
ming, Propositional Logic, and Stochastic 
Search 

Henry Kautz and Bart Selman 
AT&T Laboratories 

600 Mountain Avenue 
Murray Hill, NJ 07974 

{kautz, selman)@research.att.com 
http://www.research.att.com/“{kautz, selman} 

Abstract 

Planning is a notoriously hard combinatorial search 
problem. In many interesting domains, current plan- 
ning algorithms fail to scale up gracefully. By combin- 
ing a general, stochastic search algorithm and appro- 
priate problem encodings based on propositional logic, 
we are able to solve hard planning problems many 
times faster than the best current planning systems. 
Although stochastic methods have been shown to be 
very effective on a wide range of scheduling problems, 
this is the first demonstration of its power on truly 
challenging classical planning instances. This work 
also provides a new perspective on representational 
issues in planning. 

Introduction 

There is a widespread belief in the AI community that 
planning is not amenable to general theorem-proving 
techniques. The origin of this belief can be traced to 
the early 1970’s, when work on plan generation usin 
first-order, resolution theorem-proving (Green 1969 7 
failed to scale up to realistically-sized problems. The 
relative success of the STRIPS system (Fikes and Nils- 
son 1971) established the basic paradigm for practi- 
cally all subsequent work in planning. Planning is 
viewed as a systematic search through either a state- 
space or through a space of partial plans. Different 
representations are used for actions and for states or 
fluents. Control strategies are not discussed in terms 
of general rules of inference, but rather in terms of 
rules for establishing and protecting goals, detecting 
conflicts between actions, and so forth. 

The results described in this paper challenge this be- 
lief. We have applied general reasoning systems to the 
task of plan synthesis, and obtained results that are 
competitive with, and in many cases superior to, the 
best specialized planning systems. Why was this pos- 
sible? We believe that the lesson of the 1970’s should 
not have been that planning required specialized algo- 
rithms, but simply that first-order deductive theorem- 
proving does not scale well. By contrast, the past few 
years have seen dramatic progress in the size of prob- 
lems that can be handled by propositional satisfiabil- 
ity testing programs (Trick and Johnson 1993, Selman 
1995). In particular, new algorithms based on random- 
ized local search (Selman et al. 1992) can solve certain 
classes of hard problems that are an order of magni- 
tude larger than those that can be solved by older ap- 

1194 Planning 

proaches. Therefore, our formalization of planning is 
based on propositional satisfiability, rather than first- 
order refutation. 

We ran experiments with both one of the best sys- 
tematic satisfiability algorithms (“tableau”, by Craw- 
ford and Auton (1993)) and one of the best stochas- 
tic algorithms (“Walksat”, by Selman et al. (1994; 
1996)). All task-specific information was given a uni- 
form clausal representation: the inference engines had 
no explicit indication as to what stood for a goal or 
what stood for an operator. This meant that the 
solvers were not constrained to perform a strict back- 
ward or forward chaining search, as would be done by 
most planning systems. Far from being a disadvantage, 
this greatly adds to the power of approach, by allow- 
ing constraints to propagate more freely and thus more 
quickly reduce the search space. (The idea of viewing 
planning as general constraint satisfaction rather than 
directional search has also been explored by other au- 
thors; see, for example, Joslin and Pollack (1995).) 

The notion of formalizing planning as propositional 
reasoning immediately raises certain questions. Plan- 
ning is a notoriously hard problem. In fact, the general 
plan-existence problem for STRIPS-style operators is 
PSPACE-complete (Bylander 1991, Erol et al. 1992, 
Backstrom 1992). How, then, is it possible to formulate 
planning as only an NP-complete problem? This dif- 
ficulty disappears when we realize that the PSPACE 
hardness result only holds when the potential solutions 
can be of exponential length. If we are only interested 
in polynomial-length plans, then planning is indeed 
NP-complete. 

Many other planning systems can be viewed as spe- 
cialized propositional reasoning engines. A surpris- 
ingly efficient recent planning system is Graphplan, 
developed by Blum and Furst (1995). Graphplan 
works in two phases: in the first, a problem stated 
using STRIPS notation is converted to a data struc- 
ture called a “planning graph”. In the second, the 
graph is systematically searched for a solution. The 
planning graph is in fact a propositional representa- 
tion. In some of our experiments, we directly converted 
planning graphs into sets of clauses, and then applied 
Walksat or tableau. For other experiments we devel- 
oped by hand even more compact and efficient clausal 
encodings of the problems. As we will see, it was often 
the case that Walksat dramatically outperformed both 
the general and specialized systematic search engines. 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



The success of stochastic local search for planning 
may come as a surprise. Although local search has been 
successfully applied to scheduling problems (Adorf and 
Johnston 1990, Minton et al. 1990, 1992)) it has seen 
little use for planning. Some authors (Kautz and Sel- 
man (1992), Crawford and Baker (1994)) have sug- 
gested that planning (finding a partially-ordered set 
of operators that achieve a goal) and scheduling (as- 
signing times and resources to a given, fixed set of 
operators) require different control mechanisms, and 
that planning is inherently a systematic process Our 
present success can be mainly attributed to two factors: 
first, the greater speed and power of Walksat over ear- 
lier local search satisfiability algorithms (e.g., GSAT 
(Selman et al. 1992)); and second, our use of better 
problem encodings - including “compiling away” plan 
operators, and extending a technique from Blum and 
Furst for encoding partially-ordered plans with parallel 
actions. Our results appear to be the first convincing 
evidence that stochastic local search is indeed a pow- 
erful technique for planning. 

We will discuss techniques for encoding planning 
problems as propositional SAT in some detail below. 
Our experience has been that the search for domain 
axiomatizations with better computational properties 
has led us to valuable insights at the representational 
level. For example, we will describe one encoding we 
used that “compiles away” any explicit propositions 
that stand for actions, leaving only fluents. While this 
encoding was initially motivated by a concern for re- 
ducing the number of different propositions in the fi- 
nal formula, it turned out to also enable a particularly 
simple and elegant solution to the frame problem with 
parallel actions. It is important to note that we are 
emphatically not suggesting that control knowledge 
should be “mixed-in” with declarative information, as 
occurs in logic programming. Instead, we are suggest- 
ing that it can be advantageous to try to optimize the 
gross statistical properties of an axiomatization when 
developing or choosing between declarative represen- 
tations. 

This paper is organized as follows After a short pre- 
view of the results, we discuss general approaches to 
planning as satisfiability, and particular encoding tech- 
niques. We then present experimental results drawn 
from several domains, including logistics problems, the 
“rocket” domain, and the blocks world. We compare 
the performance of both systematic and stochastic al- 
gorithms on different kinds of SAT encodings to the 
performance of Graphplan, and cite comparisons of 
Graphplan with the well-known Prodigy (Carbonell et 
al. 1992, Stone et al. 1994) and UCPOP (Penberthy 
and Weld 1992) systems. 

Preview of Results 

Before we describe our approach in detail, we will first 
highlight some of our main experimental results. In or- 
der to evaluate our method, we considered planning do- 
mains that lead to serious computational difficulties in 
traditional planners. Barrett and Weld (1994) discuss 
various characteristics of such domains. In general, 
the hardest planning domains contain intricate inter- 
actions between planning operators, and various types 
of goal and subgoal interactions. These interactions 

complicate the order in which the goals and subgoals 
should be established, and make it difficult to select 
the right operator for establishing a goal. Real-world 
domains often contain both sources of computational 
difficulties. 

In our experiments, we focussed on two natural do- 
mains: the “rocket” domain (Blum and Furst 1995) 
and the “logistics” domain (Veloso 1992). Blum and 
Furst showed that Graphplan outperforms Prodigy 
and UCPOP on the rocket problems. We extended 
this problem somewhat to make it more challenging 
for Graphplan. The logistics domain can be viewed as 
yet a further extension of the rocket domain, making 
it even harder. We also considered several relatively 
large blocks world problems, because even small blocks 
world instances are often already surprisingly hard for 
traditional planners. 

Table 1 gives the results on some of the hardest in- 
stances we c0nsidered.i From the last column, it is 
clear that using a stochastic method (Walksat) and a 
direct SAT encoding, we can solve these instances two 
or more orders of magnitude faster than Graphplan. 
Walksat actually found the optimal (i.e., shortest pos- 
sible plans) for these problems. Thus, for example, it 
found an optimal 36 step plan to the blocks world prob- 
lem “bw1arge.d”. This instance contains 19 blocks and 
has multiple stacks in both the initial and goal state. 
We not aware of any other planning algorithm that can 
solve instances this size without incorporating domain- 
specific search control knowledge. 

The table also contains our results of running on 
the SAT encodings derived from Graphplan’s planning 
graphs. The first two instances are again solved sig- 
nificantly faster than by using Graphplan itself. The 
SAT encodings for the last two instances became too 
large for our SAT procedures. Our SAT encoding is 
more compact than the original Graphplan represen- 
tation, but Graphplan can handle larger internal data 
structures than can our SAT procedures. The planning 
graph for “bw1arge.b” contains 18,069 nodes and has 
over one million exclusion relations. This is just within 
Graphplan’s reach, taking over 7 hours; on our state- 
base encoding, Walksat takes only 22 seconds. Walk- 
sat9s solution was proved optimal using the systematic 
algorithm tableau. Interestingly, although tableau is 
able to show that there is no shorter solution, it can- 
not actually find the solution itself! This show how 
stochastic and the systematic methods can comple- 
ment one another. 

Planning as Satisfiability 

While planning has traditionally been formulated as 
deduction in first-order logic (Green 1969, McCarthy 
and Hayes 1969, Pednault 1988, Allen 1991), Kautz 

Search 1195 



61 pro em time rap pan 
actions 

T encoding 
systematic stochastic stochastic 

rocket-ext.a 7134 520 4.4 4.7 0.1 
1ogistics.c 13165 - 23,040 240 1.9 
bwlarge. b 9118 27,115 - - 22 
bw1arge.d 18/36 - - - 937 

Table 1: Preview of experimental results. Times in seconds. A long dash (-) indicates that the experiment was 
terminated after 10 hrs with no solution found. 

and Selman (1992 
propositional satis B 

formalized planning in terms of 
ability. In this framework, a plan 

corresponds to any model (i.e., truth-assignment) that 
satisfies a set of logical constraints that represent the 
initial state, the goal state, and domain axioms. Time 
consists of a fixed, discrete number of instances. A 
proposition corresponds either to a time-varying con- 
dition (a fluent) holding at a particular instant (e.g., 
on(A ,B, 3)), or to an action that begins to occur at the 
specified instance and ends at the following instance 
(e.g., pickup(A,3)). G eneral constraints over facts 
and actions are written as axiom schemas, which are 
then instantiated for the objects and number of time 
instances used by a particular problem. The maximal 
length of a plan is thus fixed at instantiation time; if 
this quantity is not known in advance, it is straightfor- 
ward to perform a binary search on instantiations of 
various sizes, to find the smallest for which a solution 
is found. (For example, if the optimal plan length is 7, 
the search would proceed through plans of length 2, 4, 
8 (plan found) 9 6 (no plan found) 9 and finally 7.) 

The satisfiability approach can be directly imple- 
mentcd using SAT algorithms, that in general have 
much better scaling properties than deductive FOL 
theorem provers. Another advantage is its expressive 
power. It is easy to represent arbitrary constraints 
over intermediate states (not just the initial and goal 
states), and over the structure of the plan itself. For 
example, to assert that every pickup is immediately 
followed by a stack, one could write a schema like 

pickup(x,i) > !ly.stack(x,y,i+l). 

It is quite hard to represent these kinds of constraints 
in STRIPS. Finally, because it a “real logic” as op- 
posed to STRIPS the relationships between predicates 
can be stated explicitly, and it is unnecessary to distin- 
guish “primitive” from “derived” predicates. For ex- 
ample, most STRIPS-style operators for planning han- 
dle the predicates clear and on separately, whereas in 
our framework one can simply assert 

clear(x,i) E lEly.on(y,x,i) 

The domain axioms for the satisfiability approach 
are in general stronger than those used by the deduc- 
tive framework, because it is necessary to rule out all 
“unintended9’ models. We will describe several ways 
this can be done: (i) encodings derived from the plan- 
ning graphs of Graphplan (Blum and Furst 1995); (ii) 
the linear encodings of Kautz and Selman (1992); and 
(iii) general state-based encodings, which incorporate 
the best features of the previous two. We refer to the 
both the linear and state-based encodings as “direct” 
encodings. 

1196 Planning 

Graphplan-based Encodings 

As mentioned above, the Graphplan system (Blum and 
F’urst 1995) works by converting a STRIPS-style spec- 
ification into a planning graph. This is an ordered 
graph, where alternating layers of nodes correspond to 
grounds facts (indexed by the time step for that layer) 
and fully-instantiated operators (again indexed by the 
time step). Arcs lead from each fact to the operators 
that contain it as a precondition in the next layer, and 
similarly from each operator to its effects in the next 
layer. For every operator layer and every fact there is 
also a no-op “maintain” operator that simply has that 
fact as both a precondition and “add” effect. 

A solution is a subgraph of the planning graph that 
contains all the facts in the initial and goal layers, and 
contains no two operators in the same layer that con- 
flict (i.e., one operator deletes a precondition or an 
effect of the other). Thus, a solution corresponds to a 
partially-ordered plan, which may contain several op- 
erators occuring at the same time step, with the se- 
mantics that those operators may occur in any order 
(or even in parallel). For planning problems that can 
take advantage of this kind of parallelism, the planning 
graph can have many fewer layers than the number of 
steps in a linear solution - and therefore be much 
smaller. 

A planning graph is quite similar to a propositional 
formula, and in fact, we were able to automatically con- 
vert planning graphs into CNF notation. The transla- 
tion begins at goal-layer of the graph, and works back- 
ward. Using the “rocket” problem in Blum and Furst 
(1995, Fig. 2) as an example (where “load(A,R,L,i)” 
means “load A into R at location L at time i”, and 
“move (R, L , P , i.)” means “move R from L to P at time 
;“), the translation is: 

the initial state holds at layer 1, and the goals hold 
at the highest layer; 
each fact at level i implies the disjunction of all the 
operators at level i - 1 that have it as an add-effect; 
e-g., 

in(A,R,3) > (load(A,R,L,2) V load(A,R,P,2)V 
maintain(in(A,R) ,2)) 

operators imply their preconditions, e.g., 
load(A,R,L,2) > (at(A,L,l) A at(R,L,l)) 

conflicting actions are mutually exclusive; e.g., 

lload(A,R,L,2) V lmove(R,L,P,2) 

Graphplan uses a set of rules to propagate the effects of 
mutually exclusive actions, leading to additional exclu- 
siveness constraints. In our logical formulation these 
additional constraints are logically implied by the orig- 
inal formulation. 



Linear Encodings 

Kautz and Selman (1992) described a set of sufficient 
conditions for ensuring that all models of the domain 
axioms, initial, and goal states correspond to valid 
plans. These were: 

e an action implies both its preconditions and effects; 

o exactly one action occurs at each time instant; 

e the initial state is completely specified; 

o classical frame conditions for all actions (i.e., if an 
action does not change the truth condition of fact, 
then the fact remains true or remains false when the 
action occurs). 

Intuitively, the first condition makes sure that actions 
only occur when their preconditions hold, and the “sin- 
gle action” and frame axioms force any state that fol- 
lows a legal state to also be a legal state. Models un- 
der this encoding correspond to linear plans; as the 
number of operators in a plan increases, these encod- 
ings become very large. Kautz and Selman observed 
that the number of propositional variables can be sig- 
nificantly reduced by replacin 

t 
certain predicates that 

take two or more arguments plus a time-index argu- 
ment) with ones that take a single argument (plus a 
time-index). For example, instead of the predicate 
move (x , y , z , i) (meaning “move block x from y to z at 
time i”), 
and dest 

they used three predicates, object, 
ination, with the correspondence 

source, 

move(x,y,z,i) - (object(x,i> A source(y,i)A 
destination(z,i)) 

When instantiated, this yields 0(3n2) propositions 
rather than O(n*) propositions. This technique can 
also be viewed as a kind of “lifting.” The blocks world 
problems described below use these kind of linear en- 
codings 

State-Based Encodings 

The ability to express partially-ordered plans by a sin- 
gle model gives Graphplan a powerful performance ad- 
vantage. On the other hand, we have seen that the 
STRIPS-style input notation has many expressive lim- 
itations. We have developed a methodology that we 
call “general state-based encodings”, which enjoys the 
advantages of the two previous approaches, as well as 
incorporating further representational refinements. 

We use the term “state-based” because it emphasizes 
the use of axioms that assert what it means for each 
individual state to be valid, and gives a secondary role 
to the axioms describing operators. For example, in 
the blocks world, the state axioms assert that only one 
block can be on another, every block is on something, 
a block cannot both be clear and have something on 
it, etc. In the logistics domain, state axioms include 
assertions that each transportable object can only be 
in a single truck, and that a truck is only at a single 
location. 

Given that the state axioms force each state to be 
internally consistent, it turns out that only a rela- 
tively small number of axioms are needed to describe 
state transitions, where each transition can be the 

result of the application of any number of mutually 
non-conflicting actions. These axioms describe what 
it means for a fact to change its truth value between 
states. 

One way to do this is to write axioms about the 
possible actions that could account for each change. 
For example, in the logistics domain, if an instance of 
in goes from false to true, then the object must have 
been loaded: 

(+n(x,y,i) A in(x,y,i+l)) > 3z.load(x,y,z,i) 

This style of axiom can be seen as an instance of 
the “domain specific” frame axioms described by Haas 
(1987) and Schubert (1989). Note that classical frame 
axioms of the type used above for linear encodings are 
not included - in fact, they are inconsistent with par- 
allel actions. These axioms are also similar to the 
“backward-chaining” axioms used in the Graphplan 
encodings above. The Graphplan example axiom can 
be rewritten as 

(lmaintain(in(A,R) ,2) A in(A,R,3)) > 
(load(A,R,L,2)Vload(A,R,P,2)). 

This formula can be identified as an instance of the 
general schema, once the dummy maintain proposi- 
tion is replaced by its precondition, in(A,R,2). Fi- 
nally, axioms are added that assert that actions entail 
both their preconditions and effects, and that conflict- 
ing actions are mutually exclusive. 

As described thus far, this approach has greater ex- 
pressive power than the Graphplan encodings, but is 
no more compact. However, the number of proposi- 
tional variables in this form of encoding can be signifi- 
cantly decreased by using the trick of reducing the ar- 
ity of predicates, as described in the previous section. 
Furthermore, many of the axioms relating actions to 
their preconditions and effects can be safely eliminated, 
because the strong state consistency axioms propa- 
gate the consequences of the remaining assertions. 
This process of eliminating propositions and simpli- 
fying axioms can be carried to the extreme of com- 
pletely eliminating propositions that refer to actions! 
Only fluents are used, and the axioms directly relate 
fluents betweens adjacent state. We have done this 
for the logistics domain, a relatively complex domain 
that involves moving packages between various loca- 
tions using trucks and airplanes. The STRIPS-style 
formalization requires operators such as load-truck, 
unload-truck, drive-truck, load-airplane, etc. 
On the other hand, instead of using explicit load ax- 
ioms, we use a single schema that relates the predicates 
at and in: 

at(obj ,loc,i) > 
at(obj ,loc,i+l)V 
3x E truck U airplane. 

in(obj ,x,i+l)A 
at(x,loc,i)A 
at(x,loc,i+l) 

In English, this simply asserts that if an object is at a 
location, it either remains at that location or goes into 
some truck or plane that is parked at that location. 
Another schema accounts for the state-transitions as- 
sociated with unloading, by asserting that an object 
in a vehicle either stays in the vehicle, or becomes 

Search 1197 



at the location where the vehicle is parked. Interest- 
ingly, no additional transition axioms at all are needed 
for the vehicle movement operators, drive-truck and 
fly-airplane, in this domain. The state validity ax- 
ioms alone ensure that each vehicle is always at a single 
location. 

A solution to a state-based encoding of a planning 
problem yields a sequence of states. The “missing” 
actions are easily derived from this sequence, because 
each pair of adjacent states corresponds to the (easy) 
problem of finding a unordered plan of length l0 (In 
the most general case, even finding unordered plans of 
length 1 is NP-hard; however, in domains we have ex- 
amined so far, including the logistics and blocks world 
domains, there is a linear-time algorithm for finding 
such plans.) The initial motivation for developing this 
purely state-based representation was pragmatic: we 
wished to find very compact logical encodings, of a 
size that could be handled by our SAT algorithms. We 
achieved this goal: for example, we can use our stochas- 
tic algorithm to solve state-based encodings of logistic 
problems that cannot be solved by any other domain- 
independent planner of which we are aware. (For an 
example of high-performance planning using domain- 
dependent control heuristics for the blocks world, see 
Bacchus and Kabanza (1995).) Beyond these compu- 
tational concerns, the encodings are interesting from a 
purely representational standpoint. There are no ex- 
plicit frame axioms, or axioms about preconditions and 
effects, or axioms about conflicts between actions; ev- 
erything is subsumed by simple, uniform relationships 
between fluents. These axiomatizations appear at least 
as “natural” as situation-calculus or STRIPS formal- 
izations, and avoid many of the traditional problems 
those approaches encounter. 

The experiments reported in this paper do not in- 
volve an automatic way of deriving state-based encod- 
ings from a STRIPS-style problem specification. The 
encodings we used in our experiments were created by 
hand, based on our understandin of the semantics of 
the various benchmark domains 8 which were, indeed, 
described by STRIPS operators). A separate paper 
(Kautz et al. 1996) describes our initial results on au- 
tomating the process of compiling away the operators 
for a given domain. However, one could equally well 
take a state-based description of a domain as primary, 
and then add actions to the axioms through meaning 
postulates. 

Experiments: Systematic versus Stochastic 
Search 

In this section, we will discuss our experimental results. 
We first compare the various encoding schemes with 
respect to the cost of finding a plan. We then show 
that the solutions we obtained are optimal, by showing 
that no shorter plans exist. 

To solve our SAT encodings, we consider both a 
systematic and a stochastic method. Tableau, the 
systematic procedure, is based on the Davis-Putnam 
procedure, and was developed by Crawford and Au- 
ton (1993). It’s one of the fastest current complete 
SAT procedures (Trick and Johnson 1993; Dubois et 
al. 1996). Walksat, the stochastic procedure, is a de- 
scendant of GSAT, a randomized greedy local search 

method for satisfiability testing (Selman et al. 1992, 
Selman et al. 1994, 1996). Such stochastic local search 
methods have been shown to outperform the more tra- 
ditional systematic methods on various classes of hard 
Boolean satisfiability problems. Note, however, that 
these procedures are inherently incomplete: they can- 
not prove that a formula is unsatisfiable. 

Walksat operates as follows. It first picks a ran- 
dom truth assignment, and randomly selects one of 
the clauses in the SAT instance that is not satisfied by 
the assignment. It then flips the truth assignment of 
one of the variables in that clause, thereby satisfying 
the clause. However, in the process, one or more other 
clauses may become unsatisfied. Therefore, in deciding 
which variable to flip from the clause, Walksat uses a 
greedy bias that tends to increase the total number of 
satisfied clauses. Specifically, the bias picks the vari- 
able that minimizes the number of clauses that are sat- 
isfied by the current assignment, but which would be- 
come unsatisfied if the variable were flipped. Because 
the bias can lead the algorithm into local minima, per- 
formance is enhanced if the bias is not always applied. 
The best rule appears to be to always apply the bias 
if there is a choice that would make no other clauses 
become unsatisfied; otherwise, randomly apply it half 
the time. The procedure keeps flipping truth values 
until a satisfying assignment is found or until some 
predefined maximum number of flips is reached. In Sel- 
man et al. (1994, 1996), it was shown that this method 
significantly outperforms basic GSAT, and other local 
search methods such as such as simulated annealing 
(Kirkpatrick et al. 1983). 

Finding Plans 

Table 2 gives the computational cost of solving several 
hard planning problems. We consider two SAT encod- 
ings for each instance, one Graphplan-based and the 
other direct (linear or state-based). For our SAT en- 
codings, we give both the timings for the systematic 
tableau method and for the stochastic Walksat proce- 
dure. We compare our results to those of the Graph- 
plan system. 

As mentioned in the preview of results, we con- 
sidered hard instances from the rocket and the logis- 
tics domains (Blum and F’urst 1995, Veloso 1992), as 
well as the blocks world. We noted that Graphplan 
has been shown to outperform Prodigy and UCPOP 
on the rocket problems. The logistics domain is a 
strictly richer environment than the rocket domain.2 
In the column marked with “time/actions”, we give 
the length of the plan found in terms of the number 
of time steps. Since we allow for parallel (indepen- 
dent) actions, we also give the total number of actions 
that will lead us from the initial state to the goal. We 
created a state-based encoding for rocket and logistics 
problems, and for the blocks world used the original 

2Preliminary data indicate that Graphplan, and thus 
our algorithms, out 

P 
erform UCPOP on the logistics do- 

main, as expected Friedman 1996). However, it is im- 
portant to note that UCPOP is a regression planner, and 
certain state-based notions are inaccessible or obscure to 
it. UCPOP may well prove superior on other domains, in 
which reasoning is more causal, and less related to topo- 
logical notions. 

1198 Planning 



problem 
rocket-ext.a 
rocket-ext.b 
1ogistics.a 
logistics. b 
1ogistics.c 
bw1arge.a 
bwlarge. b 
bw1arge.c 
bw1arne.d 

time I 
actions 

---Tpi- 
7/30 

11154 
13147 
13165 
6112 
9118 

14128 
18/36 

Graphplan 

+yiz-#% 
1,701 2,337 
2,891 6,743 
3,382 2,893 
4,326 - 
5,779 11.5 

18,069 27,115 
- 
- 

Gr 
vars 

1,103 
1,179 
1,782 
2,069 
2,809 
5,772 

phplan-Based 
syst. stoch. 

4.4 4.7 
2.8 21 
6.9 
6.4 Yi3 

23,061 262 
- - 
- - 
- - 
- - 

vars 
331 
351 
828 
843 

1,141 
459 

1,087 
3,016 
6.764 

Direct 

Table 2: The computational cost of finding plans for several hard planning problems. For each instance, the optimal 
(minimal length) plan was found. Times in seconds. A long dash (-) indicates that the experiment was terminated 
after 10 hrs with no solution found, or, when we do not give the number of variables or the number of nodes, it 
means that the problem instance was too large to fit into main memory. The rocket and logistic direct encodings 
are state-based, and the bw (blocks world) direct encodings are linear. 

linear encodings from Kautz and Selman (1992). Be- 
fore applying the solvers, all of the SAT instances were 
first simplified by a linear-time algorithm for unit prop- 
agation, subsumption, and deletion of unit clauses. Ta- 
ble 2 gives the number of variables in each instance 
afrer simplification. 

The results for “rocket-ext.a” show the general 
trend. The direct encodings are the most compact, and 
can be solved many times faster than the Graphplan- 
based SAT encodings, which is in turn are more effi- 
cient than extracting the plans directly from the plan- 
ning graphs, using the Graphplan system.3 

We also see that stochastic search (Walksat; see col- 
umn marked ‘%toch.“) often outperforms systematic 
search 
order o I 

tableau; see column marked “syst.“) by an 
magnitude. Especially striking is the perfor- 

mance of Walksat on the state-based encodings (last 
column). These results strongly suggest that stochastic 
methods combined with efficient encoding techniques 
are a promising method for solving challenging classi- 
cal planning problems. 

As the instances become harder, the difference in 
performance between Walksat on the direct encodings 
and the other approaches becomes more dramatic. For 
example, see “1ogistic.c” and “bw-1arge.d.” As we will 
discuss in the next section, all problems were solved 
to optimality. Thus, for the blocks world instance, 
bw-large.d, we found the minimal length plan of 36 
operations (pickup/putdown/stack/unstack) from the 
initial state to the goal state. Only Walksat on the 
linear encoding could synthesize this plan. The prob- 
lem involves 19 blocks, with 4 stacks in the initial and 
3 stacks in the goal state. Note that we did not en- 
code any special search control knowledge (such as, 
“move a block directly to a goal position, if possible”). 
To get a better feel for the computational difficulty of 
this problem, let us briefly consider some of the formal 
computational properties of the blocks world domain. 

Optimal blocks world planning was shown to be NP- 
complete in 1991, but a plan within a factor two of 
optimal can be obtained in polynomial time (Gupta 

30ur timings do not include the time needed for gen- 
erating the planning graph or for constructing the SAT 
encodings. On the harder instances, those times are just a 
fraction of what it takes to solve the planning graph or the 
SAT problems. 

and Nau 1991, 1992, Chenoweth 1991). Gupta and 
Nau (1992) give an algorithm for finding such approx- 
imate solutions. The basic idea is to first move blocks 
to the table and then build up the goal stacks. Gupta 
and Nau’s approximation algorithm would generate a 
plan with 58 operations for our instance, requiring 12 
via-the-table moves. (Some blocks don’t have to be 
moved to the table. Note that a via-the-table move 
generally involves an unstack, a putdown a pickup, 
and a stack operation.) Selman (1994) shows that it’s 
unlikely that we can find a better polytime approx- 
imation algorithm: All the difficulty lies in deciding 
how one can avoid via-the-table moves by making di- 
rect stack-to-stack moves. To do so, one has to deter- 
mine which stack-to-stack moves to make and in what 
order. Walksat manages to eliminate 11 of the 12 via- 
the-table moves - leaving an optimal plan of 36 steps 
with only a single, unavoidable via-the-table move! We 
do not know of any other planning system that can op- 
timally solve unrestricted blocks world problems of this 
size without using any kind of domain-specific control 
knowledge. Despite the fact that the blocks world do- 
main is somewhat artificial, we are encouraged by our 
results because we believe that the rich interactions be- 
tween operator and sub-goal sequencing, which makes 
the domain relatively hard, is also quite likely to be 
found in more practical domains, such as, for example, 
the softbot planning domain (Etzioni and Weld 1994). 
(Indeed, in the next phase of this project, we hope to 
apply our methods to the softbot domain.) 

Finally, from the columns that give the number of 
nodes and number of variables, we see that direct en- 
codings (and in particular, the state-based encodings) 
result in a significant reduction of the number of vari- 
ables in the problem instances. Our Graphplan-based 
SAT encodings also have fewer variables than the num- 
ber of nodes in the corresponding planning graph, be- 
cause of the unit-propagation simplification described 
above. 

Although our results are quite promising for stochas- 
tic methods, we do not mean to suggest that these 
methods will always outperform systematic ones. In 
fact, we have done some preliminary experiments on 
one of the artificial domains (D’S’) studied in Barrett 
and Weld (1994 and in Blum and Furst (1994). We 
considered the b raphplan-based encoding, and found 

Search 1199 



that the Graphplan system itself scales better than 
our SAT approach using either Walksat or tableau. 
The special structure of the domain, which is specif- 
ically designed to check the sequencing of operators, 
appears to steer Walksat repeatedly in the wrong di- 
rection. Tableau performs poorly because it performs 
a depth-first search, and the domain appears to require 
a breadth-first approach. * State-based encodings may 
again give better results on this domain. We also ob- 
tained some promising results on these instances using 
SAT encodings based on McAllester and Rosenblitt’s 
(1991) “causal” planning formulation. In general, we 
expect that systematic and stochastic methods will 
complement each other - each having different rel- 
ative strengths depending on the domain. In the next 
section we’ll discuss another way in which these meth- 
ods complement each other. 

Proving Optimality 

To show that the plans we found in our previous exper- 
iments are optimal, we now show that no shorter plan 
exists. Table 3 gives our results. This time we can only 
use methods that systematically explore the space of 
all possible plans up to a certain size, because we have 
to demonstrate that shorter plans do not exist. 

From the table, we see that in this case using tableau 
on the Graphplan-based SAT encoding is not very ef- 
fective (except for “1ogistics.a”). Neither the Graph- 
plan system nor tableau with direct SAT encodings 
strictly dominate one another; the former is superior 
on the logistics problems, and the latter on the blocks 
world problems. 

None of the methods could show the inconsistency of 
“1ogistics.c” when using at most 12 time steps. There- 
fore, to show the optimality of a 13 step solution to 
“1ogistics.c” 9 we constructed “1ogistics.b” as a strictly 
smaller subproblem. Graphplan was able to show that 
this problem does not have 12 step solution. It follows 
that “1ogistics.c” does have a 12 step solution either. 

In general, our results suggests that it’s harder to 
show the non-existence of a plan up to a certain length 
than it is to find such a plan if it exists. This kind 
of asymmetry has also been observed in several other 
problem domains (Selman 1995). The issue is closely 
related to the practical difference between solving NP 
and co-NP complete problems. 

Tableau can show the infeasibility of a 17 time slot 
(34 stack/unstack) solution for “bw1arge.d” 9 while 
Walksat can find a 18 time slot (36 stack/unstack) 
plan (Table 2). No systematic approach could find the 
feasible solution. This demonstrates how stochastic 
and systematic methods are complementary: one can 
be used for plan synthesis and the other to determine 
lower-bounds on the plan length. 

Conclusions 

We have shown that for solving hard 
lems from several challenging domains, 

planning prob- 
our approach of 

4For a discussion of issue 
first search in variations of 
see Dechter and Rish (1994) 

of depth-first version breadth- 
the Davis-Putnam procedure, 

using linear or state-based axiomatizations and a gen- 
eral, stochastic satisfiability algorithm (Walksat) out- 
performs some of the best specialized planning algo- 
rithms by orders of magnitude. Furthermore, Walk- 
sat is often superior to good general (tableau) and 
specialized (Graphplan) systematic search engines on 
SAT encodings derived from STRIPS-style operators. 
These results challenge the common assumptions in AI 
that planning requires specialized search techniques 
and that planning is an inherently systematic process. 
Of course, we are not ruling out the possibility that 
in other domains some of the specialized planning sys- 
tems could prove superior. This is an important issue 
for further research. 

We have also shown that systematic and local search 
algorithms complement each other well in the planning 
as satisfiability framework. Systematic algorithms can 
be used to provide a lower-bound on the length of solu- 
tion plans, and then stochastic algorithms can be used 
to find the actual solutions. It is interesting to ob- 
serve that in certain cases systematic algorithms are 
better at proving infeasibility than at finding solutions 
to problems instances of comparable size. 

Finally, our experiments with different SAT en- 
codings of planning problems indicates that much 
progress can be made by considering novel kinds of 
axiomatizations. In particular, our experience sug- 
gests that axiomatizations that concentrate on states 
and fluents can be more compact and easier to solve 
than approaches that directly encode STRIPS-style 
state-changing operators. Furthermore, these state- 
based encodings are interesting from a representational 
standpoint, and appear to provide clean and elegant 
ways to handle parallel actions and frame conditions. 

References 
Adorf, H.M., Johnston M.D. (1990). A discrete stochas- 

tic neural network algorithm for constraint satisfaction 
problems. Proc. of the Int. Joint Conf. on Neural Net- 
works, San Diego, CA, 1990. 

Allen, J. (1991). Planning as temporal reasoning. Proc. 
K&89, Cambridge, MA, 1991. 

Bacchus, F. and Kabanza, F. (1995). Using temporal logic 
to control search in a forward chaining planner. Proc. 
E WSP-95, 157-169. 

Backstrom, C. (1992). Computational complexity of rea- 
soning about plans, Ph.D. thesis, Linkoping University, 
Linkoping, Sweden. 

Barrett, A. and Weld, D. (1994). Partial-order planning: 
evaluating possible efficiency gains. Artificial Intelli- 
gence, 67:71-112, 1994. 

Blum, A. and Furst, M.L. (1995). Fast planning through 
planning graph analysis. Proc. IJCAI-95, Montreal, - - 
Canada. 

Bylander, T. (1991). Complexity results for planning. 
- Proc. IJCAj-91, Sidney, Australia, 274-279. - - 

Carbonell, J. 9 Blythe J., Etzioni, O., Gil, Y., Joseph, R., 
Kahn, D., Knoblock, C., Minton, S., Perez, A., Reilly, S., 
Veloso, M., Wang, X (1992). Prodigy 4.0: the manual 
and tutorial. CMU, CS Tech. Report CMU-CS-92-150. 

Chenoweth, S.V. (1991). On the NP-hardness of the 
blocks world. Proc. AAAI-91, Anaheim, CA, 623-628. 

Crawford, J.M. and Auton, L.D. (1993) Experimental Re- 
sults on the Cross-Over Point in Satisfiability Problems. 
Proc. AAAI-93, Washington, DC, 21-27. 

Crawford, J. and Baker, A.B. (1994). Experimental re- 
sults on the application of satisfiability algorithms to 

1200 Planning 



scheduling problen 1s. Proc. AAAI-94, Seattle, WA. 

problem 
rocket ,ext .a 
rocket -ext. b 
1ogistics.a 
logistics. b 
1ogistics.c 
bw1arge.a 
bwlarge. b 
bw1arge.c 
bw1arge.d 

time 
6 
6 

:; 

5,:: 
8116 

13126 
17134 

G raphplan Graphplan-Based St&e-Based 
I SAT Encoding I 

Table 3: Showing the infeasibility of shorter plans. Times in seconds. 

Dechter, R. and Rish, I. (1994). Directional resolution: 
the Davis-Putnam procedure, revisited. Proc. KR-94, 
Bonn, Germany. 

Dubois, 0. , Andre, P., Boufkhad, Y., and Carlier, J. 
(1996). A-SAT and C-SAT. Dimacs Series in Discrete 
Mathematics and Theoretical Computer Science. (to ap- 
pear) 

Erol, K., Nau, D.S., and Subrahmanian, V.S. (1992). On 
the complexity of domain-independent planning. Proc. 
AAAI-92, 381-386. 

Etzioni, 0. and Weld, D. S. (1994). A softbot-based inter- 
face to the internet. Comm. ACM, July 1994. 

Fikes, R.E. and Nilsson, N.J. (1971). STRIPS: A new ap- 
proach to the application of theorem proving to problem 
solving. Artificial Intelligence, 2(3/4), 189-208. 

Friedman, M. (1996). Personal communication. 
Green, C. (1969). Application of Theorem Proving to 

Problem’Solving. In*&oc. IJCAI-69, Washington, D.C., 
1969. 219-239. 

Gupta and Nau (1991). Complexity results for blocks- 
world planning. Proc. AAAI-91, Anaheim, CA, 629- 
633. 

Gupta and Nau (1992). On the complexity of blocks-world 
planning. Artificial Intelligence, 56, 139-403. 

Haas, A. (1987). The case for domain-specific frame ax- 
ioms. In The Frame Problem in Artificial Intelligence, 
Proceedings of the 1987 Workshop, F.M. Brown, ed., 
Lawrence, KS, 1987. Morgan Kaufmann Publishers, Los 
Altos, CA. 

Joslin, D. and Pollack, M. (1995). Passive and Active De- 
cision Postponement in Plan Generation. In the Euro- 
pean Workshop on Planning (EWSP), Assisi, Italy, Sept. 
1995. 

Kautz, H. and Selman, B. (1992) Planning as Satisfiability. 
Proc. ECAI-92, Vienna, Austria, 1992, 359-363. 

Kautz, H., McAllester, D., and Selman, B. (1996). Encod- 
ing Plans in Propositional Logic. In preparation. 

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). 
Optimization by simulated annealing. Science, 220 
(1983) 671-680. 

McCarthy, J. and Hayes, P. (1969). Some philosophical 
problems from the standpoint of artificial intelligence. 
In Machine Intelligence 4, D. Michie, ed., Ellis Horwood, 
Chichester, England, 1969, page 463ff. 

McAllester, D. and Rosenblitt, D. (1991). Systematic non- 
linear planning. Proc. AAAI-91, Anaheim, CA. 

Minton, S., Johnston, M.D., Philips, A.B., and Laird, 
P. (1990) Solving large-scale constraint satisfaction an 
scheduling problems using a heuristic repair method. 
Proc. AAAI-90, 1990, 17-24. 

Minton, S., Johnston, M.D., Philips, A.B., and Laird, P. 
(1992) Minimizing conflicts: a heuristic repair method 
for constraint satisfaction and scheduling problems. Ar- 

vars syst. 
I 4.5 

849 3.5 
1,415 80.1 
1,729 - 
2,353 - 
4,939 - 

- 

I - 51886 1 25,289 

tijicial Intelligence, (58)1-3, 1992, 161-205. 
Pednault, E. (1988). Synthesizing plans that contain ac- 

tions with context-dependent effects. Computational In- 
telligence, 4(4):356-372, 1988. 

Penberthy, J. and Weld, D. (1992). UCPOP: A sound, 
complete, partial order planner for ADL. In the Proc. 
KR-92, Boston, MA, 103-114. 

Davis, M., Logemann, G., and Loveland, D. (1962). A 
machine program for theorem proving. Comm. ACM, 
5, 1962, 394-397. 

Schubert, L. (1989). Monotonic Solution of the Frame 
Problem in .the Situation Calculus: an Efficient Method 
for Worlds with Fully Specified Actions. In Knowledge 
Representation and ljefiasible Reasoning, H. Kyburg, R. 
Loui, and G. Carlson, eds. 

Selman, B. (1994). Near-Optimal Plans, Tractability, and 
Reactivity. Proc. KR-94, Bonn, Germany, 1994, 521- 
529. 

Selman, B. (1995). Stochastic Search and Phase Transi- 
tions: AI Meets Physics. Proc. IJCAI-95, Montreal, 
Canada, 1995. 

Selman, B. , Kautz, H., and Cohen, B. (1994). Noise 
Strategies for Local Search. Proc. AAAI-94, Seattle, 
WA, 1994, 337-343. 

Selman, B., Kautz, H., and Cohen, B. (1996) Local Search 
Strategies for Satisfiability Testing. Dimacs Series in 
Discrete Mathematics and Theoretical Computer Sci- 
ence. (to appear) 

Selman, B., Levesque, H., and Mitchell, D. (1992). A 
New Method For Solving Hard Satisfiability Problems. 
Proc. AAAI-92, San Jose, CA, 1992, 440-446. 

Stone, P., Veloso, V., and Blythe, J. (1994). The need for 
different domain-independent heuristics. In AIPS94, 
pages 164-169, Chicago, 1994. 

Trick, M. and Johnson, D. (Eds.) (1993) Proc. DIMACS 
Challenge on Satisfiability Testing. Piscataway, NJ, 
1993. (DIMACS Series on Discr. Math.) 

Veloso, M. (1992). Learning by analogical reasoning in 
general problem solving. Ph.D. Thesis, CMU, CS Techn. 
Report CMU-CS-92-174. 

Search 1201 


