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Abstract 

The goals of situated agents generally do not spec- 
ify particular objects: they require only that some 
suitable object should be chosen and manipulated 
(e.g. any red block). Situated agents engaged in de- 
ictic reference grounding, however, may well track a 
chosen referent object with such fixity of purpose that 
an unchosen object may be regarded as an obstacle 
even though it satisfies the agent’s goals. In earlier 
work this problem was bridged by hand-coding. This 
paper lifts the problem to the symbol level, endow- 
ing agents with perceptual referent selection actions 
and performing those actions as required to allow or 
disallow opportunistic re-selection of referents. Our 
work preserves the ability of situated agents to find 
and track specific objects, adds an ability to automat- 
ically exploit the opportunities allowed by nonspecific 
references, and provides a starting point for studying 
how much opportunistic perception is appropriate. 

Introduction 
If an artificial agent is to interact with real objects, 
associations between references inside the agent and 
objects outside the agent must be maintained by the 
agent itself. To solve this basic problem, (Agre 1988) 
devised PENGI, which showed how to ground and ma- 
nipulate indexical-functional references (IFR) . 

Subsequently, (Schoppers&Shu 1990) built the ba- 
sic IFR capabilities into an execution engine for a 
symbolic plan representation, and reported that the 
plan’s execution-time behavior was not what they had 
wished. They gave the agent a goal to stack any red 
block on any blue block. After waiting for the agent to 
find red and blue blocks, they then put a different red 
block on the blue block chosen by the agent. Instead 
of recognizing this as a serendipitous achievement of 
its goal, the agent put down its chosen red block, re- 
moved the unwanted red block, and then resumed the 
activity of placing its chosen red block atop the blue 
block. This behavior was of course appropriate for the 
agent’s construction: the agent was designed to use all 

variables as vehicles for indexical-functional references, 
and to ground each such reference in any one suitable 
object, permanently. Such grounding corresponds to 
what might be expected if the agent were given an 
instruction using a definite noun phrase: “Put the 
(whichever) red block you see first on the (whichever) 
blue block you see first”. But because the references 
associated with the plan’s variables were initially un- 
grounded, it was easy to want behavior appropriate to 
a nonspecific indefinite noun phrase (“Put a red block 
on a blue block”). 

The foregoing analysis moves the problem into a lin- 
guistic realm where there are many varieties of refer- 
ence, with IFR being only one special case. IFR hap- 
pens to be basic to the tracking of physical objects, 
but is relatively rare in statements of things to be ac- 
complished. Usually, any suitable object will do. Even 
when the language of an instruction identifies a specific 
object, this often occurs not because that one object 
must be used, but because the speaker believes one 
such object to be especially convenient. (Consider the 
written assembly instruction “With the Phillips screw- 
driver, . ..” when the reader has several but was asked 
to fetch one in previous instructions.) Thus, the prob- 
lem is that there remains a large gap to be bridged 
between implemented reference grounding capabilities 
(currently for IFR only) and the varieties of object 
reference available to humans when expressing desired 
behavior. If we are to produce agents capable of effi- 
ciently carrying out human instructions, whether ver- 
bal or programmed, we must find ways to make agents 
more responsive to the variety of object references used 
by humans. Such responsiveness must be provided 
both in instruction understanding and in instruction 
enactment. 

It might be argued that PENGI, by using one marker 
to track the bee believed to be closest to the penguin 
and a second marker to compare other candidate bees, 
went beyond enactment of references of the form “that 
bee” to enact identification of “the nearest bee”. While 

Environment 1153 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



true, this was accomplished by hand-coding a specific 
defensive behavior, where we wish to devise a mecha- 
nism that can be parameterized to allow an automatic 
choice from a variety of reference types. 

The present paper is concerned with augmenting the 
varieties of reference that can be enucted by situated 
agents; it is not a Natural Language paper. We as- 
sume the existence of a Natural Language component 
capable of maintaining a discourse model, of resolving 
co-references, and of deciding what kind of reference 
grounding behavior is implied by received instructions. 
In the next section, where we are obliged to define a few 
terms for the sake of describing certain implemented 
capabilities, it is merely an accident that the terms we 
find most useful come from the domain of NL research. 

In the next section we show that the kind of ref- 
erence used in a goal restricts the range of situations 
that satisfy the goal. Then, since nonspecific indefinite 
reference is common in goals, we describe how we co- 
opted mechanisms for grounding IFR, to make them 
produce behavior appropriate to nonspecific indefinite 
references. As a result, our agent can behave sensibly 
when given goals combining nonspecific indefinite ref- 
erences with deictic references (“See to it that there’s 
a red block on that blue block.“) 

Defining the Problem 
Varieties of Reference 
In English, noun phrases and their reference mean- 
ings can be distinguished in many ways, and we list 
a few distinctions below. Our objective in this and 
the next subsections is to exhibit some of the most 
obvious ways in which an artificial agent’s behavior 
must be influenced by some basic varieties of reference 
that can occur in instructions. Our definitions are pur- 
posely ad hoc, i.e. for the sake of succintly describing 
what we have implemented we are making some dis- 
tinctions in slighly different ways than linguists would. 
See e.g. (Quirk et al 1985) for a more complete classi- 
fication. 
e Referential noun phrases (NPs) expect the agent to 

identify the referent using either contextual or gen- 
eral knowledge. Since we are working on grounding 
references in physical objects, and since attributions 
occur at the linguistic level, we consider only refer- 
ential NPs here. 

e In a specific reference - and under the restriction 
to bounded physical objects - the instructor has a 
particular object “in mind”. Only in the specific case 
can the speaker be expected to answer the question, 
“Who/what is it?” 

o A deictic reference depends for its grounding on the 
instructor’s place in space and time, and is used only 
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when the instructor expects the referent to be imme- 
diately identifiable in context. Indexicals are deictic 
( “I”, “tomorrow”). 
The distinction between definite and indefinite NPs 
is syntactic, based on the use of such determiners 
as “the” and “a”. However, a speaker using a defi- 
nite NP expects one referent to be uniquely relevant, 
though perhaps only in some later context, e.g. “Go 
into the house and pick up the amulet [you will find 
there]” (Webber 1991). 
Demonstrative NPs are indicated syntactically by 
the presence of the determiners “this”, “that”, 
“these” , or “those” . The associated references are 
usually specific, definite, and deictic. 

Specific reference is especially hard to isolate. For 
example, the NP “Olaf Palme’s assassin” refers (per- 
haps) to a common knowledge entity, but no-one knows 
who that person is. Similarly, there is room to debate 
the specificity of superlatives such as “the biggest ap- 
ple you can find,” of ordinals such as “the first apple 
you touch,” and of collectives such as “the 10,000 men 
around the castle.” Since this paper is concerned with 
encoding and enacting plans that can identify and ma- 
nipulate only singular physical objects, we gladly side- 
step such complexities. To simplify the rest of this 
paper we propose that superlative, ordinal, and sim- 
ilar references which are not immediately groundable 
but may be made so in the future (including some func- 
tionals) be considered nonspecific references. 

The distinctions just elaborated give rise to the fol- 
lowing classification of referential, non-generic, non- 
coreferring, references to singular, physical, bounded, 
non-collective, objects. We include demonstrative NPs 
under deictic references. 

nonspecific, indefinite: “Pick up a red block.” 
nonspecific, definite, nondeictic: “Identify the heav- 
iest Mock [on the table]” (when the blocks are oth- 
erwise indistinguishable). “Olaf Palme’s assassin.” 
nonspecific, definite, deictic: “Pick up the block clos- 
est to your hand” (when the instructor can’t see it). 
specific, indefinite: “A red block just fell off the ta- 
ble” (while the instructor is looking at it). 
specific, definite, nondeictic: “Pick up the red b2ock 
on the floor.” 
specific, definite, deictic: “Pick up the block I’m 
pointing at. ” “Pick up that block.” 

Varieties of Serendipity 

Now let us consider what behavior we expect to see 
from an intelligent embedded agent when it is given 
instructions specifying goals (desired states) involving 
the kinds of reference listed above. 



First, let us give the agent a goal to “Obtain a state 
in which a red block is resting on a blue block” (non- 
specific indefinite reference). This goal is satisfied by 
any world state in which any red block is on any blue 
block; the agent need do no more than scan the table. 

Next, let us consider the use of what we have decided 
to call nonspecific definite reference. Strictly speak- 
ing, only the object being “identified” will satisfy the 
request, but by definition, the speaker does not know 
which object that is and cannot verify that exactly 
the right one has been found (without executing her 
own instruction and assuming that the world has not 
changed)! That being the case, nonspecific definite in- 
structions must be meant either as 
1. requests to identify objects (e.g. find Olaf Palme’s 

assassin) to save the instructor some time; or as 
2. abstractions (e.g. retrieve the astronaut that just 

fell off the Shuttle, who it is doesn’t matter); or as 
3. simplifications that only approximate the instruc- 

tor’s real wishes (e.g. bring the next person in line, 
assuming no unruly behavior in the queue; or, use 
the first X you find, instead of “be quick”). 

In all cases, the definiteness of the reference serves only 
to communicate the instructor’s (possibly false) expec- 
tation that one identifiable object is “the right one”. 
Beyond that, it makes no difference to the desired be- 
havior - the agent should find any person who is Olaf 
Palme’s assassin, retrieve any astronaut who fell off 
the station, and bring whichever person is next in line. 
Consequently, the distinction between nonspecific in- 
definite and nonspecific definite instructions is not im- 
portant to agent implementation. 

Next, we find that specific indefinite reference can- 
not be used for posing goals. Any instruction forces the 
agent to choose objects to manipulate, but in a specific 
indefinite instruction the speaker already has specific 
objects in mind and refuses to say which objects! 

Next, let us use specific definite reference (other than 
a coreference) and give the agent a goal to “Obtain a 
situation in which that (pointing) red block is resting 
on that (pointing) blue block.” This goal is narrow: 
exactly the indicated blocks must be made to satisfy 
the goal condition, no other blocks will do. However, 
if the two indicated blocks are already in the desired 
configuration, the agent needs to do no more than look. 

Finally, instead of describing a desired situation we 
can ask the agent to perform an action, such as “Put a 
red block on a blue block”. In this case, no matter how 
many red blocks are already atop blue blocks, the agent 
is nevertheless obliged to build another such tower. 

The two major kinds of reference (nonspecific and 
specific) usable in goals, and the distinction between 
requests for conditions and requests for action, to- 

gether produce three kinds of behavior that may be 
distinguished from each other by the kinds of serendip- 
itous circumstances an embedded agent may exploit 
while performing the requested task. We distinguish 
the following cases of admissible serendipity: 
CB Nonspecific serendipity. The agent may satisfy the 

goal using any suitable objects, and is not required 
to act if suitable objects already satisfy the goal. 

e Specific serendipity. The agent may satisfy the goal 
using only the objects specified by the references in- 
cluded as part of the goal, but is not required to act 
if those specific objects already satisfy the goal. 

a No serendipity. The agent must not exploit the pres- 
ence of suitable objects that already satisfy the goal. 

Problem Statement 
The three kinds of serendipity also allow us to suc- 
cinctly describe the problem with implementations of 
indexical-functional reference (IFR), as follows: 
e IFR is a form of specific definite reference which nat- 

urally delivers only specific serendipity, and which 
can be made to deliver nonspecific serendipity only 
with considerable effort. 
Naive attempts to make implementations of IFR 
deliver nonspecific serendipity result in referential 
thrashing, i.e. an agent too confused about object 
selection to get anything done. 

Our objective is to use explicit representations, not 
hand-coding, to specify the behavior of embedded 
agents, including behavior involving interaction with 
several indistinguishable objects at the same time. 
Two problems must be solved to attain our objective. 
1. Symbolic plans using IFR must become capable of 

noticing and exploiting nonspecific serendipity. 
2. Symbolic plan representations must become capable 

of expressing a demand for specific serendipity. 
The second problem may be solvable by building on 
the distinction between rigid and nonrigid designators, 
as has been done in e.g. (Appelt 1982). In this pa- 
per we address the first problem. In particular, we 
wish to define general, domain-independent notations 
and plan execution machinery, such that the execution- 
time specificity of each of the agent’s references can be 
controlled by domain-specific knowledge (which knowl- 
edge may therefore be regarded as a parameter to the 
agent’s re-usable algorithms). 

The Experimental Setup 
Before we describe our work, the reader must under- 
stand some details of the plan encoding we worked 
with. Our agent consisted of a simulated arm, some 
simulated sensors, and a repetitively executed decision 
tree, all operating in a world of simulated blocks. The 
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on(A,B) ? 
T) NO-OP 
F) box(B) 2 

T) clear(B) ? 
. T) holding(A) ? 
. . T) over(B) ? 
. . . T) LOWER 
. . . F) at(top) ? 
. . . T) LATERAL 
. . . F) RAISE 
. . F) [subplan to GRASP A] 
. F) [subplan to CLEAROFF B] 
F) FAIL 

Figure 1: Decision Tree Schema for Block Stacking. 

simulated arm and camera moved horizontally and ver- 
tically, in increments that were much smaller than the 
size of a block. An example decision tree is shown 
in Figure 1. We refer to each traversal of the decision 
tree a~ a execution cycle. Blocks had names and colors, 
and could be indistinguishable. The human observer 
could move blocks about in the simulated world, thus 
bringing good or bad luck at will. 

Notice that the given decision tree is a schema con- 
taining unbound variables (in the Prolog convention 
logical variables begin with an upper case letter). This 
was important in allowing us to invoke the plan (tree) 
with whatever parameters we wanted. (The parame- 
ters finally became records that contained two position 
vectors, one for predicted/believed position and one for 
perceived/known position; lack of information was in- 
dicated as a zero vector.) 

Following (Schoppers&Shu 1990) we regarded object 
descriptions as goals. When we wanted a plan to put 
any red sphere on any blue box, we implemented a plan 
that achieved color(X,red) A shape(X,sphere) A 
shape(Y,box) A on(X,Y) and we expected the agent 
to find suitable objects for X and Y to refer to. 

This view of descriptions is not as strange as it may 
seem at first. If we were to augment the agent’s ca- 
pabilities by introducing a painting action, the above 
goal might induce the agent to paint things, a poten- 
tially appropriate behavior. At the same time, one 
way of satisfying a color goal for a nonspecific indef- 
inite object is to (physically) look for an object that 
already has the desired color; indeed, that is the only 
way to achieve a color goal when there is no painting 
action. Thus we came to regard painting and scanning 
as alternative ways of achieving color goals. 

At the start of the agent’s activities, the agent knew 
nothing at all about the state of the (simulated) world. 

In particular, when the plan specified that some block 
should be moved, the agent had first to find a block to 
move. To solve this problem we implemented a camera 
movement procedure that systematically scanned the 
table until the camera viewed a block. This whole 
scanning procedure was controlled by means of camera 
positioning coordinates. 

As a result, the executing plan could refer to objects 
by knowing in what direction the camera should be 
pointed in order to make the object appear in the cam- 
era’s field of view. That directional knowledge allowed 
the agent to verify visible properties of objects when- 
ever the property verification could be implemented 
as a test on the camera image. To test relative posi- 
tions of blocks, however, or to test the position of the 
robot arm relative to a block, it was necessary to know 
both the direction and the range to a block, i.e. the 
block’s position in three dimensions. Thus, “referring 
to an object” came to mean “truly knowing the ob- 
ject’s current 3D position” (versus having a belief or 
expectation). The required position information was 
stored (and updated) in records that were passed as 
parameters to the decision tree. Thus we could define 
a predicate known located(X) to test that variable 
X was bound to a record containing visually verified in- 
formation about current position. We also defined be- 
lieved located(X) to test that X’s record contained 
an ezpectution of current position. From there we could 
define actions that achieved known located(X) (see 
next section). 

Referent Selection Actions 
(Cohen 1981) examined dialogues in which speakers at- 
tempted to get hearers to identify specific objects, and 
argued for extending a plan-based theory of commu- 
nication with explicit actions representing the hearer’s 
identification of objects. The speaker would adopt a 
goal of getting the hearer to identify something, and 
would communicate that goal to the hearer, who would 
then try to achieve the goal by means of an IDENTIFY 
action. Our block-stacking agent’s decision tree both 
tests object identification goals and achieves them with 
IDENTIFY-like actions. However, we have found it use- 
ful to endow our agent with many such actions, most 
of which come down to a visual search that is special- 
ized to exploit known visual features of the object to 
be identified. Additionally, many of our “referent se- 
lection actions” exploit positional expectations. 

Candidate referents must be found for each plan (ob- 
ject) variable before any of the conditions mentioning 
that variable can be tested. The very first thing most 
plans must do is cause the performance of perceptual 
searching activities to locate candidate objects. Once 
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candidate objects are found, plan execution can track 
them and apply perceptual tests to them. But clearly, 
if objects are selected only once, at the beginning of 
plan execution, and are tracked thereafter, the result- 
ing behavior can exploit specific serendipity at best. To 
achieve nonspecific serendipity it must be possible to 
select new objects for references that already have ref- 
erents. The cyclic execution paradigm makes this very 
easy by providing the opportunity to revise all referent 
selections once per execution cycle, and our definition 
of known located(X) plays the role of having to be 
constantly reachieved (because a remembered or pre- 
dicted location is not a known location). The main 
challenge is to determine a suitable set of referent se- 
lection and reselection actions, and to integrate those 
actions with the existing tracking machinery. 

Identifying Efficiently 
There are many efficient ways to locate and identify 
objects. For example, given a goal to put a red block 
on a blue block, you will first look for either a red or 
blue block. If the perceptual apparatus can be primed 
to look for colors, this is already much more efficient 
than looking for any object at all. Now suppose you 
have found a blue block. Given that you have been 
asked to put a red block on top of it, the natural thing 
to do is: look for a red block on top of the blue block 
you just found. This behavior is efficient because it 
tells the perceptual system exactly where to look, and 
also because finding a red block there would allow you 
to consider yourself finished with the task. 

The preceding paragraph implicitly states the 
heuristic that, to find referents for nonspecific indef- 
inite references, it is efficient to limit perception by 
using knowledge of what’s wanted, as indicated by 
current plan goals. This heuristic is the basis of a 
large body of work on task-directed perception. We 
are less concerned with the details of perception than 
with managing perception to support opportunistic 
task performance. 

In our simulated domain we found that there were 
numerous goals that suggested perceptually efficient 
referent selection actions. For example: 
on(X,Y) To find a referent for X when Y has a refer- 

ent, look just above the location of Y. 
on(X,Y) To find a referent for Y when X has a refer- 

ent, look just below the location of X. 
over(X) To find a referent for X (such that the agent’s 

hand is over it), look at the agent’s hand and move 
the camera in a vertical line downwards. 

clear(X) To find a referent for X, start the camera at 
the left end of the table and follow the “skyline”. 

holding(X) To find a referent for X, look at the lo- 

cation of the agent’s hand, which is always known. 
Similarly for around(X) . 

shape(X,box) To find a referent for X, look for any 
rectangular thing (similarly for other shapes). 

color(X,red) To find a referent for X, look for any 
red thing (similarly for other colors). 

For the first few goals above, referents can be found ef- 
ficiently because the goals are prepositions that iden- 
tify a direction vector. The more general source of 
efficiency, as evidenced by the last few goals, is ex- 
ploitation of capabilities of the perceptual system it- 
self, e.g. the ability to locate only certain colors or 
shapes. The capability to rapidly look at specified lines 
or locations is responsible for the usefulness of spatial 
prepositions in referent selection. 

Some Consequences 

Because of the association between particular goals and 
particular actions for finding referents efficiently, we 
now give referent selection actions postconditions in- 
dicating their special suitability. For example, under 
a standard approach to action representation the ac- 
tion for visually locating red things should have the 
postconditions known color(X,red) A known lo- 
cated(X), where known located(X) is as defined in 
the previous section: perceptually finding a red object 
also finds the object’s position. But these postcon- 
ditions would represent that the identify-a-red-thing 
action is also useful for locating nondescript objects, 
leading to inefficient behavior when the plan wants 
any nondescript object and all the available objects 
are blue. Indeed, many color-seeking, shape-seeking, 
and texture-seeking visual searches might be tried in 
vain. On the other hand, there are efficient ways to find 
nondescript objects. Consequently our representation 
of the identify-a-red-thing action omits the known 
located(X) postcondition. Conversely, even though 
an identify-anything action can eventually find a red 
object if there is one, our representation of identify- 
anything actions has no known color(X,red) post- 
condition. Thus, postconditions now have less to do 
with actual effects than with the utility of the described 
action. (We recognize that this is a poor substitute for 
explicit knowledge about the utility of actions, see the 
“Future Work” section.) 

When a plan variable occurs in several goals, the 
referent selection actions associated with any of those 
goals might be used to find a referent. For exam- 
ple, when the plan’s goal is a conjunction such as 
color(X,red) A shape(X,sphere) A shape(Y,box) 
A on(X,Y) there are two referent selection actions 
that can be used immediately to find a referent for X 
(using color and shape as guides) after which there are 
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also two referent selection actions for Y (using shape 
and the location under X). 

To ensure that every object variable indexes at least 
one referent selection action, all goals are enlarged with 
additional conjuncts known located(Xi), one per ob- 
ject variable Xi appearing in the goal. As a result, 
most referents can be selected with both goal-specific 
referent selection actions and a general visual search.l 

Since the known located(Xi) conjuncts need con- 
stantly to be reachieved, every execution cycle offers 
an opportunity to change the object being referred to 
by Xi. To make the reselection, all of the goals and 
subgoals in which Xi appeared during the previous ex- 
ecution cycle may provide useful information. For ex- 
ample, on(X,Y) is achieved by LOWERING the hand 
when holding(X), which is therefore a subgoal; this 
subgoal is achieved by GRASPING when around(X), 
which is therefore a subsubgoal; this subsubgoal is 
achieved by lowering when clear(X), and so on. To 
achieve known located(X) by possibly choosing a 
different X, it is useful to look at what’s already on 
Y, at what’s already in the agent’s hand, and at the 
“sky-line” of the current block configuration. 

This uniform relevance of everything in the goal 
stack was especially appreciated in the case of the goal 
holding(X), whose associated referent selection ac- 
tion caused X to refer to “the-thing-I’m-holding” - a 
reference that is both indexical and functional. 

Indeed, when the referential guidance provided by 
goals is taken seriously, the meaning of a reference 
comes to depend on which goals apply to the referent. 
Hence the meanings of our references change dynami- 
cally as the agent’s goals change, and the semantics of 
our references is compositional.2 

Recovering Opportunistic Behavior 
Finally we come to the issue of integrating referent 
(re)selection with deictic tracking. The normal reac- 
tive execution cycle is constantly re-achieving known 
located(Xi) for each Xi. The first referent selection 
action that is relevant and that succeeds in finding a 
referent for the given Xi will have satisfied the goal, 

‘It does not matter that the same variable can ap- 
pear in many known located(Xi) conjuncts. For each 
Xi, the first known located(Xi) conjunct encountered 
in any given execution cycle initiates perceptual activ- 
ity. This achieves known located(Xi) and forestalls re- 
achievement for the rest of that execution cycle. An equiv- 
alent approach could attach a known located(Xi) con- 
junct only to the goal at the root of the subtree containing 
Xi. 

2The semantics of (Agre 1988)‘s deictic representation 
was not compositional, i.e. there was no semantic relation- 
ship between the notations “the-thing-I’m-holding” and 
“‘the-red-thing-I’m-holding”. 

thus preempting the use of other referent selection ac- 
tions (for the same reference and execution cycle). This 
means that we have to be careful with the order in 
which referent selection actions are tried: 
e As soon as Xi becomes grounded, deictic tracking 

can maintain the grounding, but that produces ex- 
actly the single-minded tracking we are mitigating. 
To have any effect, goal-related referent selection ac- 
tions must be tried before tracking. They can then 
look for objects in places that will cause the agent 
to notice nonspecific serendipities. A serendipitous 
object will ground the reference and preempt deictic 
tracking; otherwise deictic tracking can continue. 

e Similarly, general visual scanning can always find a 
candidate object for any reference. If it were tried 
before tracking, then tracking would never be used. 
Hence, such general backup methods must be tried 
only after tracking has failed. 

Thus we were obliged to try referent selection actions 
in the specific order 1) goal-related referent selection 
actions, 2) tracking (or, re-perceiving the referent of 
the preceding execution cycle), and 3) general, goal- 
independent visual searching. 

Nonspecific indefinite reference, and the correspond- 
ing ability to exploit nonspecific serendipity, resulted 
from trying all the relevant actions in the order just 
stated, until some action succeeded in finding a refer- 
ent. Specific definite (deictic) reference could be recov- 
ered by disabling the use of (category 1) goal-related 
referent selection actions. Disabling the use of (2) de- 
ictic tracking produced referential thrashing; disabling 
the use of (3) goal-independent visual searching left the 
agent unable to find anything. 

Summary and Future Work 
In this work we have shown that the type of refer- 
ence used in specifying agent behavior affects the kinds 
of serendipities the agent may exploit. We have har- 
nassed IFR to provide two additional kinds of situ- 
ated object reference, namely specific definite refer- 
ence and nonspecific indefinite reference, as different 
points on a continuum defined by the presence or ab- 
sence of three kinds of referent selection actions. The 
three kinds of referent selection actions are 1) goal- 
related, which can detect that goals have been satis- 
fied by objects other than those chosen by the agent; 
2) tracking, which provides referential stability; and 
3) general visual searches, which locate objects when 
none are known. 

Our work raises many performance issues. An agent 
cannot always afford to re-perceive, in each execution 
cycle, every object it is already interacting with, let 
alone looking for serendipitous objects. There is a 
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small body of work discussing when it is worth-while 
for agents to engage in sensing (Abramson 1993; Chris- 
man&Simmons 1991; Dean et al 1990; Doyle et al 1989; 
Draper et al 1994; Hansen 1994). Our own previous 
work (&hoppers 1995) made sensing intermittent and 
dependent on environmental dynamics. Our present 
implementation side-steps these issues by a) treating 
action descriptions as heuristics, and making postcon- 
ditions encode our subjective judgments about the util- 
ity of actions for specific goals3; and b) restricting 
our goal-related referent selection actions to look only 
for serendipities involving previously selected objects. 
Thus, our agent will notice if another block is put 
down on one of the blocks the agent was using, but 
will not notice if someone builds a tower that satis- 
fies the agent’s goals by using only blocks the agent 
doesn’t care about. In future work we intend to make 
the agent more conscious of the likelihoods that partic- 
ular goals will be achieved serendipitously, of the time 
costs of perceiving those particular serendipities, and 
of the time costs of achieving the goals deliberately. 
Performing, in each execution cycle, the perception or 
action process having the highest probability of goal 
achievement per unit time cost, will then yield opti- 
mally efficient behavior (Simon&Kadane 1975). Since 
looking above a block already in the field of view is 
almost free, while looking in a random place for a par- 
ticular block arrangement is both expensive and prob- 
ably futile, we expect the resulting behavior to be very 
similar to what we have now. 

Other relevant issues include: 
When the agent must find objects to ground sev- 
eral references, the order in which references are 
grounded may affect the agent’s efficiency. 
There may be useful ways to order the referent se- 
lection actions applicable at a given time. 
There are choices to be made between: physically 
moving lots of things around to find an object that 
perfectly satisfies a description, versus purely per- 
ceptual searching for a perfect object, versus finding 
an object that is nearly right and then modifying it, 
versus just building a suitable object. 
Agents could be made very sophisticated about what 
serendipities they deem likely at any given time, and 
how much effort to spend on looking for them. 

More long-range possibilities include, finding ways to 
mentally distinguish a selected referent (e.g. you can 
track one pigeon among a flock by using a distinctive 
feature); finding ways to m&e an indistinguishable ref- 

3R,eaders who feel that an effect is an effect no matter 
how expensive the action is, might yet hesitate to represent 
an effect having very low probability, and probability is 
merely the other factor in low utility. 

erent distinguishable; how to handle plural references; 
and how to efficiently spot perceptually complex ref- 
erents (since the predicate block(X) should automat- 
ically lead to a search for appropriate features such as 
lines and angles). 
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