognized, the tracking mechanism of that 
subject should be turned off avoiding false alarms. 

It is not the objective of this paper to argue 
about the different possible meanings of the term ac- 
tion. Here, actions refer to major segments of time 
which people usually describe by single action verbs 
as discussed by (Newtson, Engquist, & Bois 1977; 
Thibadeau 1986; Kalita 1991). 

A change in the action normally alters substantially 
the relationships among subjects and objects. For ex- 
ample, we have a situation in the cooking show domain 
where the chef first talks to the camera, and then he 
picks up a bowl and starts mixing ingredients. While 
the action “talking” is happening, there is no need for 
the system to maintain explicit 3-D models for the 
arms and the hands of the chef: the important ele- 
ments involved are the position and direction of the 
head and body. 

When the chef starts mixing ingredients, it is es- 
sential that the approximate world model includes his 
hands, the mixing bowl, and the ingredients. Fortu- 
nately, “mixing” also sets up clear expectations about 
the positions of the hands in relation to the trunk of the 
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chef, to the mixing bowl, to the ingredients’ contain- 
ers, and to table where they are initially on. As this 
example illustrates, known contextual changes actually 
improve the robustness of the system since with each 
such event the system becomes “grounded” : there is 
evidence independent of, and often more reliable than, 
the visual tracking data about the state of the scene. 

Linguistic Sources of Action 
Information 

Without constraints from the domain, determining the 
actions which might occur can be difficult. However, in 
many situations the set of actions is severely restricted 
by the environment or by the task, as, for example, 
in the case of recognizing vehicle maneuvers in a gas- 
station as described in (Nagel 1994 5). 

The SmartCam domain exemplifies another type of 
situation, one in which there is available a linguistic 
description of the sequence of actions to occur. In a 
TV studio, the set of occurring actions - and, even, 
the order of the actions - is determined by the script 
of the show. We find the idea of having vision systems 
capable of incorporating linguistic descriptions of ac- 
tions very attractive: linguistic descriptions of actions 
are the most natural to be generated by human beings. 
In particular, this form of is suitable in semi-automated 
vision-based systems. 

The use of linguistic descriptions requires their auto- 
matic translation into the system’s internal represen- 
tational of actions. This is mostly a Natural Language 
Processing issue, although the feasibility is certainly 
dependent on the final representation used by the vi- 
sion system. In the SmartCam domain the final ob- 
jective is to employ TV scripts in the format they are 
normally written (see figure 4). 

Representing Actions 
Many formalisms have been developed to represent ac- 
tion, some targeting linguistic concerns (Schank 1975), 
computer graphics synthesis (Kalita 1991), or com- 
puter vision recognition (Siskind 1994 5). Currently 
we employ a simple representation based on Schank’s 
conceptualizations as described in (Schank 1975). In 
spite of its weaknesses - see (Wilks 1975) - Schank’s 
representation scheme is interesting for us because the 
reduced number of primitive actions helps the design 
of both the translation and the inference procedures. 

Our representation for actions uses action frames, a 
frame-based representation where each action is rep- 
resented by a frame whose header is one of Schank’s 
primitive actions - PROPEL, MOVE, INGEST, GRASP, 
EXPEL, PTRANS, ATRANS, SPEAK, ATTEND, MTRANS, 
MBUILD - plus the attribute indexes HAVE and CHANGE, 
and an undetermined action DO. 

Figure 5 contains two examples of action frames. 
The figure contains the representation for two ac- 
tions of the script shown in fig. 4, ‘ t chef wraps 
chicken with a plastic bag” and “chef pounds 
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Cooking-show scenario with a table on which there are 
bowls, ingredients, and different kitchen u tens&. A mi- 
crowave oven is in the back. Cam1 is a centered camera, 
cam2 is a left-sided camera, cam3 is a camera mounted 
in the ceiling. Chef is behind the table, facing caml. 

. . . 

Chef turns back to cam1 and mixes bread-crumbs, 
parsley, paprika, and basiI in a bowl. 
‘Stir together 3 tablespoons of fine dry bread crumbs, 
2 teaspoons snipped parsley, l/4 teaspoon paprika, 
and l/8 teaspoon dried basil, crushed. Set aside.” 

Chef wraps chicken with a plastic bag. 
“Place one piece of chicken, boned side up, between 
two pieces of clear plastic wrap.” 

Chef puts the chicken on the chopping-board and 
shows how to pound the chicken. 
“Working from the center to the edges, pound lightly 
with a meat maldet, forming a rectangle with this 
thickness. Be gentle, meat become as soft as you treat 
it.” 

Chef pounds the chicken with a meat-m&et. 
. . . 

Figure 4: The script of a TV cooking show. 

the chicken with a meat-mallet”. Each action 
frame begins with a primitive action and contains dif- 
ferent slots which supply the essential elements of the 
action. Undetermined symbols begin with a question 
mark (?); those symbols are defined only by the re- 
lationships they have with other objects. The actor 
slot determines the performer of the action while the 
object slot contains the object of an action or the 
owner of an attribute. The action frames resulting 
from an action are specified in the result slot, and 
action frames which are part of the definition of an- 
other action frame are contained in instrument slots. 

In the first example, “wrapping” is translated as 
some action (unspecified by DO) whose result is to make 
chicken be both contained in and in physical contact 
with a plastic bag. In the second example, “pound- 
ing” is represented as an action where the chef propels 
a meat mallet from a place which is not in contact with 
the chicken to a place which is in contact, and whose 
result is an increase in the flatness of the chicken. 

The current version of our SmartCams translates a 
simplified version of the TV script of fig. 4 into the 
action frames of fig. 5 using a domain-specific, very 
simple parser. Building a translator able to handle 
more generic scripts seems to be clearly a NLP prob- 
lem, and, as such, it is not a fundamental point in our 
research. 

Part of our current research is focused on designing a 
better representation for actions than the action frames 



. . 
ii0 

"chef wraps chicken with a plastic bag" 

(actor chef) 
(result 
(change (object chicken) 
(to (and 

(contained plastic-bag) 
(physical-contact plastic-bag)))))) 

. . "chef pounds the chicken with a meat-mallet" 
ipropel 
(actor chef) 
(object meat-mallet) 
(from (location ?not-in-contact)) 
(to (location ?-in-contact)) 
(result 
(change 
(object chicken) 
(from (flatness ?X)) 
(to (flatness (greater ?X))>)) 

(instrument 
(have (object ?not-in-contact) 
(attribute 

(negation (physical-contact chicken))))) 
(instrument 
(have (object ?in-contact) 
(attribute (physical-contact chicken)))) 

(instrument 
(have (object chicken) 
(attribute 

(physical-contact chopping-board))))) 

Figure 5: Action frames corresponding to two actions 
from the script shown in fig. 4. 

described in this paper. We are still debating the con- 
venience of using Schank’s primitives to describe every 
action. Also, action frames need to be augmented by 
incorporating at least visual elements, as in (Kalita 
1991), and time references, possibly using Allen’s in- 
terval algebra, (Allen 1984). 

Using Action Frames Obtained From a 
Script 

From the examples shown above, it is clear that lin- 
guistic descriptions of actions obtained from scripts do 
not normally include detailed information about the 
position, attitude, and movement of the persons and 
objects in the scene. Linguistic accounts of actions nor- 
mally describe only the essential changes in the scene, 
but not the implications of those changes. 

Therefore, to use information from scripts it is nec- 
essary to have an inference mechanism capable of ex- 
tracting the needed details from the action frames. In 
particular, to use the action frames generated from the 
TV script in the SmartCam domain, it was necessary 
to implement a simple inference system. It is impor- 
tant to make clear that our inference system is ex- 

tremely simple and designed only to meet the demands 
of our particular domain. The system was designed 
to infer position and movement information about hu- 
man beings’ hands, and physical contact and proximity 
among objects. 

The inference system is based on Rieger’s inference 
system for Schank’s conceptualizations, (Rieger III 
1975). The inferred action frames are sub-actions, or 
instrument actions of the actions from which they are 
produced. To guarantee termination in a fast time, 
the inference rules are applied in a pre-determined se- 
quence, in a l-pass algorithm. 

As a typical case, the system uses as its input the 
action frame corresponding to the sentence ’ ‘chef 
wraps chicken with a plastic bag’ ’ (as shown in 
fig. 5) and deduces that the chef’s hands are close to 
the chicken. The appendix depicts a more complex 
example where from the action of pounding the sys- 
tem obtains the fact that the hands are close to the 
chopping board. From the PROPEL action frame shown 
in fig. 5, the inference system deduces some contact 
relations between some objects, which imply physical 
proximity. 

The SmartCam’s inference system is certainly very 
simple and works only for some scripts. However, the 
ability of approximate models to handle inaccurate in- 
formation helps the system to avoid becoming useless 
in the case of wrong inferences. For instance, in the 
“pounding” example, only one of the hands is in fact 
close to the chopping board: the hand which is grasp- 
ing the meat mallet is about 1 foot from the board. 
But, as we have seen above, such errors in positioning 
are admissible in the approximate world model frame- 
work. 

etermining the Onset of Actions 

In the examples above, the information from the script 
was represented and augmented by simple inference 
procedures. However, to use script information it is 
necessary to “align” the action frames with the on- 
going action, that is, the vision-based system need to 
recognize which action is happening in any given mo- 
ment in time. 

For the work presented here we have relied on man- 
ual alignment of the action frames to the events in the 
scene. All the results shown in this paper use a timed 
script, an extension of the script of fig. 4 which includes 
information about when each of the action is happen- 
ing. This is simplified by the fact that the we are using 
the simulated version of the SmartCams where the vi- 
sual data is pre-recorded, enabling manual annotation. 

The problem of visual recognition of actions is also a 
current object of our research. The alignment problem 
mentioned above can be viewed as a sub-problem of the 
general action recognition problem where the order of 
the actions is known in advance. 
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SmartCams in Action 
The current version of our SmartCams handles three 
types of framing (close-ups, medium close shots, 
medium shots) for a scenario consisting of the chef 
and about ten objects. All the results obtained so 
far employ only very simple vision routines similar to 
“

extract-narrowest-moving-blob

” 

7 based on move- 
ment detection by frame differencing. 

Figure 6 shows typical framing results obtained by 
the system. The leftmost column of fig. 6 displays some 
frames generated in response to the call “

close-up 

chef

” 

. The center column of fig. 6 contains another 
sequence of frames, showing the images provided by 
the SmartCam tasked to provide “

close-up 

hands

”

. 

The rightmost column of fig. 6 is the response 
to a call for a “

close-up 

hands

”

. 

In this situa- 
tion, the action “

chef 

pounds the chicken with a 
meat-mallet 2 ) is happening. As shown above, this 
action determines that the hands must be close to the 
chopping board. This information is used by the sys- 
tem to initialize expectations for the hands in the be- 
ginning of the action (both in terms of position and 
movement), enabling the tracking system to detect the 
hands

’ 

position based solely in movement information. 
One 80-second long video sequence is shown in the 

videotape distributed with these proceedings. It is also 
available on the WWW-web at: 
http://www-white.media.mit.edu/ 

vismod/demos/smartcas/smartcams.html 
The web-site also contains another performance of the 
same script where the chef is wearing glasses, and the 
actions are performed in a faster speed. The sequences 
were obtained by requesting the SmartCams to per- 
form specific shots (displayed as subtitles); the cuts be- 
tween cameras were selected manually. Both sequences 
clearly show that acceptable results can be obtained by 
our SmartCams in spite of the simplicity of the vision 
routines employed. 

Conclusion 
Approximate world models made the development of 
SmartCams feasible. Using the information about ac- 
tions from the script of the show and the control in- 
formation in the approximate world model, it has been 
possible to employ simple, fast - sometimes unreliable 
- vision routines to obtain the information required 
by TV framing. 

One of the major accomplishments of our research 
is the end-to-end implementation of a system able to 
deal with multiple levels of information and process- 
ing. A SmartCam is able to use contextual informa- 
tion about the world from the text of a TV script, and 
to represent the information in a suitable format (ap- 
proximate world models); updating the world model 
is accomplished through visual tracking, and the ap- 
proximate world models are used in the selection and 
control of vision routines, whose outputs control the 
movement of a simulated robotic camera. The system 

Figure 6: Responses to the calls “close-up chef”, 
“close-up hands”, and “close-up hands”. Refer to back- 
ground objects to verify the amount of correction needed 
to answer those calls appropriately. The grey areas to the 
right of the last frames of the first “close-up hands” se- 
quence correspond to areas outside of the field of view of 
the wide-angle image sequence used by the simulator. 

processes real image sequences with a considerable de- 
gree of complexity, runs only one order of magnitude 
slower than real time, and produces an output of good 
quality in terms of TV standards. 
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Appendix References 
Inferences in the “Pounding” Example 

The following is a manually commented printout of the 
action frames generated by the SmartCam’s inference 
system, using as input the action frame corresponding 
to the sentence "chef pounds the chicken with a 
meat-mallet ’ ‘. Only the relevant inferences are 
shown from about 80 action frames actually generated. 
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is sensitive to the size of the objects, avoiding its use 
if one of the objects is larger than the others. 
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0 : action frame obtained from the script 
(propel 
(actor chef) 
(object meat-mallet) 
jto<location ?in-contact)) 
(from (location ?not-in-contact)) 
(result 
(change (object chicken) 
(from (flatness ?X)) 
(to (flatness (greater ?X))))) 

(instrument 
(have 
(object ?in-contact) 
(attribute (phys-cant chicken)))) 

(instrument 
(have 
(object ?not-in-contact) 
(attribute (negation (phys-cant chicken))))) 

(instrument 
(have 
(object chicken) 
(attribute (phys-cant chopping-board))))) 

1 : propelling an object (0) requires grasping 
(grasp 
(actor chef) 
(object meat-mallet) 
(to hands)) 

2 : grasping (1) requires physical-contact 
(have 
(object hands) 
(attribute (phys-cant meat-mallet))) 

3 : physical-contact (0) implies proximity 
(have 
(object ?in-contact) 
(attribute (proximity chicken))) 

4 : physical-contact (0) implies proximity 
(have 
(object chicken) 
(attribute (proximity chopping-board))) 

5 : physical-contact (2) Implies proximity 
(have 
(object hands) 
(attribute (proximity meat-mallet))) 

6 : the end of propelling (0) implies proximity 
(have 
(object meat-mallet) 
(attribute (proximity ?in-contact))) 

7 : transitiveness of proximity, (3) and (6) 
(have 
(object chicken) 
(attribute (proximity meat-mallet))) 

8 : transitiveness of proximity, (4) and (7) 
(have 
(object chopping-board) 
(attribute (proximity meat-mallet))) 

9 : transitiveness of proximity. (5) and (8) 
(have 
(object chopping-board) 
(attribute (proximity hands))) 
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