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Abstract 

Partial-Order Causal Link planners typically take 
a “least-commitment” approach to some deci- 
sions (notably, step ordering), postponing those 
decisions until constraints force them to be made. 
However, these planners rely to some degree on 
early commitments in making other types of 
decisions, including threat resolution and oper- 
ator choice. We show why existing planners 
cannot support full least-commitment decision- 
making, and present an alternative approach that 
can. The approach has been implemented in the 
Descartes system, which we describe. We also 
provide experimental results that demonstrate 
that a least-commitment approach to planning 
can be profitably extended beyond what is done 
in POCL and similar planners, but that taking 
a least-commitment approach to every planning 
decision can be inefficient: early commitment in 
plan generation is sometimes a good idea. 

Introduction 
The “least-commitment” approach to plan generation 
has, by and large, been successful where it has been 
tried. Partial-Order Causal Link (POCL) planners, for 
example, typically take a least-commitment approach 
to decisions about step ordering, postponing those de- 
cisions until constraints force them to be made. How- 
ever, these planners rely to some degree on early com- 
mitments for other decisions, including threat resolu- 
tion and choice of an operator to satisfy open con- 
ditions. An obvious question is whether the least- 
commitment approach should be applied to every plan- 
ning decision; in other words, is early commitment ever 
a good idea? 

An obstacle to addressing this question experimen- 
tally arises from the way in which POCL (and similar) 
planners manage decision-making. They take what we 
call a passive postponement approach, choosing one de- 
cision at a time to focus on, and keeping all the other, 
postponed decisions on an “agenda.” Items on the 
agenda play no role in planning until they are selected 
for consideration, despite the fact that they may im- 
pose constraints on the planning process. 
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In this paper, we present experimental evidence of 
the efficiency penalty that can be incurred with pas- 
sive postponement. We also present an alternative ap- 
proach, active postponement, which has been imple- 
mented in the Descartes system. In Descartes, plan- 
ning problems are transformed into Constraint Satis- 
faction Problems (CSPs), and then solved by applying 
both planning and CSP techniques. We present ex- 
perimental results indicating that a least-commitment 
approach to planning can be profitably extended be- 
yond what is done in most planners. We also demon- 
strate that taking a least-commitment approach to ev- 
ery planning decision can be inefficient: early commit- 
ment in plan generation is sometimes a good idea. 

Passive postponement 
POCL algorithms use refinement search (Kambham- 
pati, Knoblock, & Yang 1995). A node N (a partial 
plan) is selected for refinement, and a flaw F (a threat 
or open condition) from N is selected for repair. Suc- 
cessor nodes are generated for each of the possible re- 
pairs of F. All other (unselected) flaws from the parent 
node are inherited by these successor nodes. Each flaw 
represents a decision to be made about how to achieve a 
goal or resolve a threat; thus, each unselected flaw rep- 
resents a postponed decision. We term this approach 
to postponing decisions passive postponement. Deci- 
sions that are postponed in this manner play no role 
in planning until they are actually selected. 

Passive postponement of planning decisions can in- 
cur severe performance penalties. It is easiest to see 
this in the case of a node that has an unrepairable flaw. 
Such a node is a dead end, but the node may not be 
recognized as a dead end if some other, repairable flaw 
is selected instead: one or more successor nodes will be 
generated, each inheriting the unrepairable flaw, and 
each, therefore, also a dead end. In this manner, a sin- 
gle node with a fatal flaw may generate a large number 
of successor nodes, all dead ends. 

The propagation of dead-end nodes is an instance 
of a more general problem. Similar penalties are paid 
when a flaw that can be repaired in only one way- 
a “forced” repair-is delayed; in that case, the forced 
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repair may have to be repeated in multiple successor 
nodes. Passive postponement also means that inter- 
actions among the constraints imposed by postponed 
decisions are not recognized until all the relevant deci- 
sions have been selected for repair. 

The propagation of dead-end nodes is not just a 
theoretical problem; it can be shown experimentally 
to cause serious efficiency problems. We ran UCPOP 
(Penberthy & Weld 1992) on the same test set of 49 
problems from 15 domains previously used in (Joslin & 
Pollack 1994)) with the default search heuristics pro- 
vided by UCPOP. As in the earlier experiments, 32 of 
these problems were solved by UCPOP, and 17 were 
not, within a search limit of 8000 nodes generated. We 
counted the number of nodes examined, and the num- 
ber of those nodes that were immediate successors of 
dead-end nodes, i.e., nodes that would never have been 
generated if fatal flaws were always selected immedi- 
ately. For some problems, as many as 98% of the nodes 
examined were successors of dead-end nodes. The av- 
erage for successful problems was 24%) and for unsuc- 
cessful problems, 48%. See (Joslin 1996) for details. 

One response to this problem is to continue passive 
postponement, but to be smarter about which deci- 
sions are postponed. This is one way to think about the 
Least-Cost Flaw Repair (LCFR) flaw selection strat- 
egy we presented in (Jo&n & Pollack 1994). Indeed, 
LCFR is a step in the direction of least-commitment 
planning, because it prefers decisions that are forced to 
ones that are not. However, even with an LCFR-style 
strategy, postponed decisions do not play a role in rea- 
soning about the plan until they are selected. Because 
of this, LCFR can only recognize forced decisions (in- 
cluding dead-ends) that involve just a single flaw on 
the agenda, considered in isolation. When a decision 
is forced as a result of flaw interactions, LCFR will not 
recognize it as forced, and thus may be unable to take 
a least-commitment approach. 

Overview of active postponement 

The active postponement approach to planning recog- 
nizes that flaws represent decisions that will eventu- 
ally have to be made, and that these postponed de- 
cisions impose constraints on the plan being devel- 
oped. It represents these decisions with constrained 
variables whose domains represent the available op- 
tions, and posts constraints that represent correctness 
criteria on those still-to-be-made decisions. A general- 
purpose constraint engine can then be used to enforce 
the constraints throughout the planning process. 

To illustrate active postponement .for threat resolu- 
tion, consider a situation in which there is a causal link 
from some step A to another step B. Assume a third 
step C, just added to the plan, threatens the causal 
link from A to B. A constrained variable, Dt, is in- 
troduced, representing a decision between promotion 
and demotion, i.e., Dt E {p, d}, and the following con- 

straints will be posted: 

(Dt = p) --f @er(C, B) 
(Dt = d) --+ before(C, A) 

The decision about how to resolve the threat can then 
be postponed, and made at any time by binding Dt. 

Suppose that at some later point it becomes impos- 
sible to satisfy after(C) B). The constraint engine can 
deduce that Dt # p, and thus Dt = d, and thus C 
must occur before A. Similarly, if the threat becomes 
unresolvable, the constraint engine can deduce that 
Dt E {p, d} cannot be satisfied, and thus that the node 
is a dead end. This reasoning occurs automatically, by 
constraint propagation, without the need to “select” 
the flaw that Dt represents. 

When a threat arises, all of the options for resolv- 
ing that threat are known; other changes to the plan 
may eliminate options, but cannot introduce new op- 
tions. Active postponement for goal achievement is 
more complex, because the repair options may not all 
be known at the time the goal arises: steps added later 
to the plan may introduce new options for achieving a 
goal. To handle this, we allow the decision variables for 
goal achievement (termed cuusuI variables) to have dy- 
namic domains to which new values can be added. We 
notate dynamic domains using ellipses, e.g., D, E {. . .) 
represents the decision about how to achieve some goal 
g, for which there are not yet any candidate establish- 
ers. An empty dynamic domain does not indicate a 
dead end, because new options may be added later; it 
does, however, mean that the problem cannot be solved 
unless some new option is introduced. Suppose that at 
a later stage in planning, some new step F is intro- 
duced, with g as an effect. An active postponement 
planner will expand the domain so that D, E {F, . . .}. 
Constraints will be posted to represent the conditions, 
such as parameter bindings, that must be satisfied for 
F to achieve g. 

Least-commitment planning 
The active-postponement approach just sketched has 
been implemented in the Descartes planning system. 
Descartes provides a framework within which a wide 
variety of planning strategies can be realized (Joslin 
1996). In this section, we provide the details of the 
algorithm used by Descartes to perform fully “least- 
commitment” planning: LC-Descartes. 

LC-Descartes (Figure 1) can be viewed as perform- 
ing plan generation within a single node that contains 
both a partial plan II and a corresponding CSP, C. 
II contains a set of steps, some of which have been 
only tentatively introduced. C contains a set of vari- 
ables and constraints on those variables. Variables in 
C represent planning decisions in II. For example, 
each precondition p of a step in II will correspond to 
a causal variable in C representing the decision of how 
to achieve p. Parameters of steps in II will correspond 
to variables in C representing the binding options. 
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LC-Descartes(N = (II,C), A) 
1. If some variable v E C has an empty static do- 

main, then fail. 
2. Else, if some variable v E C has an empty dy- 

namic domain, then 
(a) Let p be the precondition corresponding to v. 
(b) Restricted expansion. For each operator 

o E A with an effect e that can achieve p, call 
Expund(N,o) to tentatively add o to II, and the 
corresponding constraints and variables to C. 

(c) Convert v to have a static domain (i.e., commit 
to using one of the new steps to achieve p.) 

(d) Recursion: Return L C-Descurtes(N, A) 
3. Else, call Solve(C); if it finds a solution to the 

CSP, then return that solution. 
4. Else, 

(a) Unrestricted expansion. For each o E A, 
call Expund(N,o) to tentatively add a new step. 

(b) Recursion: Return L C-Descurtes(N, A). 

Figure 1: LC-Descartes algorithm 

Expand(N = (II,C), a) 
1. For each threat that arises between the new step, 

cr, and steps already in the plan, II, expand the 
CSP, C, to represent the possible ways of resolv- 
ing the threat. 

2. For each precondition, p, of step CT, add a new 
causal variable to C whose dynamic domain in- 
cludes all the existing steps in II that might 
achieve p. Add constraints for the required bind- 
ings and temporal ordering. 

3. For each precondition, p, in II that might be 
achieved by 0, if the causal variable for p has a 
dynamic domain, add cr to that domain, and add 
constraints for the required bindings and tempo- 
ral ordering. 

4. For any step ~11 in II, add the constraint that if 
CT and cu are actually in the plan, they occur at 
different times. 

5. Add step CT to II. 
6. Apply constraint reduction techniques (Tsang 

1993) to prune impossible values from domains. 

Figure 2: Expand algorithm 

Initially, LC-Descartes is called with a node to which 
only pseudo-steps for the initial and goal state, Si and 
S,, have been added. Following the standard planning 
technique, Si’s effects are the initial conditions, and 
Ss’s preconditions are the goal conditions. The third 
argument to LC-Descartes is the operator library, A. 

LC-Descartes first checks whether any variable has 
an empty static domain, indicating failure of the plan- 
ning process. If failure has not occurred, it checks 

whether any causal variable o has an empty dynamic 
domain, indicating a forced decision to add some step 
to achieve the goal corresponding to v. In this case, 
it invokes the Expand function (see Figure 2), to add 
a tentative step for each possible way of achieving the 
goal, postponing the decision about which might be 
used in the final plan. As Expand adds each new, ten- 
tative step to the plan, it also expands the CSP (1) 
to resolve threats involving the new step, (2) to al- 
low any step already in the plan to achieve precon- 
ditions of the new step, (3) to allow the new step to 
achieve preconditions of steps already in the plan, and 
(4) to prevent the new step from occurring at the same 
time as any step already in the plan. This approach to 
goal achievement generalizes multi-contributor causal 
structures (Kambhampati 1994). 

If no variable has an empty domain, LC-Descartes 
invokes Solve, which applies standard CSP search tech- 
niques to try to solve the CSP. At any point, the CSP 
has a solution if and only the current set of plan steps 
can be used to solve the planning problem. A solution 
of the CSP must, of course, bind all of the variables, 
satisfying all of the constraints. Binding all of the 
variables means that all planning decisions have been 
made-the ordering of plan steps, parameter bindings, 
etc. Satisfying all of the constraints means that these 
decisions have been made correctly. 

In Solve, dynamic domains may be treated as static 
since what we want to know is whether the current set 
of plan steps are sufficient to solve the planning prob- 
lem; for this reason, Solve uses standard CSP solution 
techniques. We will assume that Solve performs an 
exhaustive search, but this is not required in practice. 

If Solve is unsuccessful, then LC-Descartes performs 
an unrestricted expansion, described in the example 
below. The algorithm continues in this fashion until 
failure is detected or a solution is found. 

A short example. Consider the Sussman Anomaly 
Blocks World problem, in which the goal is to achieve 
on(A,B), designated gl, and on(B,C), designated g2, 
from an initial state in which on(C,A), on(A,l’ubZe), 
and on(B, Table). The initial CSP is formed by calling 
Expand to add the pseudo-actions for the initial and 
goal states. At this point, the only dynamic variables 
will be the causal variables for gl and 92; call these 
DL?l and Dgz. Since neither goal can be satisfied by 
any step currently in the plan (i.e., they aren’t satisfied 
in the initial state), both of these variables have empty 
domains. 

There are no empty static domains, but both D,J 
and D,z have empty dynamic domains. LC-Descartes 
selects one of them; assume it selects D,j. It per- 
forms a restricted expansion to add one instance of 
each action type that might achieve this goal. For this 
example, suppose we have only one action type, pu- 
ton(?x, ?y, 2~)) that takes block ?z off of ?z and puts ?a: 
on ?y. The new puton step will be restricted so that it 
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must achieve on(A,B), which here means that the new 
step is puton(A,B, Zz1); call this step S1. Adding this 
step means that D,j = S1. (The domain of Dgl is 
no longer dynamic because a commitment is made to 
use the new step; this also causes S1 to be actually in 
the plan, not just tentatively.) New variables and con- 
straints will also be added to the CSP for any threats 
that are introduced by this new step. 

The resulting CSP again has a variable with an 
empty dynamic domain, D,z, corresponding to the 
goal on(B,C). A restricted expansion adds the step pu- 
ton(B, C, ?z2), and adds this step (S2) to the domain of 
D 92. Threat resolution constraints and variables are 
again added. Some of the preconditions of S1 are po- 
tentially satisfiable by S2, and vice versa, and the cor- 
responding variables will have their dynamic domains 
expanded appropriately. 

At this point, the CSP turns out to have no variables 
with empty domains. This indicates that us fur us can 
be determined by CSP reduction alone, it is possible 
that the problem can be solved with just the current 
set of plan steps. Solve is called, but fails to find find 
a solution; this indicates that, in fact, the current plan 
steps are not sufficient. 

The least-commitment approach demands that we 
do only what we are forced to do. The failure to find a 
solution told us that we are forced to expand the plan, 
adding at least one new step. Unlike the restricted 
expansions, however, we have no information about 
which precondition(s) cannot be satisfied, and there- 
fore, do not know which action(s) might be required. 
That is, there are no empty dynamic domains, so ev- 
ery condition has at least one potential establisher, but 
conflicts among the constraints prevent establishers be- 
ing selected for all of them. 

Under these conditions, the least-commitment ap- 
proach requires that we add new steps that can 
achieve any precondition currently in the plan. In 
LC-Descartes, this is an unrestricted expansion, and 
is accomplished by adding one step of each type in the 
operator library. In the current example, this is sim- 
plified by the fact that there is only one action type. 

The new step, S3, will be puton(?x3, ?y3, ?23), and 
as before, variables and constraint will be added to 
allow S3 to achieve any goal it is capable of achieving, 
and to resolve any threats that were introduced by the 
addition of S3. The CSP still has no variables with 
empty domains, so SoZve is again called. This time the 
standard solution to the Sussman anomaly is found. 

As promised by its name, LC-Descartes will only 
commit to decisions that are forced by constraints. 
However, this least-commitment behavior requires un- 
restricted expansions, which are are potentially very in- 
efficient. They introduce steps that can be used for any 
goal; note that unlike the first two steps, which were 
constrained to achieve specific goals, step S3 above has 
no bound parameters. Even worse, a new step of each 
action type must be introduced. In addition, detecting 
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Figure 3: Blocks World, random problems 

the need for an unrestricted expansion is much more 
laborious than checking for variables with empty do- 
mains, since it requires that the 
exhaustive search for a solution. 

Solve function 

Experimental results 
We begin with a special type of domain, one that has 
only a single action type. Although unlikely to be of 

fail an 

practical interest, such domains allow us to test the 
limits of LC-Descartes. If unrestricted expansions are 
a problem even in single-action domains, we know that 
they will be prohibitive in more realistic domains. 

Figure 3 shows experimental results on randomly 
generated Blocks World problems, using the single- 
action encoding given in the previous section. Prob- 
lems were generated using the problem generator pro- 
vided in the UCPOP 2.0 distribution. The number 
of blocks was varied from 3 to 16, with 10 problems at 
each level, for a total of 140 problems. UCPOP, LCFR 
and LC-Descartes were run on the test problems, with 
a search limit of 300 CPU seconds on a SPARCsta- 
tion 20. We report the percentage of problems solved 
within the CPU limit, and not the number of nodes 
generated, because LC-Descartes does all its planning 
within a single node. 

UCPOP solved all of the 4-block problems, but its 
performance fell off rapidly after that point. It dropped 
below 50 percent at six blocks, and solved no problems 
of more than eight blocks. LCFR’s performance fol- 
lowed a similar pattern. LC-Descartes started to fail 
on some problems at seven blocks, and dropped be- 
low 50 percent at ten blocks. It solves problems of 
up to fifteen blocks, and fails to solve any problems 
larger than that. Roughly speaking, on a given set 
of problems LC-Descartes performed about as well as 
UCPOP or LCFR performed on problems with half as 
many blocks. (Doubling the CPU limit did not change 
the results appreciably.) In interpreting this result, 
note that the difficulty of blocks world problems in- 
creases exponentially with the number of blocks. Also 
note that because it takes a fully least-commitment 
approach, in a single-action domain LC-Descartes will 
always generate minimal-length plans, something not 
guaranteed by either UCPOP or LCFR. 
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We investigated what LC-Descartes is doing on the 
larger problems (see (Joslin 1996) for details), and saw 
that virtually all of its work is in the form of restricted 
expansions. Of the 58 successful plans for five-block 
problems and larger, the average number of steps in 
each plan was 7.3; of these, only an average of 1.1 
steps were added via unrestricted expansions. 31% 
of these 58 problems were solved with only restricted 
expansions, another 39% were solved with only one 
unrestricted expansion. In other words, where LC- 
Descartes was successful, it was because active post- 
ponement allowed it to exploit the structure of the 
problem enough to either reach a solution directly, or 
at least get very close to a solution. Success depended 
on avoiding unrestricted expansions. 

EC-Descartes. These results led us to conjecture 
that the least-commitment approach should be taken 
at all points except those at which LC-Descartes per- 
forms unrestricted expansions. We explored this idea 
by modifying Descartes to make some early commit- 
ments: EC-Descartes. EC-Descartes still differs sig- 
nificantly from other planning algorithms, which make 
early commitments at many points. In POCL plan- 
ners, for example, threat resolution generates sepa- 
rate successor nodes for promotion and demotion; each 
node represents a commitment to one step ordering. If 
both promotion and demotion are viable options, how- 
ever, then a commitment to either is an early commit- 
ment. EC-Descartes avoids this kind of early commit- 
ment by posting a disjunctive constraint representing 
all of the possible options, and postponing the decision 
about which will be used to resolve the threat. 

EC-Descartes and LC-Descartes behave identically 
except at the point at which LC-Descartes would per- 
form an unrestricted expansion. There, EC-Descartes 
instead generates more than one successor node. Its 
objective is to exchange one node that has become 
under-constrained, and so difficult to solve, for a larger 
number of nodes that all have at least one variable 
with an empty domain, static or dynamic. In each of 
these branches, EC-Descartes then returns to the least- 
commitment approach, until a solution is found or the 
problem again becomes under-constrained. 

We implemented two versions of EC-Descartes that 
achieve this objective. The first, EC(l), adopts the 
simple strategy of selecting the dynamic domain vari- 
able with the smallest domain; because only causal 
variables have dynamic domains, these will be early 
commitments about action selection. EC( 1) generates 
two successor nodes. In one, all values are removed 
from the selected variable’s domain, forcing a restricted 
expansion in that node. In the other successor node, 
the domain is made static. These early commitments 
are complete; the latter commits to using some step 
currently in the node, and the former commits to using 
some step that will be added later. (If EC(l) fails to 
find a variable with a dynamic domain, it uses EC(2)‘s 
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Figure 4: Early- and least-commitment 

strategy instead.) 
The second version of EC-Descartes performs early 

commitments in a manner analogous to the “divide and 
conquer” technique sometimes used with CSPs. EC(2) 
performs early commitment at the same time as EC(l), 
but it selects a static variable with minimal domain 
size, and then generates two successor nodes, each in- 
heriting half of the domain of the selected variable. In 
that both EC(l) and EC(2) select decisions with min- 
imum domain size (within their respective classes of 
variables), both bear some resemblance to LCFR. 

Figure 4 shows CPU times for LC-Descartes and 
both versions of EC-Descartes on a set of nine prob- 
lems from the DIPART transportation planning do- 
main (Pollack et al. 1994); it also shows in parentheses 
the number of unrestricted expansions performed by 
LC-Descartes. EC(l) solved all of the problems, while 
EC(2) failed on three problems, and LC-Descartes 
failed to solve four, hitting a search limit of 600 CPU 
seconds. On all but the “easiest” problem (# 8)) LC- 
Descartes needs to resort to at least one unrestricted 
expansion, and it failed on all the problems on which 
it performed a second unrestricted expansion. Al- 
though this domain only has three action types, the 
added overhead of carrying unneeded (tentative) steps, 
and all of the associated constraints, is considerable. 
Not surprisingly (at least in retrospect) the fully least- 
commitment approach loses its effectiveness rapidly af- 
ter the transition to unrestricted expansions occurs. 
The relative advantage of EC(l) over EC(2) suggests 
that early commitments on action selection are partic- 
ularly effective. 

Related work 
Work related to LCFR includes DUnf and DMin 
(Peot & Smith 1993), b ranch-l/branch-n (Currie & 
Tate 1991), and ZLIFO (Schubert & Gerevini 1995). 
DMin, which enforces ordering consistency for post- 
poned threats, could be viewed as a “weakly active” 
approach. To a lesser extent, even LCFR and ZLIFO 
could be thought of as using “weakly active” postpone- 
ment, since enough reasoning is done about postponed 
decisions to detect flaws that become dead ends. 

Virtually all modern planners do some of their work 
by posting constraints, including codesignation con- 
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straints on possible bindings, and causal links and tem- 
poral constraints on step ordering. Allen and Koomen 
(Allen & Koomen 1990) and Kambhampati (Kamb- 
hampati 1994) generalize the notions of temporal and 
causal constraints, respectively. 

Planners that make more extensive use of constraints 
include Zeno (Penberthy & Weld 1994) and O-Plan 
(Tate, Drabble, & Dalton 1994). Zeno uses constraints 
and temporal intervals to reason about goals with 
deadlines and continuous change. O-Plan makes it pos- 
sible for a number of specialized “constraint managers” 
to work on a plan, all sharing a constraint representa- 
tion that allows them to interact. Both Zeno and O- 
Plan maintain an agenda; Descartes differs from them 
in its use of active postponement. 

Previous work that has used constraints in a more 
active sense during plan generation includes (Stefik 
1981; Kautz & Selman 1992; Yang 1992). MOLGEN 
(Stefik 1981) posts constraints on variables that rep- 
resent certain kinds of goal interactions in a partial 
plan. These constraints then guide the planning pro- 
cess, ruling out choices that would conflict with the 
constraint. Descartes can be seen as taking a similar 
constraint-posting approach, but extending it to apply 
to all decisions, not just variable binding, and placing it 
within a more uniform framework. Kautz and Selman 
have shown how to represent a planning problem as a 
CSP, given an initial user-selected set of plan steps; if 
a solution cannot be found using some or all of those 
steps, an expansion would be required, much like an 
unrestricted expansion in LC-Descartes. WATPLAN 
(Yang 1992) uses a CSP mechanism to resolve conflict 
among possible variable bindings or step orderings; its 
input is a possibly incorrect plan, which it transforms 
to a correct one if possible. WATPLAN will not extend 
the CSP if the input plan is incomplete. 

Conclusions 

The Descartes algorithm transforms planning problems 
into dynamic CSPs, and makes it possible to take a 
fully least-commitment approach to plan generation. 
This research shows that the least-commitment ap- 
proach can be profitably extended much further than 
is currently done in POCL (and similar) planners. 

There are, however, some fundamental limits to the 
effectiveness of the least-commitment approach; early 
commitments are sometimes necessary. In particular, 
one can recognize that constraints have ceased to be 
effective in guiding the search for a plan, and at that 
point shift to making early commitments. These early 
commitments can be viewed as trading one node whose 
refinement has become difficult for some larger number 
of nodes in which constraints force restricted expan- 
sions to occur, i.e., trading one “hard” node for several 
“easy” nodes. One direction for future research will be 
to look for more effective techniques for making this 
kind of early commitment. 
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