
Is “early commitment” in plan generation ever a good idea?

David Joslin
Computational Intelligence Research Laboratory

1269 University of Oregon
Eugene, OR 97403

joslin@cirl.uoregon.edu

Abstract

Partial-Order Causal Link planners typically take
a “least-commitment” approach to some deci-
sions (notably, step ordering), postponing those
decisions until constraints force them to be made.
However, these planners rely to some degree on
early commitments in making other types of
decisions, including threat resolution and oper-
ator choice. We show why existing planners
cannot support full least-commitment decision-
making, and present an alternative approach that
can. The approach has been implemented in the
Descartes system, which we describe. We also
provide experimental results that demonstrate
that a least-commitment approach to planning
can be profitably extended beyond what is done
in POCL and similar planners, but that taking
a least-commitment approach to every planning
decision can be inefficient: early commitment in
plan generation is sometimes a good idea.

Introduction
The “least-commitment” approach to plan generation
has, by and large, been successful where it has been
tried. Partial-Order Causal Link (POCL) planners, for
example, typically take a least-commitment approach
to decisions about step ordering, postponing those de-
cisions until constraints force them to be made. How-
ever, these planners rely to some degree on early com-
mitments for other decisions, including threat resolu-
tion and choice of an operator to satisfy open con-
ditions. An obvious question is whether the least-
commitment approach should be applied to every plan-
ning decision; in other words, is early commitment ever
a good idea?

An obstacle to addressing this question experimen-
tally arises from the way in which POCL (and similar)
planners manage decision-making. They take what we
call a passive postponement approach, choosing one de-
cision at a time to focus on, and keeping all the other,
postponed decisions on an “agenda.” Items on the
agenda play no role in planning until they are selected
for consideration, despite the fact that they may im-
pose constraints on the planning process.

Martha E. Pollack
Department of Computer Science
and Intelligent Systems Program

University of Pittsburgh
Pittsburgh, PA 15260

pollack@cs.pitt.edu

In this paper, we present experimental evidence of
the efficiency penalty that can be incurred with pas-
sive postponement. We also present an alternative ap-
proach, active postponement, which has been imple-
mented in the Descartes system. In Descartes, plan-
ning problems are transformed into Constraint Satis-
faction Problems (CSPs), and then solved by applying
both planning and CSP techniques. We present ex-
perimental results indicating that a least-commitment
approach to planning can be profitably extended be-
yond what is done in most planners. We also demon-
strate that taking a least-commitment approach to ev-
ery planning decision can be inefficient: early commit-
ment in plan generation is sometimes a good idea.

Passive postponement
POCL algorithms use refinement search (Kambham-
pati, Knoblock, & Yang 1995). A node N (a partial
plan) is selected for refinement, and a flaw F (a threat
or open condition) from N is selected for repair. Suc-
cessor nodes are generated for each of the possible re-
pairs of F. All other (unselected) flaws from the parent
node are inherited by these successor nodes. Each flaw
represents a decision to be made about how to achieve a
goal or resolve a threat; thus, each unselected flaw rep-
resents a postponed decision. We term this approach
to postponing decisions passive postponement. Deci-
sions that are postponed in this manner play no role
in planning until they are actually selected.

Passive postponement of planning decisions can in-
cur severe performance penalties. It is easiest to see
this in the case of a node that has an unrepairable flaw.
Such a node is a dead end, but the node may not be
recognized as a dead end if some other, repairable flaw
is selected instead: one or more successor nodes will be
generated, each inheriting the unrepairable flaw, and
each, therefore, also a dead end. In this manner, a sin-
gle node with a fatal flaw may generate a large number
of successor nodes, all dead ends.

The propagation of dead-end nodes is an instance
of a more general problem. Similar penalties are paid
when a flaw that can be repaired in only one way-
a “forced” repair-is delayed; in that case, the forced

1188 Planning

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

repair may have to be repeated in multiple successor
nodes. Passive postponement also means that inter-
actions among the constraints imposed by postponed
decisions are not recognized until all the relevant deci-
sions have been selected for repair.

The propagation of dead-end nodes is not just a
theoretical problem; it can be shown experimentally
to cause serious efficiency problems. We ran UCPOP
(Penberthy & Weld 1992) on the same test set of 49
problems from 15 domains previously used in (Joslin &
Pollack 1994)) with the default search heuristics pro-
vided by UCPOP. As in the earlier experiments, 32 of
these problems were solved by UCPOP, and 17 were
not, within a search limit of 8000 nodes generated. We
counted the number of nodes examined, and the num-
ber of those nodes that were immediate successors of
dead-end nodes, i.e., nodes that would never have been
generated if fatal flaws were always selected immedi-
ately. For some problems, as many as 98% of the nodes
examined were successors of dead-end nodes. The av-
erage for successful problems was 24%) and for unsuc-
cessful problems, 48%. See (Joslin 1996) for details.

One response to this problem is to continue passive
postponement, but to be smarter about which deci-
sions are postponed. This is one way to think about the
Least-Cost Flaw Repair (LCFR) flaw selection strat-
egy we presented in (Jo&n & Pollack 1994). Indeed,
LCFR is a step in the direction of least-commitment
planning, because it prefers decisions that are forced to
ones that are not. However, even with an LCFR-style
strategy, postponed decisions do not play a role in rea-
soning about the plan until they are selected. Because
of this, LCFR can only recognize forced decisions (in-
cluding dead-ends) that involve just a single flaw on
the agenda, considered in isolation. When a decision
is forced as a result of flaw interactions, LCFR will not
recognize it as forced, and thus may be unable to take
a least-commitment approach.

Overview of active postponement

The active postponement approach to planning recog-
nizes that flaws represent decisions that will eventu-
ally have to be made, and that these postponed de-
cisions impose constraints on the plan being devel-
oped. It represents these decisions with constrained
variables whose domains represent the available op-
tions, and posts constraints that represent correctness
criteria on those still-to-be-made decisions. A general-
purpose constraint engine can then be used to enforce
the constraints throughout the planning process.

To illustrate active postponement .for threat resolu-
tion, consider a situation in which there is a causal link
from some step A to another step B. Assume a third
step C, just added to the plan, threatens the causal
link from A to B. A constrained variable, Dt, is in-
troduced, representing a decision between promotion
and demotion, i.e., Dt E {p, d}, and the following con-

straints will be posted:

(Dt = p) --f @er(C, B)
(Dt = d) --+ before(C, A)

The decision about how to resolve the threat can then
be postponed, and made at any time by binding Dt.

Suppose that at some later point it becomes impos-
sible to satisfy after(C) B). The constraint engine can
deduce that Dt # p, and thus Dt = d, and thus C
must occur before A. Similarly, if the threat becomes
unresolvable, the constraint engine can deduce that
Dt E {p, d} cannot be satisfied, and thus that the node
is a dead end. This reasoning occurs automatically, by
constraint propagation, without the need to “select”
the flaw that Dt represents.

When a threat arises, all of the options for resolv-
ing that threat are known; other changes to the plan
may eliminate options, but cannot introduce new op-
tions. Active postponement for goal achievement is
more complex, because the repair options may not all
be known at the time the goal arises: steps added later
to the plan may introduce new options for achieving a
goal. To handle this, we allow the decision variables for
goal achievement (termed cuusuI variables) to have dy-
namic domains to which new values can be added. We
notate dynamic domains using ellipses, e.g., D, E {. . .)
represents the decision about how to achieve some goal
g, for which there are not yet any candidate establish-
ers. An empty dynamic domain does not indicate a
dead end, because new options may be added later; it
does, however, mean that the problem cannot be solved
unless some new option is introduced. Suppose that at
a later stage in planning, some new step F is intro-
duced, with g as an effect. An active postponement
planner will expand the domain so that D, E {F, . . .}.
Constraints will be posted to represent the conditions,
such as parameter bindings, that must be satisfied for
F to achieve g.

Least-commitment planning
The active-postponement approach just sketched has
been implemented in the Descartes planning system.
Descartes provides a framework within which a wide
variety of planning strategies can be realized (Joslin
1996). In this section, we provide the details of the
algorithm used by Descartes to perform fully “least-
commitment” planning: LC-Descartes.

LC-Descartes (Figure 1) can be viewed as perform-
ing plan generation within a single node that contains
both a partial plan II and a corresponding CSP, C.
II contains a set of steps, some of which have been
only tentatively introduced. C contains a set of vari-
ables and constraints on those variables. Variables in
C represent planning decisions in II. For example,
each precondition p of a step in II will correspond to
a causal variable in C representing the decision of how
to achieve p. Parameters of steps in II will correspond
to variables in C representing the binding options.

Search 1189

LC-Descartes(N = (II,C), A)
1. If some variable v E C has an empty static do-

main, then fail.
2. Else, if some variable v E C has an empty dy-

namic domain, then
(a) Let p be the precondition corresponding to v.
(b) Restricted expansion. For each operator

o E A with an effect e that can achieve p, call
Expund(N,o) to tentatively add o to II, and the
corresponding constraints and variables to C.

(c) Convert v to have a static domain (i.e., commit
to using one of the new steps to achieve p.)

(d) Recursion: Return L C-Descurtes(N, A)
3. Else, call Solve(C); if it finds a solution to the

CSP, then return that solution.
4. Else,

(a) Unrestricted expansion. For each o E A,
call Expund(N,o) to tentatively add a new step.

(b) Recursion: Return L C-Descurtes(N, A).

Figure 1: LC-Descartes algorithm

Expand(N = (II,C), a)
1. For each threat that arises between the new step,

cr, and steps already in the plan, II, expand the
CSP, C, to represent the possible ways of resolv-
ing the threat.

2. For each precondition, p, of step CT, add a new
causal variable to C whose dynamic domain in-
cludes all the existing steps in II that might
achieve p. Add constraints for the required bind-
ings and temporal ordering.

3. For each precondition, p, in II that might be
achieved by 0, if the causal variable for p has a
dynamic domain, add cr to that domain, and add
constraints for the required bindings and tempo-
ral ordering.

4. For any step ~11 in II, add the constraint that if
CT and cu are actually in the plan, they occur at
different times.

5. Add step CT to II.
6. Apply constraint reduction techniques (Tsang

1993) to prune impossible values from domains.

Figure 2: Expand algorithm

Initially, LC-Descartes is called with a node to which
only pseudo-steps for the initial and goal state, Si and
S,, have been added. Following the standard planning
technique, Si’s effects are the initial conditions, and
Ss’s preconditions are the goal conditions. The third
argument to LC-Descartes is the operator library, A.

LC-Descartes first checks whether any variable has
an empty static domain, indicating failure of the plan-
ning process. If failure has not occurred, it checks

whether any causal variable o has an empty dynamic
domain, indicating a forced decision to add some step
to achieve the goal corresponding to v. In this case,
it invokes the Expand function (see Figure 2), to add
a tentative step for each possible way of achieving the
goal, postponing the decision about which might be
used in the final plan. As Expand adds each new, ten-
tative step to the plan, it also expands the CSP (1)
to resolve threats involving the new step, (2) to al-
low any step already in the plan to achieve precon-
ditions of the new step, (3) to allow the new step to
achieve preconditions of steps already in the plan, and
(4) to prevent the new step from occurring at the same
time as any step already in the plan. This approach to
goal achievement generalizes multi-contributor causal
structures (Kambhampati 1994).

If no variable has an empty domain, LC-Descartes
invokes Solve, which applies standard CSP search tech-
niques to try to solve the CSP. At any point, the CSP
has a solution if and only the current set of plan steps
can be used to solve the planning problem. A solution
of the CSP must, of course, bind all of the variables,
satisfying all of the constraints. Binding all of the
variables means that all planning decisions have been
made-the ordering of plan steps, parameter bindings,
etc. Satisfying all of the constraints means that these
decisions have been made correctly.

In Solve, dynamic domains may be treated as static
since what we want to know is whether the current set
of plan steps are sufficient to solve the planning prob-
lem; for this reason, Solve uses standard CSP solution
techniques. We will assume that Solve performs an
exhaustive search, but this is not required in practice.

If Solve is unsuccessful, then LC-Descartes performs
an unrestricted expansion, described in the example
below. The algorithm continues in this fashion until
failure is detected or a solution is found.

A short example. Consider the Sussman Anomaly
Blocks World problem, in which the goal is to achieve
on(A,B), designated gl, and on(B,C), designated g2,
from an initial state in which on(C,A), on(A,l’ubZe),
and on(B, Table). The initial CSP is formed by calling
Expand to add the pseudo-actions for the initial and
goal states. At this point, the only dynamic variables
will be the causal variables for gl and 92; call these
DL?l and Dgz. Since neither goal can be satisfied by
any step currently in the plan (i.e., they aren’t satisfied
in the initial state), both of these variables have empty
domains.

There are no empty static domains, but both D,J
and D,z have empty dynamic domains. LC-Descartes
selects one of them; assume it selects D,j. It per-
forms a restricted expansion to add one instance of
each action type that might achieve this goal. For this
example, suppose we have only one action type, pu-
ton(?x, ?y, 2~)) that takes block ?z off of ?z and puts ?a:
on ?y. The new puton step will be restricted so that it

1190 Planning

must achieve on(A,B), which here means that the new
step is puton(A,B, Zz1); call this step S1. Adding this
step means that D,j = S1. (The domain of Dgl is
no longer dynamic because a commitment is made to
use the new step; this also causes S1 to be actually in
the plan, not just tentatively.) New variables and con-
straints will also be added to the CSP for any threats
that are introduced by this new step.

The resulting CSP again has a variable with an
empty dynamic domain, D,z, corresponding to the
goal on(B,C). A restricted expansion adds the step pu-
ton(B, C, ?z2), and adds this step (S2) to the domain of
D 92. Threat resolution constraints and variables are
again added. Some of the preconditions of S1 are po-
tentially satisfiable by S2, and vice versa, and the cor-
responding variables will have their dynamic domains
expanded appropriately.

At this point, the CSP turns out to have no variables
with empty domains. This indicates that us fur us can
be determined by CSP reduction alone, it is possible
that the problem can be solved with just the current
set of plan steps. Solve is called, but fails to find find
a solution; this indicates that, in fact, the current plan
steps are not sufficient.

The least-commitment approach demands that we
do only what we are forced to do. The failure to find a
solution told us that we are forced to expand the plan,
adding at least one new step. Unlike the restricted
expansions, however, we have no information about
which precondition(s) cannot be satisfied, and there-
fore, do not know which action(s) might be required.
That is, there are no empty dynamic domains, so ev-
ery condition has at least one potential establisher, but
conflicts among the constraints prevent establishers be-
ing selected for all of them.

Under these conditions, the least-commitment ap-
proach requires that we add new steps that can
achieve any precondition currently in the plan. In
LC-Descartes, this is an unrestricted expansion, and
is accomplished by adding one step of each type in the
operator library. In the current example, this is sim-
plified by the fact that there is only one action type.

The new step, S3, will be puton(?x3, ?y3, ?23), and
as before, variables and constraint will be added to
allow S3 to achieve any goal it is capable of achieving,
and to resolve any threats that were introduced by the
addition of S3. The CSP still has no variables with
empty domains, so SoZve is again called. This time the
standard solution to the Sussman anomaly is found.

As promised by its name, LC-Descartes will only
commit to decisions that are forced by constraints.
However, this least-commitment behavior requires un-
restricted expansions, which are are potentially very in-
efficient. They introduce steps that can be used for any
goal; note that unlike the first two steps, which were
constrained to achieve specific goals, step S3 above has
no bound parameters. Even worse, a new step of each
action type must be introduced. In addition, detecting

0 100
L 90
g 80
2 70

4 60 50
& 40
E 30
; 20
g 10

0
1 2 3 4 5 6 7 8 9 10111213141516

Number of blocks

Figure 3: Blocks World, random problems

the need for an unrestricted expansion is much more
laborious than checking for variables with empty do-
mains, since it requires that the
exhaustive search for a solution.

Solve function

Experimental results
We begin with a special type of domain, one that has
only a single action type. Although unlikely to be of

fail an

practical interest, such domains allow us to test the
limits of LC-Descartes. If unrestricted expansions are
a problem even in single-action domains, we know that
they will be prohibitive in more realistic domains.

Figure 3 shows experimental results on randomly
generated Blocks World problems, using the single-
action encoding given in the previous section. Prob-
lems were generated using the problem generator pro-
vided in the UCPOP 2.0 distribution. The number
of blocks was varied from 3 to 16, with 10 problems at
each level, for a total of 140 problems. UCPOP, LCFR
and LC-Descartes were run on the test problems, with
a search limit of 300 CPU seconds on a SPARCsta-
tion 20. We report the percentage of problems solved
within the CPU limit, and not the number of nodes
generated, because LC-Descartes does all its planning
within a single node.

UCPOP solved all of the 4-block problems, but its
performance fell off rapidly after that point. It dropped
below 50 percent at six blocks, and solved no problems
of more than eight blocks. LCFR’s performance fol-
lowed a similar pattern. LC-Descartes started to fail
on some problems at seven blocks, and dropped be-
low 50 percent at ten blocks. It solves problems of
up to fifteen blocks, and fails to solve any problems
larger than that. Roughly speaking, on a given set
of problems LC-Descartes performed about as well as
UCPOP or LCFR performed on problems with half as
many blocks. (Doubling the CPU limit did not change
the results appreciably.) In interpreting this result,
note that the difficulty of blocks world problems in-
creases exponentially with the number of blocks. Also
note that because it takes a fully least-commitment
approach, in a single-action domain LC-Descartes will
always generate minimal-length plans, something not
guaranteed by either UCPOP or LCFR.

Search 1191

We investigated what LC-Descartes is doing on the
larger problems (see (Joslin 1996) for details), and saw
that virtually all of its work is in the form of restricted
expansions. Of the 58 successful plans for five-block
problems and larger, the average number of steps in
each plan was 7.3; of these, only an average of 1.1
steps were added via unrestricted expansions. 31%
of these 58 problems were solved with only restricted
expansions, another 39% were solved with only one
unrestricted expansion. In other words, where LC-
Descartes was successful, it was because active post-
ponement allowed it to exploit the structure of the
problem enough to either reach a solution directly, or
at least get very close to a solution. Success depended
on avoiding unrestricted expansions.

EC-Descartes. These results led us to conjecture
that the least-commitment approach should be taken
at all points except those at which LC-Descartes per-
forms unrestricted expansions. We explored this idea
by modifying Descartes to make some early commit-
ments: EC-Descartes. EC-Descartes still differs sig-
nificantly from other planning algorithms, which make
early commitments at many points. In POCL plan-
ners, for example, threat resolution generates sepa-
rate successor nodes for promotion and demotion; each
node represents a commitment to one step ordering. If
both promotion and demotion are viable options, how-
ever, then a commitment to either is an early commit-
ment. EC-Descartes avoids this kind of early commit-
ment by posting a disjunctive constraint representing
all of the possible options, and postponing the decision
about which will be used to resolve the threat.

EC-Descartes and LC-Descartes behave identically
except at the point at which LC-Descartes would per-
form an unrestricted expansion. There, EC-Descartes
instead generates more than one successor node. Its
objective is to exchange one node that has become
under-constrained, and so difficult to solve, for a larger
number of nodes that all have at least one variable
with an empty domain, static or dynamic. In each of
these branches, EC-Descartes then returns to the least-
commitment approach, until a solution is found or the
problem again becomes under-constrained.

We implemented two versions of EC-Descartes that
achieve this objective. The first, EC(l), adopts the
simple strategy of selecting the dynamic domain vari-
able with the smallest domain; because only causal
variables have dynamic domains, these will be early
commitments about action selection. EC(1) generates
two successor nodes. In one, all values are removed
from the selected variable’s domain, forcing a restricted
expansion in that node. In the other successor node,
the domain is made static. These early commitments
are complete; the latter commits to using some step
currently in the node, and the former commits to using
some step that will be added later. (If EC(l) fails to
find a variable with a dynamic domain, it uses EC(2)‘s

CPU t

EC(I)
7.2

--q-q-
6.7

Problem LC Problem LC EC(1) EC(2)
1 1 *

* 6
7.2 6.7

2 2 31.5 31.5 142.4
3 3 * (2) * (2) 94.7 94.7
4 4 8.7 (1) 8.7 (1) 4.8 4.8 5T1

5
5
6 6 “%’

3”;;$) 5.2 5.2
155.2 155.2

9;8

7 7 9.0 (1) 9.0 (1) 7.4 7.4 6.2
8 8 4.0 (0) 4.0 (0) 3.6 3.6
9 9 5.8 (1) 5.8 (1) 5.7 5.7

3;6

imes are in imes are in seconds; * = exceeded time

142.4
*

5.1
9.8

*
6.2
3.6

*

seconds; * = exceeded time imit
Figure 4: Early- and least-commitment

strategy instead.)
The second version of EC-Descartes performs early

commitments in a manner analogous to the “divide and
conquer” technique sometimes used with CSPs. EC(2)
performs early commitment at the same time as EC(l),
but it selects a static variable with minimal domain
size, and then generates two successor nodes, each in-
heriting half of the domain of the selected variable. In
that both EC(l) and EC(2) select decisions with min-
imum domain size (within their respective classes of
variables), both bear some resemblance to LCFR.

Figure 4 shows CPU times for LC-Descartes and
both versions of EC-Descartes on a set of nine prob-
lems from the DIPART transportation planning do-
main (Pollack et al. 1994); it also shows in parentheses
the number of unrestricted expansions performed by
LC-Descartes. EC(l) solved all of the problems, while
EC(2) failed on three problems, and LC-Descartes
failed to solve four, hitting a search limit of 600 CPU
seconds. On all but the “easiest” problem (# 8)) LC-
Descartes needs to resort to at least one unrestricted
expansion, and it failed on all the problems on which
it performed a second unrestricted expansion. Al-
though this domain only has three action types, the
added overhead of carrying unneeded (tentative) steps,
and all of the associated constraints, is considerable.
Not surprisingly (at least in retrospect) the fully least-
commitment approach loses its effectiveness rapidly af-
ter the transition to unrestricted expansions occurs.
The relative advantage of EC(l) over EC(2) suggests
that early commitments on action selection are partic-
ularly effective.

Related work
Work related to LCFR includes DUnf and DMin
(Peot & Smith 1993), b ranch-l/branch-n (Currie &
Tate 1991), and ZLIFO (Schubert & Gerevini 1995).
DMin, which enforces ordering consistency for post-
poned threats, could be viewed as a “weakly active”
approach. To a lesser extent, even LCFR and ZLIFO
could be thought of as using “weakly active” postpone-
ment, since enough reasoning is done about postponed
decisions to detect flaws that become dead ends.

Virtually all modern planners do some of their work
by posting constraints, including codesignation con-

1192 Planning

straints on possible bindings, and causal links and tem-
poral constraints on step ordering. Allen and Koomen
(Allen & Koomen 1990) and Kambhampati (Kamb-
hampati 1994) generalize the notions of temporal and
causal constraints, respectively.

Planners that make more extensive use of constraints
include Zeno (Penberthy & Weld 1994) and O-Plan
(Tate, Drabble, & Dalton 1994). Zeno uses constraints
and temporal intervals to reason about goals with
deadlines and continuous change. O-Plan makes it pos-
sible for a number of specialized “constraint managers”
to work on a plan, all sharing a constraint representa-
tion that allows them to interact. Both Zeno and O-
Plan maintain an agenda; Descartes differs from them
in its use of active postponement.

Previous work that has used constraints in a more
active sense during plan generation includes (Stefik
1981; Kautz & Selman 1992; Yang 1992). MOLGEN
(Stefik 1981) posts constraints on variables that rep-
resent certain kinds of goal interactions in a partial
plan. These constraints then guide the planning pro-
cess, ruling out choices that would conflict with the
constraint. Descartes can be seen as taking a similar
constraint-posting approach, but extending it to apply
to all decisions, not just variable binding, and placing it
within a more uniform framework. Kautz and Selman
have shown how to represent a planning problem as a
CSP, given an initial user-selected set of plan steps; if
a solution cannot be found using some or all of those
steps, an expansion would be required, much like an
unrestricted expansion in LC-Descartes. WATPLAN
(Yang 1992) uses a CSP mechanism to resolve conflict
among possible variable bindings or step orderings; its
input is a possibly incorrect plan, which it transforms
to a correct one if possible. WATPLAN will not extend
the CSP if the input plan is incomplete.

Conclusions

The Descartes algorithm transforms planning problems
into dynamic CSPs, and makes it possible to take a
fully least-commitment approach to plan generation.
This research shows that the least-commitment ap-
proach can be profitably extended much further than
is currently done in POCL (and similar) planners.

There are, however, some fundamental limits to the
effectiveness of the least-commitment approach; early
commitments are sometimes necessary. In particular,
one can recognize that constraints have ceased to be
effective in guiding the search for a plan, and at that
point shift to making early commitments. These early
commitments can be viewed as trading one node whose
refinement has become difficult for some larger number
of nodes in which constraints force restricted expan-
sions to occur, i.e., trading one “hard” node for several
“easy” nodes. One direction for future research will be
to look for more effective techniques for making this
kind of early commitment.

Acknowledgements. This research has been sup-
ported by the Air Force Office of Scientific Re-
search (F49620-91-C-0005)) Rome Labs (RL)/ARPA
(F30602-93-C-0038 and F30602-95-l-0023)) an NSF
Young Investigator’s Award (IRI-9258392)) an NSF
CISE Postdoctoral Research award (CDA-9625755)
and a Mellon pre-doctoral fellowship.

References
Allen, J., and Koomen, J. 1990. Planning using a tem-
poral world model. In Readings in Planning. Morgan
Kaufmann Publishers. 559-565.
Currie, K., and Tate, A. 1991. O-plan: The open
planning architecture. Art. Int. 52:49-86.
Joslin, D., and Pollack, M. E. 1994. Least-cost flaw
repair: A plan refinement strategy for partial-order
planning. In Proc. AAAI-94, 1004-1009.
Joslin, D. 1996. Passive and active decision postpone-
ment in plan generation. Ph.D. dissertation, Intelli-
gent Systems Program, University of Pittsburgh.
Kambhampati, S.; Knoblock, C. A.; and Yang, Q.
1995. Planning as refinement search: A unified frame-
work for evaluating design tradeoffs in partial-order
planning. Art. Int. 76(l-2):167-238.
Kambhampati, S. 1994. Multi-contributor causal
structures for planning: a formalization and evalu-
ation. Art. Int. 69(l-2):235-278.
Kautz, H. and Selman, B. 1992. Planning as Satisfia-
bility. Proc. ECAI-92 Vienna, Austria, 1992, 359-363.
Penberthy, J. S., and Weld, D. 1992. UCPOP: A
sound, complete, partial order planner for ADL. In
Proc. 3rd Int. Conf. on KR and Reasoning, 103-114.
Penberthy, J. S., and Weld, D. 1994. Temporal
planning with continuous change. In Proc. AAAI-94,
1010-1015.
Peot, M., and Smith, D. E. 1993. Threat-removal
strategies for partial-order planning. In Proc. AAAI-
93, 492-499.
Pollack, M. E.; Znati, T.; Ephrati, E.; Joslin, D.;
Lauzac, S.; Nunes, A.; Onder, N.; Ronen, Y.; and Ur,
S. 1994. The DIPART project: A status report. In
Proceedings of the Annual ARPI Meeting.
Schubert, L., and Gerevini, A. 1995. Accelerating
partial order planners by improving plan and goal
choices. Tech. Rpt. 96-607, Univ. of Rochester Dept.
of Computer Science.
Stefik, M. 1981. Planning with constraints. Art. Int.
16:111-140.
Tate, A.; Drabble, B.; and Dalton, J. 1994. Reasoning
with constraints within 0-Plan2. Tech. Rpt. ARPA-
RL/O-Plan2/TP/6 V. 1, AIAI, Edinburgh.
Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. Academic Press.
Yang, Q. 1992. A theory of conflict resolution in
planning. Art. Int. 58(l-3):361-392.

Search 1193

