
On the Size of Reactive Plans

Peter Jonsson and Christer BkkstrSm
Department of Computer and Information Science
Linkiiping University, S-581 83 Linkoping, Sweden

{petej,cba}@ida.liu.se

Abstract

One of the most widespread approaches to reactive
planning is Schoppers’ universal plans. We propose
a stricter definition of universal plans which guaran-
tees a weak notion of soundness not present in the
original definition. Furthermore, we isolate three dif-
ferent types of completeness which capture different
behaviours exhibited by universal plans. We show
that universal plans which run in polynomial time and
are of polynomial size cannot satisfy even the weakest
type of completeness unless the polynomial hierarchy
collapses. However, by relaxing either the polynomial
time or the polynomial space requirement, the con-
struction of universal plans satisfying the strongest
type of completeness becomes trivial.

Introduction
In recent years reactive planning has been proposed
as an alternative to classical planning, especially in
rapidly changing, dynamic domains. Although this
term has been used for a number of more or less related
approaches, these have one thing in common: There
is usually very little or no planning ahead. Rather
the idea is centered around the stimulus-response
principle-prompt reaction to the input. One of the
most well-known methods for reactive planning is the
universal plans by Schoppers (1987). A universal plan
is a function from the set of states into the set of op-
erators. Hence, a universal plan does not generate a
sequence of operators leading from the current state
to the goal state as a classical planner; it decides after
each step what to do next based on the current state.

Universal plans have been much discussed in the
literature. In a famous debate (Ginsberg 198913;
Schoppers 1989; Ginsberg 1989a; Schoppers 1994),
Ginsberg criticised the approach while Schoppers de-
fended it l. Based on a counting argument, Gins-
berg claims that almost all (interesting) universal plans
takes an infeasibly large amount of space. Schopper’s

‘This list is not exhaustive. Other authors, such as
Chapman (1989), h ave joined the discussion. However, it
seems that the main combatants have been Schoppers and
Ginsberg.

defence has, to a large extent, built on the observa-
tion that planning problems are structured. Accord-
ing to Schoppers, this structure can be exploited in
order to create small, effective universal plans. We
refrain from going into the details of this debate and
merely note that both authors have shown great in-
genuity in their argumentation. However, from the
standpoint of formal rigour, these papers do not settle
the question. One of the few papers that treats uni-
versal plans from a formal, complexity-theoretic point
of view is the paper by Selman (1994). He shows that
the existence of small (polynomially-sized) universal
plans with the ability to generate minimal plans im-
plies a collapse of the polynomial hierarchy. Since
a collapse of the polynomial hierarchy is widely con-
jectured to be false in the literature (Johnson 1990;
Papadimitriou 1994), the existence of such universal
plans seems highly unlikely. It should be noted that
this result holds even for severely restricted problems
such as the blocks-world.

In our opinion, one of the problems with universal
plans is the over-generality of the definition. This gen-
erality makes formal analysis hard or even impossible.
Therefore, we begin this paper by giving a stricter def-
inition of universal plans, a definition that embodies
the notion of soundness. In addition, we supply three
different types of completeness. These notions of com-
pleteness capture different desirable properties of uni-
versal plans. For example, A-completeness states that
if the problem has a solution, then the universal plan
will find a solution in a finite number of steps. The
main result of this paper is that universal plans which
run in polynomial time and are of polynomial size can-
not satisfy even this weakest type of completeness2.
However, by relaxing either the polynomial time re-
quirement or the polynomial space requirement, it be-
comes trivial to construct universal plans that satisfy
the strongest type of completeness. Also in this case,
the result holds for severely restricted problems.

The organisation of the paper is as follows: We begin
by defining the basic STRIPS formalism and formally

2Under the assump tion that the polynomial hierarchy
does not collapse.

1182 Planning

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

define universal plans and various restrictions on them.
We continue by showing that small, fast universal plans
cannot be complete even in a very weak sense. The
paper is concluded with a brief discussion of the results.

Basic Formalism
We base our work in this paper on the propositional
STRIPS formalism with negative goals (Bylander 1994),
which is equivalent to most other variants of proposi-
tional STRIPS (Backstrom 1995).

Definition 1 An instance of the PSN planning prob-
lem is a quadruple II = (P, 0, Z, G) where

e P is a finite set of atoms;
e 0 is a finite set of operators where o E 0 has the

form Pre + Post where

Pre is a satisfiable conjunction of positive and
negative atoms in P, respectively called the posi-
tive preconditions (pre+(o)) and the negative pre-
conditions (pre-(0));
Post is a satisfiable conjunction of positive and
negative atoms in P, respectively called the posi-
tive postconditions (add(o)) and the negative post-
conditions (deZ(o));
E P denotes the initial state;

e and G = (C?,G-) denote the positive and negative
goal, respectively, satisfying G+, 6’ E P and g+ n
6- = 0.

A PSN structure is a tuple @ = (P, 0) where P is a
set of atoms and 0 is a set of operators over P.

We denote the negation of an atom by overlining it.
As an example, the operator o defined as F =+ q,?;
satisfies pre+(o) = 0, pre-(o) = {p}, add(o) = {q}
and deZ(o) = {r}.

Definition 2 Given a set of operators 0, we define
the set of all operator sequences over 0 as Seqs(U) =
(0) U {(o);wlo E 0 and w E Seqs(U)}, where ; is the
sequence concatenation operator.

A sequence (01,. . . , on> E Seqs(U) of operators is
called a PSN plan (or simply plan) over II. We can
now define when a plan solves a planning instance.

Definition 3 The ternary relation Valid s Seqs(U) x
2p x (2’ x 2’) is defined s.t. for arbitrary

to1 , . . . ,on) E Seqs(0) and S,T+,T’ E P,
VaZid((ol,. . . , on), S, (T+ , T’)) iff either

1. n=O,T+&SandT’nS=0or

2. n > 0, pre+(ol) C S, pre-(01) n S = 0 and
VaZid((o2,..., on), (S-dez(ol))Uadd(ol), (T+, T-)).

A plan (01,. . . , on> E Seqs(0) is a solution to II iff
VaZid((ol,. . . 9 on)J, (G+, 47)).
We define the planning problems that we will consider
as follows. - -

Definition 4 Let II = (P, U,Z, (@, B-)) be a given
PSN instance. The plan generation problem (PG) is
to find some o E Seqs(U) s.t. w is a solution to II
or answer that no such w exists. The bounded plan
generation problem (BPG) takes an integer K 2 0 as
additional parameter and the object is to find some
o E Seqs(U) s.t. w is a solution to II of length 5 K or
answer that no such w exists.

Universal Plans
Universal plans are defined as follows in the literature
(Ginsberg 198913).

A universal plan is an arbitrary function from the
set of possible situations S into the set of primitive
actions A.

Using the terminology we have adopted in this paper
results in the following equivalent definition.

Definition 5 Given a PSN structure @ = (P, U), a
universal plan is a function from the set of states 2p
into the set of operators 0.

This very general notion of universal plans is difficult
to use as a basis for formal analyses. We would like,
for example, to discuss the issuses of correctness and
resource consumption. In the sequel, we will try to
classify universal plans in greater detail. For a given
PSN structure @ = (P, 0) let S = 2’, SL = 2p U {I}
and U+ = UU(ol, or}. Here I is a new state denoting
undefinedness and 01, or are two “special” operators.
These operators are not to be considered as operators
in the sense of Definition 1 but rather as two com-
pletely new symbols without internal structure. The
special operators will be used by the universal plans
for “communication with the environment”. The fol-
lowing definition is needed for defining soundness of
universal plans.

Definition 6 Let QPI = (P,U) be a PSN structure.
The update operator $: Sl x U+ + Sl is defined as
follows: I $0 = I for all 0 E U+ . Let S E S. If 0 is a
standard operator then S@ o = (S - deZ(0)) U add(o) iff
pre+(o) C SApre’(o)nS = 0. Otherwise, S@o = 1.
If o is not a standard operator then S $01 = I and
s@oT = S. An operator o E U+ is admissible in a
state S E SI iff S $0 # 1.

We can now refine our notion of universal plans.

Definition 7 Let ip = (P, 0) be a PSN structure and
let 5; be a goal over P. A sound universal plan UQ for
the goal 6 is a function that maps SA to U+ such that

1. for every S E SL , if UG (S) = o E 0 then o is admis-
sible in S;

2. for every S E so, UG(S) = or iff S Satisfies 6;

The first point in the definition says that if the univer-
sal plan generates an operator, then this operator is
executable in the current state. This restriction seems
to have been tacitly assumed in the literature. The

Handling Uncertainty 1183

second point tells us that the special operator OT is
generated if and only if the universal plan is applied
to a state satisfying the goal state. Thus, OT is used
by Ug to report success. The reason for introducing
the operator 0~ is to avoid the generation of new op-
erators when the current state satisfies the goal state.
The special operator OL, on the other hand, indicates
that the universal plan cannot handle the current state.
This can, for instance, be due to the fact that the goal
state is not reachable from the current state. Observe
that no operator is admissible in i so UQ must gener-
ate 01 whenever applied to 1. Henceforth, we will use
the term universal plan as an abbreviation for sound
universal plan.

We continue by defining four properties of universal
plans, For a universal plan U,J we use the notation
U,f(S) to denote the operator UQ(SK) where Sl = S
and &+I = SK $ U@K)-

Definition 8 A universal plan UG for a PSN structure
@=(P,U)is

PT poly-time iff UG can be implemented as a deter-
ministic algorithm that runs in polynomial time in
the size of a,;

Ps poly-space iff Us; can be implemented
ministic algorithm A satisfying

asa deter-

1. the size of A is polynomially bounded by the size
& and

2. the size of the space used by A is polynomially
bounded by the size of @;

A acceptance-complete iff for every S E S such that
(P, 0, S g) is solvable there exists an integer K such
that U$(S) = 0~;

R rejection-complete iff for every S E S such that
(P, 0, S, G) is not solvable there exists an integer
K such that Ut (S) = 01.

Universal plans satisfying some subset of the restric-
tions PT, Ps, A and R are named by combining the
corresponding letters. For example, a PTAR universal
plan is poly-time, acceptance-complete and rejection-
complete. The definition of poly-time should be quite
clear while the definition of poly-space may need fur-
ther explanation, The first part of the definition en-
sures that UG can be stored in a polynomially-bounded
memory. The second part guarantees that any compu-
tation will use only a polynomially-bounded amount of
auxiliary memory. Hence, we can both store and run
the algorithm in a memory whose size is bounded by a
polynomial in the size of @. This restriction excludes
algorithms using extremely large fixed data structures
as well as algorithms building such structures during
run-time.

For the sake of brevity, we use the terms A-
and R-completeness for acceptance- and rejection-
completeness, respectively. A minimal requirement on
universal plans is that they are A-complete so we are
guaranteed to find a solution within a finite number

of steps if there is one. Observe that if an A-complete
universal plan is not R-complete then v,“(S) can dif-
fer from 01 for all K if 6 is not reachable from S.
R-completeness is, thus, desirable but not always nec-
essary. In domains such as the blocks-world, where we
know that a solution exists in advance, R-completeness
is of minor interest. To have R-completeness without
A-completeness is useless since we can trivially con-
struct universal plans satisfying PT,sR for all prob-
lems. Simply let UG (S) = 01 for all S E Sl. This R-
complete universal plan can trivially be implemented
as a poly-time and poly-space deterministic algorithm.

In certain applications, we need a stronger form of
R-completeness.

Definition 9 A universal plan UQ for a PSN structure
(P, 0) is strongly rejection-complete (R+) iff for every
S E S such that (P, 0, S, G) is not solvable, UQ(S) =
O.L*
The motivation for introducing strong R-completeness
is simple. If the universal plan outputs operators, we
cannot know whether they will lead to a solution or
not. Executing such operators is not advisable, since
we may wish to try planning for some alternative goal
if there is no solution for the first one. However, ex-
ecuting the “invalid” operators may prevent us from
reaching the alternative goal.

From a complexity-theoretic point of view, it can be
argued that universal plans have to be both poly-time
and poly-space to be feasible in practice. This is a hard
restriction since by dropping any of the polynomial-
ity requirements, constructing universal plans become
easy.

Theorem IQ For every PSN structure Q = (P, 8)
and goal state 6 over P there exist universal plans UQ
and Ub satisfying PTAR+ and PsAR+, respectively.

Proof: Construction of UG: We define a function
f : SL 4 u+ as follows. For each I< 2 1 and S E S
such that (P,U,S,G) h as a shortest solution of length
K, choose an o E 0 such that (P, 0, S $ o, (?) has a
shortest solution of length K - 1. Denote this operator
OS and let

1

01 if (P, 0, S, G) is not solvable
f(S) = oT s Satisfies 5!

OS otherwise

Clearly, for every S E S there exists an integer K
such that if (P, 0, S, 6) is solvable then UC(S) = 0~.
Otherwise, Ug(S) = 01. Consequently, f is both A-
complete and strongly R-complete. The proposed con-
struction of the function f is obviously of exponen-
tial size. However, it can be arranged as a balanced
decision tree of depth IPJ and, hence, be accessed in
polynomial time. Consequently, we have constructed
UC

Construction of U’ :
it

Consider a forward-chaining
PSN planning algorit m P that is sound, complete and
generates shortest plans. We modify the algorithm to

1184 Planning

output only the first operator of the plan that leads
from S to g. Since a plan might be of exponential size
this cannot necessarily be implemented in polynomial
space. However, we can guess the plan one operator
at a time and compute the resulting state after each
action, using only polynomial space. Hence, this modi-
fied planner can be represented by a non-deterministic
algorithm using polynomial space. Thus, by Savitch’s
theorem (Savitch 1970), it can also be represented by
a deterministic algorithm that uses polynomial space.
This modified planner can be the same for all prob-
lems simply by giving the PSN structure <p and the
goal state G as additional inputs. Hence, it is of con-
stant size, i.e its size does not depend on the size of the
given PSN structure. Consequently, we can disregard
the size of the planner and we have constructed a poly-
space universal plan. (Observe that the soundness of
P implies soundness of UG if we modify Ub to generate
oT whenever the current state satisfies the goal state.)

The planner P is complete and generates minimal
plans. Hence, if the shortest plan from the current
state S to the goal state 6 is of length L, the length
of the shortest plan from S @ Ui (S) to 6 is L - 1.
By this observation and the fact that P is complete,
A-completeness of Ui follows.

Finally, if there is no plan from the current state to
the goal state, the planner will fail to generate even
the first operator. In this case we simply output 01
and strong R-completeness follows. 0

It is crucial that the planner used in the previous the-
orem generates shortest plans. Otherwise, we cannot
guarantee A-completeness. We illustrate this with a
small, contrived example.

Example 11 Consider the following PSN structure
<f, = (P, 0) = ({p,q}, {p+, q+,q-)) where the oper-
ators are defined as follows: p+ = (F j p), q- = (q j
q) and Q+ = @ * q).

algorithm A that generates the plan wi = (q-, p+)
for II1 and w2 = (q+ , p+) for II2. A universal plan
UG based on A would then satisf;y vQ(Z1) = q+ and
UG(Z2) = !I-. Consequently, UG (Xl) = q+ for odd
K and Ug(Zl> = q- for even K. In other words, the
universal plan will toggle q forever. Hence, UG is not
A-complete.

For planning problems such that BPG3 can be solved
in polynomial-time, we can construct universal plans
satisfying PT,~AR+ by Theorem 10. For planning
problems such that PG is polynomial but BPG is
not, the theorem does not apply. This method for
constructing universal plans is pointed out by Sel-
man (1994) but he does not explicitly state that gen-

3Recall that BPG and PG denote the bounded and
unbounded plan generation problem respectively.

erating the shortest plan is necessary. The question
whether we can construct PT,~AR+ universal plans for
problems where PG is polynomial but BPG is not re-
mains open.

Non-Existence of T,SA universal
In order to show that PT,~A universal plans do not ex-
ist for all PSN planning ‘problems, we will use advice-
taking Turing machines (Johnson 1990). Advice-
taking TMs are an alternative way of describing non-
uniform circuits, which is the approach adopted by Sel-
man (1994).

Definition 12 An advice-taking Turing machine is a
TM 2” that has associated with it a special “advice or-
acle” A, which is a (not necessarily computable) func-
tion. Let z be an arbitrary input string and let 1x1
denote the size of x. When T is applied to x, a spe-
cial “advice tape” is automatically loaded with A(lx])
and from then on the computation proceeds as normal,
based on the two inputs, x and A(IxI). An advice-
taking Turing machine uses polynomial advice iff its
advice oracle satisfies IA(n)1 5 p(n) for some fixed
polynomial p and all nonnegative integers n. The class
P/poly is the set of languages defined by polynomial-
time advice-taking TMs with polynomial advice.

Advice-taking TMs are very powerful. They can, for
instance, compute certain undecidable functions. De-
spite their apparent power, it is highly unlikely that all
problems in NP can be solved by P/poly TMs.

Theorem 13 (Karp & Lipton 1982) If NP c P/poly
then the polynomial hierarchy collapses into E;.

E; is a complexity class in the second level of the poly-
nomial hierarchy (Johnson 1990). Collapse of the poly-
nomial hierarchy is widely conjectured to be false in the
literature (Johnson 1990; Papadimitriou 1994). Our
proofs rely-on the following construction.

Lemma 14 Let Y=n be the set of all 3SAT (Garey &
Johnson 1979) instances with n variables. For every
n, there is a PSN structure 0, = (P, 8) and a goal
state gn such that for every F E Fn, there exists an ZF
with the following property: HF = (P, 8, ZF, 6,) is a
planning instance which is solvable iff F is satisfiable.
Furthermore, any solution to HF must have a length
less than or equal to 8n3 + 2n.

Proof: Let U = (~1,. .., un} be the set of vari-
ables used by the formulae in Fn. Observe that there
can only be (2n)3 different clauses in any formula
in Fn. Let C = {Cl,. . . , Csra3} be an enumeration
of the possible clauses over the variable set U. Let
P = {T(i),F(i),C(j)ll < i 5 n, 1 5 j 5 8n3}. The
atoms will have the following meanings: T(i) is true iff
the variable ui is true, F(i) is true iffthe variable ui is
false and C(j) is true iff the clause Cj is satisfied. For
each variable ui, two operators are needed:

@ T(i),F(i) * T(i),

Handling Uncertainty 1185

. T(i), F(i) + F(i).

That is, T(i) can be made true iff F(i) is false and vice
versa. In this fashion, only one of T(i) and F(i) can be
true. For each case where a clause C(j) E C contains
a variable ui, the first operator below is needed: for a
negated variable lui, the second operator is needed:

* T(i), Co * C(j),
l F(i), c(j) a C(j).

We specify the goal such that & = (@, Q;) =
(Wl,... , Cs,,s), 0). Let F E F. We want to construct
an initial state ZF such that II = (p, 0, ZF, &) is solv-
able iff F is satisfiable. Let TF = { C(j)lC(j) 4 F}.
Clearly, every C(j) can be made true iff a satisfying as-
signment for F can be found. Finally, it is easy to see
that any solution to HF must be of length 5 8n3 + 2n
since we have exactly 8n3 + 2n atoms and each atom
can be made true at most once. Cl

Lemma 15 If, for every integer n 1 1, there exists a
polynomial advice function that allows us to solve HF
for all F E F’ in polynomial time, then the polynomial
hierarchy collapses into X;.

Proof: Suppose HF is solvable iff F has a satisfying
truth assignment, then NP E P/poly so, by Theorem
13, the polynomial hierarchy collapses into X;. 0

We can now prove our main theorem.

Theorem 16 If there exists a universal plan Ug, sat-
isfying PT,sA for O,, n 2 1, then the polynomial hi-
erarchy collapses into Et.

Proof: Assume UQ, to be a PT,sA universal plan
for 0,. Consider the algorithm A in Figure 1. Ug, is
sound so it must generate an operator that is admissi-
ble in the given state or generate one of the special op-
erators 01 , 0~. Hence, by Lemma 14, the repeat loop
can iterate at most 8n3+2n times before o equals either
01 or 0~. We have assumed that Ug, is a polynomial-
time algorithm so algorithm A runs in polynomial time.
We show that algorithm A accepts iff F has a satisfy-
ing truth assignment. The if-part is trivial by noting
that if F has a satisfying truth assignment then the
algorithm accepts by A-completeness. For the only-if
part, assume that the algorithm accepts. Then UG,, has
returned the operator OT when applied to some state
S. By Definition 7, UG, (S) = or iff S satisfies Gn.
Consequently, F is satisfiable by Lemma 14. Hence,
the algorithm accepts iff F is satisfiable and rejects iff
F is not satisfiable. Furthermore, UQ,, is a polynomial
advice function since we have restricted UQ, to be of
polynomial size and the theorem follows by Lemma 15.
The generality of this theorem has to be emphasize&
Recall that an advice is an arbitrary function from the
size of the input. This function does not even have to
be computable. Hence, there does not exist any mech-
anism whatsoever that is of polynomial size and can be
accessed in polynomial time with the ability to solve

Algorithm A.
Input: A 3SAT formula F with n variables.
s + ZF
repeat

0 c hL(S)
S-S@0

until 0 E {OI,OT}
if 0 = OT then accept
else reject

Figure 1: The algorithm used in the proof of Theorem
16.

problems like those exhibited in the previous theorem.
Methods that have been proposed to reduce the size
of universal plans, such as the variables introduced by
Schoppers (1994)) cannot change this fact.

Moreover, observe that Theorem 16 applies even to a
class of severely restricted PSN structures. The restric-
tions are, among others, that all delete-lists are empty
and each operator has at most two preconditions. Since
the delete-lists are empty, this restricted class is in
NP (Bylander 1994). C onsequently, it is a class with
considerably less expressive power than the general
PSN planning problem which is PSPACE-complete (un-
der the plausible assumption that NP#PsPAcE). Yet,
PT,sA universal plans do not exist for this class of
planning problems. Note that this is not caused by the
existence of exponentially-size minimal plans since all
minimal plans in this class are polynomially bounded.

Finally, we would like to compare Theorem 16 with
a negative result by Selman (1994).

Theorem 17 Unless NPEP/poly, there exists a
blocks-world planning goal for which there is no PT,sA
universal plan for generating the minimal sequence of
operators leading to the goal.

It is important to note the difference between this theo-
rem and Theorem 16. Where Selman shows that PT,sA
universal plans cannot generate minimal plans under
certain conditions, we show that there are cases when
they cannot generate any plans at all.

Discussion
The results in this paper should not be interpreted too
negatively. What they tell us is that naive approaches
to universal planning will not work. In particular, we
cannot hope for efficient universal plans solving arbi-
trary planning problems. However, we question only
the efficiency of universal plans. We do not claim uni-
versal plans to be inferior to classical planners in all
aspects. It is, for instance, highly probable that uni-
versal planning can offer great advantages over classical
planning in rapidly changing, dynamic domains. Thus,
one of the challenges for the future is to characterize
which planning problems can be efficiently solved by
universal plans. We have seen that if a problem can
be solved optimally in polynomial time, then there is

1186 Planning

an efficient universal plan solving it. Almost certainly,
there are other interesting classes of planning problems
that can be solved by small, fast universal plans.

Another question to be answered in the future is
how to make universal planning more powerful. Sev-
eral approaches are conceivable. One would be to give
universal plans access to random sources-thus making
universal planning probabilistic. Recent research has
shown that probabilistic algorithms can be surprisingly
efficient for certain types of problems. To mention one
example, the probabilistic GSAT algorithm (Selman,
Levesque, & Mitchell 1992) for satisfiability testing of
propositional formulae has shown good performance in
empirical studies. Another extension would be to allow
universal plans to have an internal state; that is, the
output of the universal plan is not only dependent on
the current state, but also on previous states. Univer-
sal plans with internal states have been studied briefly
by Selman (1994). Th e results are unfortunately not
encouraging.

Universal planning should also be compared with
incremental planning (Ambros-Ingerson & Steel 1988;
Jonsson & Backstrom 1995). The idea behind incre-
mental planning is to have a planner that can output
valid prefixes of the final plan before it has finished
planning. It has been argued that this method could
considerably bring down the time lost in planning, es-
pecially in dynamic domains, where replanning has to
occur frequently. This motivation is almost exactly the
same as the motivation for introducing universal plans
(or reactive planning in general). Here we have a spec-
trum of different approaches to planning ranging from
classical planning which first computes the complete
plan and then executes it, via incremental planning,
where chunks of the plan are generated and executed
in an interleaved fashion, to universal planning, where
just one operator at a time is generated and immedi-
ately executed.

Conclusions
We have proposed a stricter definition of universal
plans which guarantees a weak notion of soundness
not present in the original definition. In addition, we
have identified three different types of completeness
which capture different behaviours exhibited by uni-
versal plans. A-completeness guarantees that if there
exists a plan from the current state to the goal state,
then the universal plan will find a solution in a finite
number of steps. R-completeness is the converse of A-
completeness, i.e. if there does not exist a plan from
the current state to the goal state, then the univer-
sal plan will report this after a finite number of ap-
plications. R+-completeness is a stronger version of
R-completeness, stating that if there does not exist a
plan from the current state to the goal state, then the
universal plan will report this after one application.
We show that universal plans which run in polynomial
time and are of polynomial size cannot be A-complete

unless the polynomial hierarchy collapses. However,
by dropping either the polynomial time or the poly-
nomial space requirement, the construction of A- and
R+-complete universal plans becomes trivial.

References
Ambros-Ingerson, J. A., and Steel, S. 1988. Integrat-
ing planning, execution and monitoring. In Proc. 7th
(US) Nat ‘1 Conf. on Artif. Intell. (AAAI-88), 83-88.
BSickstrijm, C. 1995. Expressive equivalence of plan-
ning formalisms. Artif. Intell. 76(l-2):17-34.
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artif. Intell. 69:165-
204.
Chapman, D. 1989. Penguins can make cake. AI
Mug. 45-50.
Garey, M., and Johnson, D. 1979. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. New York: Freeman.
Ginsberg, M. L. 1989a. Ginsberg replies to Chapman
and Schoppers. AI Mag. 61-62.
Ginsberg, M. L. 1989b. Universal planning: An (al-
most) universally bad idea. AI Mug. 40-44.
Johnson, D. S. 1990. A catalog of complexity classes.
In van Leeuwen, J., ed., Handbook of Theoretical
Computer Science: Algorithms and Complexity, vol-
ume A. Amsterdam: Elsevier. chapter 2, 67-161.
Jonsson, P., and Backstrom, C. 1995. Incremental
planning. In Ghallab, M., and Milani, A., eds., New
Trends in AI Planning: Proc. 3rd Eur. WS. Planning
(EWSP’95). Assisi, Italy: 10s Press.
Karp, R. M., and Lipton, R. 1982. Turing machines
that take advice. Enseign. Math 28:191-209.
Papadimitriou, C. H. 1994. Computational Complex-
ity. Reading, MA: Addison Wesley.
Savitch, W. J. 1970. Relationships between nondeter-
ministic and deterministic tape complexities. Journal
of Computer and System Sciences 4(2):177-192.
Schoppers, M. J. 1987. Universal plans for reactive
robots in unpredictable environments. In Proc. 10th
Int ‘1 Joint Conf. on Artif. Intell. (IJCAI-87), 1039-
1046.
Schoppers, M. J. 1989. In defense of reaction plans
as caches. AI Mug. 51-62.
Schoppers, M. 1994. Estimating reaction plan size. In
Proc. 12th (US) Nat’1 Conf. on Artif. Intell. (AAAI-
94), 1238-1244.
Selman, B.; Levesque, H.; and Mitchell, D. 1992.
A new method for solving hard satisfiability prob-
lems. In Proc. 10th (US) Nat’1 Conf. on Artif Intell.
(AAAI-921, 440-446.
Selman, B. 1994. Near-optimal plans, tractability,
and reactivity. In Proc. 4th Int ‘1 Conf. on Prin-
ciples of Knowledge Repr. and Reasoning (KR-94),
521-529.

Handliig Uncertainty 1187

