
On the Size of Reactive Plans 

Peter Jonsson and Christer BkkstrSm 
Department of Computer and Information Science 
Linkiiping University, S-581 83 Linkoping, Sweden 

{petej,cba}@ida.liu.se 

Abstract 

One of the most widespread approaches to reactive 
planning is Schoppers’ universal plans. We propose 
a stricter definition of universal plans which guaran- 
tees a weak notion of soundness not present in the 
original definition. Furthermore, we isolate three dif- 
ferent types of completeness which capture different 
behaviours exhibited by universal plans. We show 
that universal plans which run in polynomial time and 
are of polynomial size cannot satisfy even the weakest 
type of completeness unless the polynomial hierarchy 
collapses. However, by relaxing either the polynomial 
time or the polynomial space requirement, the con- 
struction of universal plans satisfying the strongest 
type of completeness becomes trivial. 

Introduction 
In recent years reactive planning has been proposed 
as an alternative to classical planning, especially in 
rapidly changing, dynamic domains. Although this 
term has been used for a number of more or less related 
approaches, these have one thing in common: There 
is usually very little or no planning ahead. Rather 
the idea is centered around the stimulus-response 
principle-prompt reaction to the input. One of the 
most well-known methods for reactive planning is the 
universal plans by Schoppers (1987). A universal plan 
is a function from the set of states into the set of op- 
erators. Hence, a universal plan does not generate a 
sequence of operators leading from the current state 
to the goal state as a classical planner; it decides after 
each step what to do next based on the current state. 

Universal plans have been much discussed in the 
literature. In a famous debate (Ginsberg 198913; 
Schoppers 1989; Ginsberg 1989a; Schoppers 1994), 
Ginsberg criticised the approach while Schoppers de- 
fended it l. Based on a counting argument, Gins- 
berg claims that almost all (interesting) universal plans 
takes an infeasibly large amount of space. Schopper’s 

‘This list is not exhaustive. Other authors, such as 
Chapman (1989), h ave joined the discussion. However, it 
seems that the main combatants have been Schoppers and 
Ginsberg. 

defence has, to a large extent, built on the observa- 
tion that planning problems are structured. Accord- 
ing to Schoppers, this structure can be exploited in 
order to create small, effective universal plans. We 
refrain from going into the details of this debate and 
merely note that both authors have shown great in- 
genuity in their argumentation. However, from the 
standpoint of formal rigour, these papers do not settle 
the question. One of the few papers that treats uni- 
versal plans from a formal, complexity-theoretic point 
of view is the paper by Selman (1994). He shows that 
the existence of small (polynomially-sized) universal 
plans with the ability to generate minimal plans im- 
plies a collapse of the polynomial hierarchy. Since 
a collapse of the polynomial hierarchy is widely con- 
jectured to be false in the literature (Johnson 1990; 
Papadimitriou 1994), the existence of such universal 
plans seems highly unlikely. It should be noted that 
this result holds even for severely restricted problems 
such as the blocks-world. 

In our opinion, one of the problems with universal 
plans is the over-generality of the definition. This gen- 
erality makes formal analysis hard or even impossible. 
Therefore, we begin this paper by giving a stricter def- 
inition of universal plans, a definition that embodies 
the notion of soundness. In addition, we supply three 
different types of completeness. These notions of com- 
pleteness capture different desirable properties of uni- 
versal plans. For example, A-completeness states that 
if the problem has a solution, then the universal plan 
will find a solution in a finite number of steps. The 
main result of this paper is that universal plans which 
run in polynomial time and are of polynomial size can- 
not satisfy even this weakest type of completeness2. 
However, by relaxing either the polynomial time re- 
quirement or the polynomial space requirement, it be- 
comes trivial to construct universal plans that satisfy 
the strongest type of completeness. Also in this case, 
the result holds for severely restricted problems. 

The organisation of the paper is as follows: We begin 
by defining the basic STRIPS formalism and formally 

2Under the assump tion that the polynomial hierarchy 
does not collapse. 
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define universal plans and various restrictions on them. 
We continue by showing that small, fast universal plans 
cannot be complete even in a very weak sense. The 
paper is concluded with a brief discussion of the results. 

Basic Formalism 
We base our work in this paper on the propositional 
STRIPS formalism with negative goals (Bylander 1994), 
which is equivalent to most other variants of proposi- 
tional STRIPS (Backstrom 1995). 

Definition 1 An instance of the PSN planning prob- 
lem is a quadruple II = (P, 0, Z, G) where 

e P is a finite set of atoms; 
e 0 is a finite set of operators where o E 0 has the 

form Pre + Post where 

Pre is a satisfiable conjunction of positive and 
negative atoms in P, respectively called the posi- 
tive preconditions (pre+(o)) and the negative pre- 
conditions (pre-(0)); 
Post is a satisfiable conjunction of positive and 
negative atoms in P, respectively called the posi- 
tive postconditions (add(o)) and the negative post- 
conditions (deZ(o)); 
E P denotes the initial state; 

e and G = (C?,G-) denote the positive and negative 
goal, respectively, satisfying G+, 6’ E P and g+ n 
6- = 0. 

A PSN structure is a tuple @ = (P, 0) where P is a 
set of atoms and 0 is a set of operators over P. 

We denote the negation of an atom by overlining it. 
As an example, the operator o defined as F =+ q,?; 
satisfies pre+(o) = 0, pre-(o) = {p}, add(o) = {q} 
and deZ(o) = {r}. 

Definition 2 Given a set of operators 0, we define 
the set of all operator sequences over 0 as Seqs(U) = 
(0) U {(o);wlo E 0 and w E Seqs(U)}, where ; is the 
sequence concatenation operator. 

A sequence (01,. . . , on> E Seqs(U) of operators is 
called a PSN plan (or simply plan) over II. We can 
now define when a plan solves a planning instance. 

Definition 3 The ternary relation Valid s Seqs(U) x 
2p x (2’ x 2’) is defined s.t. for arbitrary 

to1 , . . . ,on) E Seqs(0) and S,T+,T’ E P, 
VaZid((ol,. . . , on), S, (T+ , T’)) iff either 

1. n=O,T+&SandT’nS=0or 

2. n > 0, pre+(ol) C S, pre-(01) n S = 0 and 
VaZid((o2,..., on), (S-dez(ol))Uadd(ol), (T+, T-)). 

A plan (01,. . . , on> E Seqs(0) is a solution to II iff 
VaZid((ol,. . . 9 on)J, (G+, 47)). 
We define the planning problems that we will consider 
as follows. - - 

Definition 4 Let II = (P, U,Z, (@, B-)) be a given 
PSN instance. The plan generation problem (PG) is 
to find some o E Seqs(U) s.t. w is a solution to II 
or answer that no such w exists. The bounded plan 
generation problem (BPG) takes an integer K 2 0 as 
additional parameter and the object is to find some 
o E Seqs(U) s.t. w is a solution to II of length 5 K or 
answer that no such w exists. 

Universal Plans 
Universal plans are defined as follows in the literature 
(Ginsberg 198913). 

A universal plan is an arbitrary function from the 
set of possible situations S into the set of primitive 
actions A. 

Using the terminology we have adopted in this paper 
results in the following equivalent definition. 

Definition 5 Given a PSN structure @ = (P, U), a 
universal plan is a function from the set of states 2p 
into the set of operators 0. 

This very general notion of universal plans is difficult 
to use as a basis for formal analyses. We would like, 
for example, to discuss the issuses of correctness and 
resource consumption. In the sequel, we will try to 
classify universal plans in greater detail. For a given 
PSN structure @ = (P, 0) let S = 2’, SL = 2p U {I} 
and U+ = UU(ol, or}. Here I is a new state denoting 
undefinedness and 01, or are two “special” operators. 
These operators are not to be considered as operators 
in the sense of Definition 1 but rather as two com- 
pletely new symbols without internal structure. The 
special operators will be used by the universal plans 
for “communication with the environment”. The fol- 
lowing definition is needed for defining soundness of 
universal plans. 

Definition 6 Let QPI = (P,U) be a PSN structure. 
The update operator $ : Sl x U+ + Sl is defined as 
follows: I $0 = I for all 0 E U+ . Let S E S. If 0 is a 
standard operator then S@ o = (S - deZ( 0)) U add(o) iff 
pre+(o) C SApre’(o)nS = 0. Otherwise, S@o = 1. 
If o is not a standard operator then S $01 = I and 
s@oT = S. An operator o E U+ is admissible in a 
state S E SI iff S $0 # 1. 

We can now refine our notion of universal plans. 

Definition 7 Let ip = (P, 0) be a PSN structure and 
let 5; be a goal over P. A sound universal plan UQ for 
the goal 6 is a function that maps SA to U+ such that 

1. for every S E SL , if UG (S) = o E 0 then o is admis- 
sible in S; 

2. for every S E so, UG(S) = or iff S Satisfies 6; 

The first point in the definition says that if the univer- 
sal plan generates an operator, then this operator is 
executable in the current state. This restriction seems 
to have been tacitly assumed in the literature. The 
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second point tells us that the special operator OT is 
generated if and only if the universal plan is applied 
to a state satisfying the goal state. Thus, OT is used 
by Ug to report success. The reason for introducing 
the operator 0~ is to avoid the generation of new op- 
erators when the current state satisfies the goal state. 
The special operator OL, on the other hand, indicates 
that the universal plan cannot handle the current state. 
This can, for instance, be due to the fact that the goal 
state is not reachable from the current state. Observe 
that no operator is admissible in i so UQ must gener- 
ate 01 whenever applied to 1. Henceforth, we will use 
the term universal plan as an abbreviation for sound 
universal plan. 

We continue by defining four properties of universal 
plans, For a universal plan U,J we use the notation 
U,f(S) to denote the operator UQ(SK) where Sl = S 
and &+I = SK $ U@K)- 

Definition 8 A universal plan UG for a PSN structure 
@=(P,U)is 

PT poly-time iff UG can be implemented as a deter- 
ministic algorithm that runs in polynomial time in 
the size of a,; 

Ps poly-space iff Us; can be implemented 
ministic algorithm A satisfying 

asa deter- 

1. the size of A is polynomially bounded by the size 
& and 

2. the size of the space used by A is polynomially 
bounded by the size of @; 

A acceptance-complete iff for every S E S such that 
(P, 0, S g) is solvable there exists an integer K such 
that U$(S) = 0~; 

R rejection-complete iff for every S E S such that 
(P, 0, S, G) is not solvable there exists an integer 
K such that Ut (S) = 01. 

Universal plans satisfying some subset of the restric- 
tions PT, Ps, A and R are named by combining the 
corresponding letters. For example, a PTAR universal 
plan is poly-time, acceptance-complete and rejection- 
complete. The definition of poly-time should be quite 
clear while the definition of poly-space may need fur- 
ther explanation, The first part of the definition en- 
sures that UG can be stored in a polynomially-bounded 
memory. The second part guarantees that any compu- 
tation will use only a polynomially-bounded amount of 
auxiliary memory. Hence, we can both store and run 
the algorithm in a memory whose size is bounded by a 
polynomial in the size of @. This restriction excludes 
algorithms using extremely large fixed data structures 
as well as algorithms building such structures during 
run-time. 

For the sake of brevity, we use the terms A- 
and R-completeness for acceptance- and rejection- 
completeness, respectively. A minimal requirement on 
universal plans is that they are A-complete so we are 
guaranteed to find a solution within a finite number 

of steps if there is one. Observe that if an A-complete 
universal plan is not R-complete then v,“(S) can dif- 
fer from 01 for all K if 6 is not reachable from S. 
R-completeness is, thus, desirable but not always nec- 
essary. In domains such as the blocks-world, where we 
know that a solution exists in advance, R-completeness 
is of minor interest. To have R-completeness without 
A-completeness is useless since we can trivially con- 
struct universal plans satisfying PT,sR for all prob- 
lems. Simply let UG (S) = 01 for all S E Sl. This R- 
complete universal plan can trivially be implemented 
as a poly-time and poly-space deterministic algorithm. 

In certain applications, we need a stronger form of 
R-completeness. 

Definition 9 A universal plan UQ for a PSN structure 
(P, 0) is strongly rejection-complete (R+) iff for every 
S E S such that (P, 0, S, G) is not solvable, UQ(S) = 
O.L* 
The motivation for introducing strong R-completeness 
is simple. If the universal plan outputs operators, we 
cannot know whether they will lead to a solution or 
not. Executing such operators is not advisable, since 
we may wish to try planning for some alternative goal 
if there is no solution for the first one. However, ex- 
ecuting the “invalid” operators may prevent us from 
reaching the alternative goal. 

From a complexity-theoretic point of view, it can be 
argued that universal plans have to be both poly-time 
and poly-space to be feasible in practice. This is a hard 
restriction since by dropping any of the polynomial- 
ity requirements, constructing universal plans become 
easy. 

Theorem IQ For every PSN structure Q = (P, 8) 
and goal state 6 over P there exist universal plans UQ 
and Ub satisfying PTAR+ and PsAR+, respectively. 

Proof: Construction of UG: We define a function 
f : SL 4 u+ as follows. For each I< 2 1 and S E S 
such that (P,U,S,G) h as a shortest solution of length 
K, choose an o E 0 such that (P, 0, S $ o, (?) has a 
shortest solution of length K - 1. Denote this operator 
OS and let 

1 

01 if (P, 0, S, G) is not solvable 
f(S) = oT s Satisfies 5! 

OS otherwise 

Clearly, for every S E S there exists an integer K 
such that if (P, 0, S, 6) is solvable then UC(S) = 0~. 
Otherwise, Ug(S) = 01. Consequently, f is both A- 
complete and strongly R-complete. The proposed con- 
struction of the function f is obviously of exponen- 
tial size. However, it can be arranged as a balanced 
decision tree of depth IPJ and, hence, be accessed in 
polynomial time. Consequently, we have constructed 
UC 

Construction of U’ : 
it 

Consider a forward-chaining 
PSN planning algorit m P that is sound, complete and 
generates shortest plans. We modify the algorithm to 
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output only the first operator of the plan that leads 
from S to g. Since a plan might be of exponential size 
this cannot necessarily be implemented in polynomial 
space. However, we can guess the plan one operator 
at a time and compute the resulting state after each 
action, using only polynomial space. Hence, this modi- 
fied planner can be represented by a non-deterministic 
algorithm using polynomial space. Thus, by Savitch’s 
theorem (Savitch 1970), it can also be represented by 
a deterministic algorithm that uses polynomial space. 
This modified planner can be the same for all prob- 
lems simply by giving the PSN structure <p and the 
goal state G as additional inputs. Hence, it is of con- 
stant size, i.e its size does not depend on the size of the 
given PSN structure. Consequently, we can disregard 
the size of the planner and we have constructed a poly- 
space universal plan. (Observe that the soundness of 
P implies soundness of UG if we modify Ub to generate 
oT whenever the current state satisfies the goal state.) 

The planner P is complete and generates minimal 
plans. Hence, if the shortest plan from the current 
state S to the goal state 6 is of length L, the length 
of the shortest plan from S @ Ui (S) to 6 is L - 1. 
By this observation and the fact that P is complete, 
A-completeness of Ui follows. 

Finally, if there is no plan from the current state to 
the goal state, the planner will fail to generate even 
the first operator. In this case we simply output 01 
and strong R-completeness follows. 0 

It is crucial that the planner used in the previous the- 
orem generates shortest plans. Otherwise, we cannot 
guarantee A-completeness. We illustrate this with a 
small, contrived example. 

Example 11 Consider the following PSN structure 
<f, = (P, 0) = ({p,q}, {p+, q+,q-)) where the oper- 
ators are defined as follows: p+ = (F j p), q- = (q j 
q) and Q+ = @ * q). 

algorithm A that generates the plan wi = (q-, p+) 
for II1 and w2 = (q+ , p+) for II2. A universal plan 
UG based on A would then satisf;y vQ(Z1) = q+ and 
UG(Z2) = !I-. Consequently, UG (Xl) = q+ for odd 
K and Ug(Zl> = q- for even K. In other words, the 
universal plan will toggle q forever. Hence, UG is not 
A-complete. 

For planning problems such that BPG3 can be solved 
in polynomial-time, we can construct universal plans 
satisfying PT,~AR+ by Theorem 10. For planning 
problems such that PG is polynomial but BPG is 
not, the theorem does not apply. This method for 
constructing universal plans is pointed out by Sel- 
man (1994) but he does not explicitly state that gen- 

3Recall that BPG and PG denote the bounded and 
unbounded plan generation problem respectively. 

erating the shortest plan is necessary. The question 
whether we can construct PT,~AR+ universal plans for 
problems where PG is polynomial but BPG is not re- 
mains open. 

Non-Existence of T,SA universal 
In order to show that PT,~A universal plans do not ex- 
ist for all PSN planning ‘problems, we will use advice- 
taking Turing machines (Johnson 1990). Advice- 
taking TMs are an alternative way of describing non- 
uniform circuits, which is the approach adopted by Sel- 
man (1994). 

Definition 12 An advice-taking Turing machine is a 
TM 2” that has associated with it a special “advice or- 
acle” A, which is a (not necessarily computable) func- 
tion. Let z be an arbitrary input string and let 1x1 
denote the size of x. When T is applied to x, a spe- 
cial “advice tape” is automatically loaded with A( lx]) 
and from then on the computation proceeds as normal, 
based on the two inputs, x and A(IxI). An advice- 
taking Turing machine uses polynomial advice iff its 
advice oracle satisfies IA(n)1 5 p(n) for some fixed 
polynomial p and all nonnegative integers n. The class 
P/poly is the set of languages defined by polynomial- 
time advice-taking TMs with polynomial advice. 

Advice-taking TMs are very powerful. They can, for 
instance, compute certain undecidable functions. De- 
spite their apparent power, it is highly unlikely that all 
problems in NP can be solved by P/poly TMs. 

Theorem 13 (Karp & Lipton 1982) If NP c P/poly 
then the polynomial hierarchy collapses into E;. 

E; is a complexity class in the second level of the poly- 
nomial hierarchy (Johnson 1990). Collapse of the poly- 
nomial hierarchy is widely conjectured to be false in the 
literature (Johnson 1990; Papadimitriou 1994). Our 
proofs rely-on the following construction. 

Lemma 14 Let Y=n be the set of all 3SAT (Garey & 
Johnson 1979) instances with n variables. For every 
n, there is a PSN structure 0, = (P, 8) and a goal 
state gn such that for every F E Fn, there exists an ZF 
with the following property: HF = (P, 8, ZF, 6,) is a 
planning instance which is solvable iff F is satisfiable. 
Furthermore, any solution to HF must have a length 
less than or equal to 8n3 + 2n. 

Proof: Let U = (~1,. .., un} be the set of vari- 
ables used by the formulae in Fn. Observe that there 
can only be (2n)3 different clauses in any formula 
in Fn. Let C = {Cl,. . . , Csra3} be an enumeration 
of the possible clauses over the variable set U. Let 
P = {T(i),F(i),C(j)ll < i 5 n, 1 5 j 5 8n3}. The 
atoms will have the following meanings: T(i) is true iff 
the variable ui is true, F(i) is true iffthe variable ui is 
false and C(j) is true iff the clause Cj is satisfied. For 
each variable ui, two operators are needed: 

@ T(i),F(i) * T(i), 
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. T(i), F(i) + F(i). 

That is, T(i) can be made true iff F(i) is false and vice 
versa. In this fashion, only one of T(i) and F(i) can be 
true. For each case where a clause C(j) E C contains 
a variable ui, the first operator below is needed: for a 
negated variable lui, the second operator is needed: 

* T(i), Co * C(j), 
l F(i), c(j) a C(j). 

We specify the goal such that & = (@, Q;) = 
(Wl,... , Cs,,s), 0). Let F E F. We want to construct 
an initial state ZF such that II = (p, 0, ZF, &) is solv- 
able iff F is satisfiable. Let TF = { C( j)lC( j) 4 F}. 
Clearly, every C(j) can be made true iff a satisfying as- 
signment for F can be found. Finally, it is easy to see 
that any solution to HF must be of length 5 8n3 + 2n 
since we have exactly 8n3 + 2n atoms and each atom 
can be made true at most once. Cl 

Lemma 15 If, for every integer n 1 1, there exists a 
polynomial advice function that allows us to solve HF 
for all F E F’ in polynomial time, then the polynomial 
hierarchy collapses into X;. 

Proof: Suppose HF is solvable iff F has a satisfying 
truth assignment, then NP E P/poly so, by Theorem 
13, the polynomial hierarchy collapses into X;. 0 

We can now prove our main theorem. 

Theorem 16 If there exists a universal plan Ug, sat- 
isfying PT,sA for O,, n 2 1, then the polynomial hi- 
erarchy collapses into Et. 

Proof: Assume UQ, to be a PT,sA universal plan 
for 0,. Consider the algorithm A in Figure 1. Ug, is 
sound so it must generate an operator that is admissi- 
ble in the given state or generate one of the special op- 
erators 01 , 0~. Hence, by Lemma 14, the repeat loop 
can iterate at most 8n3+2n times before o equals either 
01 or 0~. We have assumed that Ug, is a polynomial- 
time algorithm so algorithm A runs in polynomial time. 
We show that algorithm A accepts iff F has a satisfy- 
ing truth assignment. The if-part is trivial by noting 
that if F has a satisfying truth assignment then the 
algorithm accepts by A-completeness. For the only-if 
part, assume that the algorithm accepts. Then UG,, has 
returned the operator OT when applied to some state 
S. By Definition 7, UG, (S) = or iff S satisfies Gn. 
Consequently, F is satisfiable by Lemma 14. Hence, 
the algorithm accepts iff F is satisfiable and rejects iff 
F is not satisfiable. Furthermore, UQ,, is a polynomial 
advice function since we have restricted UQ, to be of 
polynomial size and the theorem follows by Lemma 15. 
The generality of this theorem has to be emphasize& 
Recall that an advice is an arbitrary function from the 
size of the input. This function does not even have to 
be computable. Hence, there does not exist any mech- 
anism whatsoever that is of polynomial size and can be 
accessed in polynomial time with the ability to solve 

Algorithm A. 
Input: A 3SAT formula F with n variables. 
s + ZF 
repeat 

0 c hL(S) 
S-S@0 

until 0 E {OI,OT} 
if 0 = OT then accept 
else reject 

Figure 1: The algorithm used in the proof of Theorem 
16. 

problems like those exhibited in the previous theorem. 
Methods that have been proposed to reduce the size 
of universal plans, such as the variables introduced by 
Schoppers (1994)) cannot change this fact. 

Moreover, observe that Theorem 16 applies even to a 
class of severely restricted PSN structures. The restric- 
tions are, among others, that all delete-lists are empty 
and each operator has at most two preconditions. Since 
the delete-lists are empty, this restricted class is in 
NP (Bylander 1994). C onsequently, it is a class with 
considerably less expressive power than the general 
PSN planning problem which is PSPACE-complete (un- 
der the plausible assumption that NP#PsPAcE). Yet, 
PT,sA universal plans do not exist for this class of 
planning problems. Note that this is not caused by the 
existence of exponentially-size minimal plans since all 
minimal plans in this class are polynomially bounded. 

Finally, we would like to compare Theorem 16 with 
a negative result by Selman (1994). 

Theorem 17 Unless NPEP/poly, there exists a 
blocks-world planning goal for which there is no PT,sA 
universal plan for generating the minimal sequence of 
operators leading to the goal. 

It is important to note the difference between this theo- 
rem and Theorem 16. Where Selman shows that PT,sA 
universal plans cannot generate minimal plans under 
certain conditions, we show that there are cases when 
they cannot generate any plans at all. 

Discussion 
The results in this paper should not be interpreted too 
negatively. What they tell us is that naive approaches 
to universal planning will not work. In particular, we 
cannot hope for efficient universal plans solving arbi- 
trary planning problems. However, we question only 
the efficiency of universal plans. We do not claim uni- 
versal plans to be inferior to classical planners in all 
aspects. It is, for instance, highly probable that uni- 
versal planning can offer great advantages over classical 
planning in rapidly changing, dynamic domains. Thus, 
one of the challenges for the future is to characterize 
which planning problems can be efficiently solved by 
universal plans. We have seen that if a problem can 
be solved optimally in polynomial time, then there is 
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an efficient universal plan solving it. Almost certainly, 
there are other interesting classes of planning problems 
that can be solved by small, fast universal plans. 

Another question to be answered in the future is 
how to make universal planning more powerful. Sev- 
eral approaches are conceivable. One would be to give 
universal plans access to random sources-thus making 
universal planning probabilistic. Recent research has 
shown that probabilistic algorithms can be surprisingly 
efficient for certain types of problems. To mention one 
example, the probabilistic GSAT algorithm (Selman, 
Levesque, & Mitchell 1992) for satisfiability testing of 
propositional formulae has shown good performance in 
empirical studies. Another extension would be to allow 
universal plans to have an internal state; that is, the 
output of the universal plan is not only dependent on 
the current state, but also on previous states. Univer- 
sal plans with internal states have been studied briefly 
by Selman (1994). Th e results are unfortunately not 
encouraging. 

Universal planning should also be compared with 
incremental planning (Ambros-Ingerson & Steel 1988; 
Jonsson & Backstrom 1995). The idea behind incre- 
mental planning is to have a planner that can output 
valid prefixes of the final plan before it has finished 
planning. It has been argued that this method could 
considerably bring down the time lost in planning, es- 
pecially in dynamic domains, where replanning has to 
occur frequently. This motivation is almost exactly the 
same as the motivation for introducing universal plans 
(or reactive planning in general). Here we have a spec- 
trum of different approaches to planning ranging from 
classical planning which first computes the complete 
plan and then executes it, via incremental planning, 
where chunks of the plan are generated and executed 
in an interleaved fashion, to universal planning, where 
just one operator at a time is generated and immedi- 
ately executed. 

Conclusions 
We have proposed a stricter definition of universal 
plans which guarantees a weak notion of soundness 
not present in the original definition. In addition, we 
have identified three different types of completeness 
which capture different behaviours exhibited by uni- 
versal plans. A-completeness guarantees that if there 
exists a plan from the current state to the goal state, 
then the universal plan will find a solution in a finite 
number of steps. R-completeness is the converse of A- 
completeness, i.e. if there does not exist a plan from 
the current state to the goal state, then the univer- 
sal plan will report this after a finite number of ap- 
plications. R+-completeness is a stronger version of 
R-completeness, stating that if there does not exist a 
plan from the current state to the goal state, then the 
universal plan will report this after one application. 
We show that universal plans which run in polynomial 
time and are of polynomial size cannot be A-complete 

unless the polynomial hierarchy collapses. However, 
by dropping either the polynomial time or the poly- 
nomial space requirement, the construction of A- and 
R+-complete universal plans becomes trivial. 
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