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Abstract 

We clevelop a qualitative framework for temporal 
reasoning with incomplete information that features 
a modeling language based on rules and a seman- 
tics based on infinitesimal probabilities. The frame- 
work relates logical and probabilistical models, and 
accommodates in a natural way features that, have 
been found problematic in other models like non- 
determinism, action qualifications, parallel actions, 
and abduction to actions and fluents. 

Introduction 
Logic, probabilities and dynamic systems are standard 
frameworks for reasoning with time but are not always 
good modeling languages. This has led in recent years 
to the development8 of alternative languages, more suit- 
able for modeling, that can be thought, of as one of 
t,wo types. Translation. languages, on the one hand, 
aim to provide ways for specifying logical, probabilistic 
and determinist,ic dynamic systems by means of shorter 
and more intuitive descriptions (e.g., (Pednault 1989; 
Dean & Kanazawa 1989; Gelfond & Lifschitz 1993)). 
Default languages, on the other, aim to extend classi- 
ca.1 logic with the ability to express the expected effects 
of actions and the ecpecfed evolution of fluents (e.g. 
(McCarthy 1986)). 

In this paper we develop a model for temporal rea- 
soning that is hybrid in the sense that it features 
a language based on defaults and a semantics based 
on ‘approximate’ Markov Processes. More precisely, 
the user describes the dynamics of the domain of in- 
terest in terms of default, rules, and the defaults get 
ma,pped into a Markov Process with probabilities re- 
placed by order-of-magnitude a.pproximations. This 
results in a framework that, relates logical and proba- 
bilistic models and accommodates in a natural way fea- 
tures that have been found problematic in other mod- 
els like non-determinism, action qualifications, parallel 
actions, and abduction to both fluents and actions. 

*Mailing address from TJS and Europe: Hector Geffner, 
Bamco CC3 144-00, P.O.BOX 02-5322, Miami Florida 
33102-5.322, USA. E-mail: hector@usb.ve. 
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Dynamic Systems 
Dynamic systems can often modeled by means of a 
transition function f that maps states si and inputs ua 
into unique successor states si+.l = f( si , zli) (Padulo Rr 
Arbib 1974; Dean & Wellman 1991).l The language for 
actions developed by Gelfond and Lifschitz (1993) is a 
language for specifying systems of this sort by means 
of rules of the form : 

A causes B if Cy (1) 

Rules such as these are understood as constraints over 
the function f that must map states sa where B holds 
into states s;+l where C holds when the input u,i is 
A. Under the assumption that, B and c are conjunc- 
tions of literals, and that all atoms (except actions) 
persist by default, these rules determine the function f 
completely. 

The semantics of Gelfond’s and Lifschitz’s language 
is given in terms of such funct#ions. Roughly, a literal 
I,i follows from a sequence of actions ~10, Q.I, . . . and 
observations 01,02, . . . when Li is true in all the state- 
space trajectories so, sl, . . . , that are compatible with 
the rules (i.e., si+l = f( si, ai)) and the observations 
(si satisfies oi ) . 

Gelfond and Lifschitz model is not affected by the 
difficulties reported by Hanks and McDermott (1986) 
because the transition function f provides the right se- 
mantic structure for interpreting defaults in this con- 
text. Persistence defaults - which are present in the 
model even if they are not encoded explicitly by means 
of rules - are regarded constraints on the possible 
transitions from one state to the immediate successor 
states, indepen*dent of both future and past, and th,e 
actual observations. Other models based on a similar 
idea are Baker’s (1991) and Sandewall’s ( 199 1). 

Markov recesses 
The model above assumes that, the dynamics of the 
system is deterministic in the sense that knowledge 
of the state and the inputs is sufficient to predict the 

‘This is for systems that are discrete-time, time- 
invariant and deterministic; see (Padulo & Arbib 1974). 
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future with complete certainty. For the cases where 
this assumption is not good a different class of models 
has been developed in which the state and the inputs 
predict the future behavior of the system with some 
known probability (Howard 1971). 

Formally, a state si and an input, u; determine now a 
set of possible successor states .si+l with probabilities 
P(.si+l Isi, 14,:). Then, under the assumptions that fu- 
ture inputs do not affect past, states (the causality prin- 
ciple) and that the future is independent, of the past 
given the present (Markovian assumption), the prob- 
ability of each state trajectory so, ~1, . . . , SN given a 
sequence of inputs UO, ul, . . . , UN-1 is given by the 
equation: 

P( SO) . . . , l sNI?dO, . . . , UN-l) = P(+o )-~~ P(& +l Isi, t& ) 
i= 0 

(2) 
When a set of observations 0 is obtained, this prob- 
ability is multiplied by a normalizing constant if the 
trajectory satisfies the observations, and by zero oth- 
erwise. The probability of a proposition is simply the 
sum of the probabilities of the trajectories that, make 
the proposition true. 

Models of this type, known as Markov Processes, are 
significantly more expressive than deterministic mod- 
els in which transition probabilities can only be zero 
or one. This generality comes at the price of specifying 
and rom.puting with such models. For this reason, at- 
tempts to use probabilistic dynamic models in AI have 
focused on the development of languages that trade off 
some of the expressive power of probabilistic models for 
the benefit of simple rule-based specifications (Dean Pr 
Kanazawa 1989; Hanks & McDermott 1994). 

In this paper we develop a different type of prob- 
abilistic temporal model based on rules that, may be 
adequate when exact probabilities are not needed and 
the distinction between likely and unlike consequences 
suffices. The key concepts are two: an abstraction of 
Markov Processes in which probabilities are replaced 
by their order-of-magnitude approximations and a way 
to specify systems of that sort by means of pnrtial and 
iwompletc sets of rules. We consider each idea in turn. 

Qualitative Markov Processes 

The order-of-magnitude of a probability tneasure p rel- 
ative to a small parameter c can be defined as the 
smallest hteger K(P) such that p < en(p). For exam- 
ple, if 6 = 0.2, the order-of-magnitude of pl = 0.5 and 
p2 = 0.01 are I = 0 and ~c(pz) = 2 respectively. In- 
terestingly, as shown by Spohn (19$8), as the param- 
eter c is made smaller and smaller, in the limit, the 
order-of-magnitude measures K obey a calculus given 

by the axioms:2 

(3) 
which is structurally similar to the calculus of proba- 
bilities, with products replaced by sums, sums by min- 
imizations, etc. 

Spohn refers to the K measures as degrees of surprise 
or disbelief as lower K measures stand for higher proba- 
bilities and higher K measures stand for lower probabil- 
ities. In particular, a. proposition p is deemed plausible 
if K(P) = 0 and implausible or disbelieved if KC(P) > 0. 
Since the axioms rule out two complementary propo- 
sitions from being disbelieved at the same time, p is 
accepted or believed when its negation is disbelieved, 
i.e., if I > 0. 

The appeal of Spohn’s K-calculus is that, it, combines 
the basic intuitions underlying probability theory (con- 
text dependence, conditionalization, etc.) with the no- 
tion of plain belief. The beliefs sanctioned by K func- 
tions are plain and revzsable in the sense that, p can 
be believed given q, and yet lp can believed given q 
and something else. Indeed, the funct,ion K expresses 
a preference relations on worlds in which a world 20 is 
preferred to w’ if K.(U) < K( ZU’). Frotn this point of 
view, the criterion K(lplq) > 0 for accepting p given 
q is nothing else but, an abbreviation of the standard 
condition in non-monotonic logics that require p to be 
true in all maximally preferred worlds that satisfy q 
(e.g., (Lehmann k Magidor 1988)). 

Goldszmidt and Pearl (1992) were the first to ex- 
ploit the dual connection of the K-calculus to probabil- 
ities and non-monotonic reasoning, showing how some 
problems in causal default reasoning could be solved 
by using K functions that, satisfy a stratification condi- 
tion analogous to the condition that, defines Probabilis- 
tic Bayesian Networks (Pearl 1988). They refer to K 
measures as qualitative probabilities, and to stratified 
K functions as Qualitative Bayesian Networks (Gold- 
szmidt & Darwiche 1994) 

In the same perspective, we consider in this paper 
Qualitative Markov Processes, defined as the K. func- 
tions for which the plausibility of trajectories so, . . . , 
sN given the inputs ug, . . . , UN-1 is given by the qual- 
itative version of (2): 

N-l 

K(s(), . . .,sNl?&j,. . ., UN-l) = +o)+ x ‘+i+l 1% W) 
i=o 

(4) 
The model for temporal reasoning below is a language 
for specifying systems of this sort by tneans of partial 
and incomplete sets of rules. 

‘We also assume 
unsatisfiable. 

h:(p) = 00 and ~(qlp) = 0 when p is 
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The Proposed Model 
Language 
We deal with temporal models or theories specified by 
means of three type of constructs: temporal rules, ob- 
servations, and what we call completion functions. The 
first two are familiar and their precise syntax will be 
given below. The third one is less familiar and will 
be introduced in the next section. Intuitively, rules 
will be restrictions on the possible state transitions, 
observations will be restrictions on the actual trajec- 
tories, and completion functions will be functions that 
fill out missing information to determine the plausibil- 
ity of state transitions uniquely. 

The syntax of temporal rules and observations pre- 
sumes a finite set P of time-dependent primitive propo- 
sitions (atoms) p, q, r, . . . , and a time set T given by 
the non-negative integers 0, 1, . . . . We will refer to 
the language comprised of the propositions in P closed 
under the standard propositional connectives as ,C, and 
use the symbols A, B, etc. to denote arbitrary formu- 
las in L. We will also use the symbol L to refer to 
literals in & (atoms or their negations) and -L to refer 
to their complements. 

The temporal rules are default rules of the form A - 
L saying that if A is true at time i, then by default L 
will be true at time 2’+ 1 for any i E T. Each rule has a 
priority which is represented by a non-negative integer: 
the higher the number, the higher the priority. The 
idea is that when two rules say different things about 
the same literal, the higher priority rule prevails. 

Non-deterministic rules (Sandewal 1991) are accom- 
modated by expressions of the form A --+ p(~p and are 
understood as a sh,orthand for the pair of rules A - p 
and A - lp. Non-deterministic rules express that A 
sometimes makes p true and sometimes makes p false 
(e.g., dropped-cup - breaksllbreaks). [Jnless other- 
wise specified, the priority of rules is assumed to be 
zero (lowest priority). 

Finally, the observations are formulas that have 
been observed to be true at some specific time points. 
We use the notation p(i) to express that0 the primitive 
proposition p is true at time i and call such expres- 
sions temporal propositions. We refer to the language 
that results from closing such temporal propositions 
under the standard propositional connectives as LT. 
& will thus be the language of the observations and 
the conclusions that we may want to draw from them. 
We will call the formulas in CT the temporal formSu- 
Zas. Thus, if CL, b and c are primitive propositions 
u(2) V a(3) > c(4) V lb( 1) will be a valid temporal for- 
mula and hence a possible conclusion or observation. 

Semantics 

A set of temporal rules augmented with a comple- 
tion function will determine one specific Qualitative 
Markov Process represented by a particular K func- 
tion. A conclusion C will then follow from a set of 
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observations 0 if K(+IO) > 0. We make this precise 
by defining the states, trajectories, and the form of the 
K function. 

The states are truth assignments to the primitive 
propositions that determine the truth value of all for- 
mulas in Z,. The notation si , sj , etc. will be used to 
denote states at times i, j, etc., while state-space tru- 
jectories will be denoted as so, $1, . . . , si, . . . . We 
will say that, a trajectory satisfies a temporal propo- 
sition p(i) if the state si in the trajectory satisfies the 
primitive proposition p. Following the standard inter- 
pretation of the propositional connectives, trajectories 
represent logical interpretations over the temporal lan- 
guage CT assigning a truth-value to all temporal for- 
mulas, and hence, to all observations. 

For example, a trajectory SO, ~1, . . . with a state .$I 
that satisfies p and q, and a state s2 that satisfies only 
p, will satisfy the tem.poral formulas p( 1) 3 ~(2) and 
lq(2), but, not p(1) 2 q(2) or lq( 1) V lp( 1). 

Our dynamic systems will have 710 inputs. Actions, 
which in other frameworks are represented as inputs, 
will be represented here in the state. Thus to express 
that a switch was toggled at time 1: = 5, we will simply 
say that toggZe(5) was observed. With no inputs, the 
transition plausibilities that characterize our Markov 
Processes will simplify from K(si+l Isi, ui) to K( si+l Isi). 
Later on we will show that by representing inputs as 
observations we are not giving up the ‘causality prop- 
erty’ by which actions should not affect past states 
(Padulo Rt Arbib 1974). Instead we will gain the abil- 
ity to deal naturally with parallel actions, action qual- 
ifications and abduction to actions. 

Transition Plausihilities. We are left to deter- 
mine the prior and transition plausibilities ~(sl:) and 
~(si+l Isi) from the information provided by the user. 
Let us say that a state s makes a rule A - L active in 
the theory when s satisfies A but s does not satisfy B 
for any conflicting rule B --L with higher priority. 
Let us also use the notation Li to stand for temporal 
literals like p(i) or -p(i) and say that Li+l is supported 
by a sta,te si when a rule A - L is active in sd. Then 
the proposed mapping from rules to transition plau- 
sibilities ~(si+l Isi) can be understood in terms of the 
following assumptions: 

Literals Li+l and L:+, that are logically independent 
are conditionally independent given the past, ,s;.~ 
L i+l is not disbelieved when si supports L;+l 
L i+l is completely disbelieved when si supports 
4+1 but not Li+l 
The plausibilities of two complementary literals Li+l 
and -Li+l that, are not supported by si are in.de- 
pendent of si 

“Two literals are logically independent if the truth of 
one does not constraint the truth of the other. 



Assumption 1 excludes the possibility 
Gons and translates into the identity: 

of rmijicn- 

(5) 

where L ranges over the literals that, are true in si+l. 
Assumptions 2 and 3 are consequences of the default) 
reading of the rules. 4 The last assumption is the most, 
important and follows from assuming that0 the past in- 
fluenwes th.e future only through the active rules; i.e., 
same active rules mean same transition plausibilities. 

These assumptions impose restrictions on the type 
of Qualitative Markov Processes that can be expressed, 
yet with the exception of Assumption 1, we have found 
them reasonable in domains where predictions can 
be explained qualitatively in terms of rules and prior 
judgements. Later on we will show that received mod- 
els for temporal reasoning that do not deal with rami- 
fications embed these and other assumptions. 

The assumptions determine the following mapping 
from rules to plausibilities: 

K( Li+1 ISi, = 
1 

0 when si supports Li 
CC? when .si supports -Li but not Li 

n(L) when .si supports neither 
(6) 

We call this model of interaction the Noisy-Rule model 
in analogy to the Noisy-OR model used in Bayesian 
Networks (Pearl 1988) In this model, the parameters 
n(L) and 7r(- L) determine the plausibilities of the 
literals L and -L in. the absen.cc of reas0n.s to belicae 
in. either one of them (see (Geffner 1996) for a different 
application of this model). The function 7r is what, we 
call the completion. function and must be such that 
for each literal L, n(L) must be a non-negative integer 
and either 7r( L) or X(W L) must be zero (i.e., K is a 
plausibility function over L and N-L). For literals Li+l 
and -Li+l that are not supported by cony state si, e.g., 
the literals Lo referring to the initial state, r( Li+l ) and 
~(wLi+l) encode the prior plausibilities ~(Li+l ) and 
~(wLi+l) respectively.” 

Two completion functions that we will find useful 
are the grounded and uniform functions. The first 
makes 7r( lp) = 0 and r(p) = 1 for each primitive 
proposition p, expressing that in the absence of rea- 
sons for or against, p, -p is assumed more plausible 
(like in the Closed World Assumption). The second 
makes a(p) = n( -p) = 0, expressing that in the ab- 
sence of reasons for or against p, the literals p and -p 
are assumed equally plausible. Later on we will show 
that, some familiar systems embed assumptions that fit 
naturally with these functions. 

4 We could make Assumption 3 less extreme by replacing 
‘complete disbelief’ (infinite K) by ‘partial disbelief’ (non- 
zero 6). Yet this weaker condition would make the specifi- 
cation of the resulting models more complex. 

5This is because in that case &(L,+l) = min,, K(L,+I Is*) 
and ~(Li+l Is,) = n(L) . 

As an illustration, given the rules q - p and r ---+ p. 
the grounded completion function produces a Noisy- 
OR type of model in which p is certain given q or r 
and -p is more likely than p when q and r are false 
(below s+ and ST stand for the states that make q V r 
true or false respectively). 

K(p;+Js+) = 0 K( -pi+1 I.$) = 00 
K(Pi+l(si) = 1 /c(-p,+&y = 0 

Summary 
The proposed model works as follows. The user pro- 
vides the rules and the completion function and from 
(6) we get the plausibilities K( Lo) and K( Li+l Is;) for all 
literals and states. These plausibilities are combined 
by means of (5) to yield the prior and transition plau- 
sibilities K(s~) and ~(si+l Isi), which plugged into (4) 
give us the plausibility of any trajectory, and hence, of 
any formula (3). To determine whether a temporal for- 
mula Cy follows from the observations 0 we check then 
whether ~($10) > 0, where K(%‘IO) is the differ- 
ence between the plausibilities of the most plausibility 
trajectories that satisfy XAO and 0 respectively (3). 

Example. Consider the expressions ‘if a block is 
pushed it moves’, ‘if a block is pushed and is held, 
it may not move’, and ‘if a very heavy block is pushed, 
it does not move’, represented by the rules: 

a-p; aAb - pi-p ; a A q - -p 

in increasing order of priority. We also consider a 
rule q - q capturing the persistence of the property 
‘heavy’, and a grounded completion function 7r where 
for every positive literal q, 7r(-q) = 0 and n(q) = 1 
(i.e., atoms are assumed false by default). 

We want to determine whether p( 1) follows from 
a(0); i.e., whether a block will move if pushed. We 
will use the fact that for the completion function above 
~(si+l Isi), when finite, is equal to the number of atoms 
x true in s;+l that are not supported by si. This also 
applies to the initial states so where no atom is sup- 
ported and hence where K(SO) is equal to the number 
of atoms true in so. 

Consider now the trajectory t = SO, ~1, . . . that 
only makes two atoms true: a(O) and p( 1). We want 
to show that t is the single most plausible trajec- 
tory compatible with a(O). From the considerations 
above, rc(so) = 1, and since so supports p( 1) but no 
other atom, ~(~11~0) = 0. This means that K(t) = 1, 
as all states ~1, ~2, . . . support no atoms and hence 
K(Si+l ISi) = 0 for all i > 1. 

We need to show that for any other trajectory t’ = 
sl,, s’1, . . . satisfying a(O), K;(t’) > 1. This is actually 
straightforward as any state sb compatible with a(O) 
but different than SO will have a plausibility K(s~) > 1, 
and similarly, any state s:+~ different than si+l will 
have a plausibility K(S! z+llsi) > 0. Thus, t is the single 
most, plausible trajectory compatible with a.(O), and 
hence, a( 0) implies p( 1). 
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This scenario provides an example of a projection. 
Examples of parallel actions, non-determinism, action 
qualifications and abduction can all be obtained by 
using similar arguments in slightly different, settings. 
For instance, if both a(O) and b(0) are observed (i.e., 
the block is pushed while held), neither p( 1) nor -p( 1) 
will be predicted (as both literals are supported by the 
sta.tes so that, make cr.(O) A b(0) true and q(0) false). 
Similarly, if the observation q(5) is added (the block 
is very heavy), -p( 1) will be predicted. Finally, if the 
rule lc1 - lp is added, a(O) will follow from p( 1) (‘the 
blocked moved, therefore it was pushed’). 

Action Theories 
In this section we will specialize the framework laid 
out above by introducing some common assumptions 
about, actions and fluents t,hat facilitate the specifica- 
tion and processing of temporal theories. These as- 
sumptions are: 1) every primitive proposition repre- 
sents either an action or a fluent, 2) flue&s persist by 
default, 3) actions are exogenous, 4) actions occur 
with low probability, and 5) changes occur only in the 
presence of actions (that are not necessarily known). 

Formally, this means that 1) every rule will be a 
persistence rule or an action rule, 2) persistence rules 
will be of the form p - p and -p - -11 (actually we 
assume one such pair of rules for every fluent p), 3) ac- 
tion symbols cc do not occur in the head of the rules, 
4) actions are unlikely, i.e., n(u) > 0, and 5) action 
rules have priority over persistence rules, and actions 
symbols are not negated in the body of such rules. We 
will also assume that all observations are liter&. 

Theories of this type are similar to some of the the- 
ories considered in the literature (e.g., (Mfond’s and 
Lifschitz‘s) yet they allow for non-determinism, arbi- 
trary plausibility function over fluents, abduction to 
actions and fluents, action qualifications, and parallel 
actions. We will call such theories, action theories. 

We mention briefly three main properties of action 
theories. First, in spite of representing actions as part 
of the state, actions remain independent of past states 
in compliance with the so-called causality principle 
(Padulo & Arbib 1974)):6 

Proposition 1 In action. Uleories, aciions urc in- 
dependent of past states, i.e., if ai denotes lihe 
occurrence of a numOber of uctions at time i, 
~(~S~~.Si--l,u~-~,u~,u~+l,. . .) = K(S&s&l,U&l). 

Second, all uncertainty in action theories is summa- 
rized by the prior plausibility of actions and the prior 
plausibility of fluents: 

Proposition 2 In action theories, th.e plansibiliZy 
measure of a trujectory t = SO, .$I, . . . , when, finide, 

“Actually, since actions are part of the state, actions 
affect the present state yet they do not affect the present 
st,ate of jkerats. 

is given by the sum of Zhe prior plausibiliiies of the uc- 
tions that occur in t and the prior plausibilities of the 
literal fEuen,Ss that occw in, ~0:~ 

4) = c w + c c ‘44 
LESO 2 nEst 

The last property we mention is that only the rel- 
ative prior plausibilities of actions and Auents matter 
when the theories are predictive (i.e., when there are 
no surprises). For such theories, any two completion 
functions 7r and 7r’ that order complementary literals in 
the same way, i.e., 7r(L) < 7$-L) iff n’(L) < 7r’(wL), 
will yield the same behavior. 

Definition 1 An action theory is predictive given a 
set of obserzraliow 0 un.d a completion fun*ction. T. if 
K(OIOA, 00) = 0, where OA E 0 refer-s to the observed 
actions an,d 00 C_ 0 refers 2h*e observed fIuent.s al liimc 
i = 0. 

Proposition 3 The conclusions suncfioned by a pre- 
dictive action theory are not uflected by changes in th.e 
completion fun,ction th,at preserve the plausibility or- 
derin$g of complementury laterals. 

This means that in these theories the exact value of 
n(L) is irrelevant as long as n(L) > 0, because in such 
case 7r(m L) < n(L). For this reason, in such cases it 
is sufficient to determine whether each positive literal 
is true by default, false by default, or undecided. The 
grounded and uniform completion functions, for exam- 
ple, make the second and third choices respectively. 

Related Models 
The semun.tics of the model draws from approaches 
in the literature that exploit the double connection of 
Spohn’s K functions to non-monotonic reasoning and 
probabilities (Goldszmidt, & Pearl 1992; Goldszmidt Rr 
Darwiche 1994). The latter work in particular deals 
with temporal reasoning and is based on structures 
similar to Bayesian Networks (Pearl 1988) in which 
conditional probabilities P( -1.) are replaced by condi- 
tional plausibilities ti(.I.) provided by the user. 

The lan.guuge of this model, on the other hand, 
draws from temporal logics like Gelfond’s and Lifs- 
chitz’s (1993) that do not handle uncertainty. We want 
to show in this section that the proposed model pro- 
vides a natural generalization of such logics by repre- 
senting uncertainty explicitly in the form of completion 
functions. We focus here on Gelfond’s and Lifschitz’s 
logic only; equivalent formalizations are discussed in 
(Kartha 1993). 

For simplicity, and without any loss of generality, 
we consider domain descriptions with actions rules ‘A 
causes B if C’ and initial conditions ‘initially L’ 

‘This is beta use fluent literals in SO and actions any- 
where are not supported and hence for them K+(Z) = 
x(z), while for all other fluent literals ICI(L+IIS~) = 0 or 
q-L+1 1%) = 00. 

1180 Planning 



only. Given a domain description D. we define TD as 
the action theory with rules A A B - c and observa- 
tions Lo (all action rules have the same priority, and 
persistence rules for fluents are implicit as in any ac- 
tion theory). The relation between D and TD is then 
as follows: 

Proposition 4 Let D be a con.sistenl dom.nin descrip- 
ti~n..~ Then (1 value proposition ‘L after Ao, . . . A, ’ 
is entailed by D according to Gelfond and Lifschitz i-8 
th.e literal Ln,+l follows from TD an.d the actions Ai( 
i=O,..., n, under th.e uniform completion function. 

In other words, Gelfond’s and Lifschitz’s model can 
be understood in this framework in terms of two as- 
sumptions: that, complementary fluents are equally 
plausible, and all actions are implausible a priori. The 
advantage of the model proposed is that, these assump- 
tions are explicit, and can be modified by a change in 
the completion function 7r (e.g., a grounded completion 
functions for fluents, for example, leads to the behavior 
characteristic of negation as failure). This actually ex- 
plains why we can accommodate action qualifications 
and represent, actions in the state. If we only had the 
uniform completion function we would get a behavior 
monoton.ic in the set, of actions, very much like Gel- 
fond’s and Lifschitz’s model yields a monotonic behav- 
ior in the observa.tions. 

Summary 
We have developed a qualitative model for tempo- 
ra.1 reasoning that relates logical and probabilistic ap- 
proaches, and handles non-determinism, actions qual- 
ifications, parallel actions and abduction in a natural 
wa,y. The model is limited in other ways such as in its 
inability to deal with ramifications. We hope to ad- 
dress this limitation in the future by making the map- 
ping from rules to transition plausibilities sensitive to 
the domain constraints. We have also developed in- 
ference procedures that we plan to include in the full 
version of this paper. 
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