
A Cost-Directed Planner: Preliminary Report

Eithan Ephrati Martha E. Pollack Marina Milsht ein
AgentSoft Ltd. and Computer Science Department Computer Science Department

Department of Mathematics and Intelligent Systems Program University of Pittsburgh
and Computer Science University of Pittsburgh Pittsburgh, PA 15260, USA

Bar Ilan University Pittsburgh, PA 15260, USA marisha@cs.pitt.edu
Ramat Gan 52900, ISRAEL pollack@cs.pitt.edu

tantushQsnnlight.cs.biu.ac.il

Abstract

We present a cost-directed heuristic planning al-
gorithm, which uses an A* strategy for node se-
lection. The heuristic evaluation function is com-
puted by a deep lookahead that calculates the
cost of complete plans for a set of pre-defined
top-level subgoals, under the (generally false) as-
sumption that they do not interact. This ap-
proach leads to finding low-cost plans, and in
many circumstances it also leads to a significant
decrease in total planning time. This is due in
part to the fact that generating plans for subgoals
individually is often much less costly than gen-
erating a complete plan taking interactions into
account, and in part to the fact that the heuristic
can effectively focus the search. We provide both
analytic and experimental results.

Introduction
Most of the work on search control for planning has
been based on the assumption that all plans for a given
goal are equal, and so has focused on improving plan-
ning efficiency. Of course, as has been recognized in the
literature on decision-theoretic planning (Williamson
& Hanks 1994; Haddawy & Suwandi 1994), the solu-
tions to a given planning problem are not necessarily
equal: some plans have lower execution cost, some are
more likely to succeed, and so on.

In this paper, we present a cost-directed heuristic
planner, which is capable of finding low-cost plans in
domains in which actions have different costs associ-
ated with them. Our algorithm performs partial-order
causal-link (POCL) planning, using an A* strategy.
The heuristic evaluation function is computed by a
deep lookahead that calculates the cost of complete
plans for a set of pre-defined top-level subgoals, under
the (generally false) assumption that those subgoals do
not interact. The essential idea is to treat a set of top-
level subgoals as if they were independent, in the sense
of (Korf 1987). For each of these subgoals, we indepen-
dently find a subplan that is consistent with the current
global plan, i.e., the partial plan in the current node.
The sum of the costs of these subplans is then used as
the heuristic component, h’, of the A* algorithm. The

overall estimate f’ (= g + h’, where g is the cost of the
actions in the global partial plan) is used to determine
which node to work on next. This contrasts with most
POCL planners, which perform node selection using a
shallow heuristic, typically a function of the number of
steps and flaws in each node.

Our approach leads to finding low-cost plans, and in
many circumstances it also leads to a significant de-
crease in total planning time. This is due in part to
the fact that generating plans for subgoals individu-
ally is often much less costly than generating a com-
plete plan, taking interactions into account(Korf 1987;
Yang, Nau, & Hendler 1992). Moreover, while focus-
ing on lower-cost plans, the heuristic function effec-
tively prunes the search space. The use of the deep
evaluation in node selection can outweigh the marginal
additional complexity.

The Algorithm
We model plans and actions similarly to other POCL
systems, except that we assume that each action has
an associated cost. We also assume that the cost of a
plan is equal to the sum of the costs of its consituent
actions. At the beginning of the planning process, the
global goal is partitioned into n exhaustive and mu-
tually disjoint subgoal sets, which should be roughly
equivalent in complexity. For simplicity in this paper
we assume that each subgoal set is a singleton, and
just speak about top-level subgoals, sgi, for 1 5 i 5 n;
we call the set of all these top-level subgoals SG . At
a high level, our algorithm is simply the following:

Until a solution has been found do:

1. Select ’ a node p representing a partial global plan
with minimal f’ value.

2. Select a flaw in p to refine. For each successor
node pi generated:

- Set the actual cost function g(pi) to be the actual
cost of p plus the cost of any new action added

‘The choose operator denotes non-deterministic choice,
and hence, a possible backtrack point; the select operator
denotes a heuristic choice at a point at which back-tracking
is not needed.

Temporal Reasoning 1223

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

in the refinement. (If the refinement is a threat
resolution, then g(pi) = g(p)).

- Independently generate a complete plan to
achieve each of the original subgoals sgi. Each
such subplan must be consistent with the par-
tial global plan that pi represents, i.e., it must
be possible to incorporate it into pi without vi-
olating any ordering or binding constraints. Set
h’(pi) to the sum of the costs of the complete
subplans generated.

A formal definition of the algorithm is given in Fig-
ure 1. It relies on the following definitions, which are
similar to those of other POCL algorithms, except for
the inclusion of cost information for actions, and g and
h’ values, and subgoal partitions, for plans:

Definition 1 (Operator Schemata) An operator
schema is a tupbe 4 T, V, P, E, B, c t where T is an
action type, V is the list of free variables, P is the
set of preconditions for the action, E is the set of ef-
fects for the action, B is the set of binding constraints
on the variables in V, and c is the cost.2 A copy of
some action a with fresh variables will be denoted by
Fresh(a). Given some action instance, s, we wibb re-
fer to its components by T(s), V(s), P(s), E(s), B(s),
and c(s) .

Definition 2 (Plan) A plan is a tupbe + S, C, O,l3,
&I, SG,g, h’ +, where S is a set of the plan steps,
C is a set of causal links on S, 0 is a set of ordering
constraints on S, I3 is a set of bindings of variables
in S, 4 is the set of open conditions, T is the set of
unresolved threats, SG is the partition of A induced by
the initial partition of top-bevel subgoals, g is the accu-
mulated cost of the plan so far, and h’ is the heuristic
estimate of the remaining cost.

-l
The initial input to the planner is: (4

so, %03,@, {so < s,), 0, G, 0, SG, 0,O ~3, where SO
is the dummy initial step, s, is the dummy final step,
G is the initial set of goals, and SG is a partition of G.
The algorithm also accesses an operator library A.

As described above, the algorithm iteratively refines
nodes in the plan space until a complete plan has been
generated. Its main difference from other POCL plan-
ners is its computation of heuristic estimates of nodes.
(See the boxed parts of the algorithm.) The algorithm
maintains a queue of partial plans, sorted by f’; on
each iteration, it selects a node with minimal f’. Dur-
ing refinement of that node, both the g and h’ comp-
nents must be updated. Updating g is straightforward:
whenever a new step is added to the plan, its cost is
added to the existing g value (Step 2(a)ii). Updating
h’ occurs in Step 4, in which subplans are generated
for each of the top-level subgoals.

2To maintain an evaluation function that tends to un-
derestimate, the cost of a step with uninstantiated vari-
ables is heuristically taken to be equivalent to the cost of
its minimal-cost grounded instance.

CostDirectedPlanSearch (Q)
While Q # 0 Select the first plan,
p=+S,L,0,23,A,I,SG,g,h’%,in Q

1. [Termination] If A = 7 = 0 return p.
2. [Generate Successors]

Let 0’ = I’ = b’ = s’ = 0, and Select either:

(a) An open condition (d,Sd) (in A of p), and Choose an
establisher:

i. [An Existing Global Step] s’ E S and b’, s.t. e E
E(8’), (e GsUb’ d), and (3’ < Sd) iS consistent with 0,

ii. ;i N ew step1 9’ = Fresh(a) such that a E A and b’,
s-t. e E E(a), (e EBub’ d). -1

Let 0’ = (3’ < L?d), I’ = ((S’, d, ad)}.
(b) An unresolved threat (st, se, d, Sd) E 7 of p, and Choose

either:

i. [Demotion] If (st < se) is consistent with 0,
let 0’ = ((at < se)}, or

ii. [PrOmOtiOd If (st > sd) is consistent with 0,
let 0’ = ((St > Sd)}.

If there is no possible establisher or no way to resolve a
threat, then fail.

3. [Update Plan1 Let S’ = S U s’, L’ = L U I’, 0’ = 6 u 0’,

8’ = 23 U b’, A’ = (d \ d) U P(s’). Update 7 to include new
threats.

4. [Update Heuristic Value]

h’ = c 89* ESG SubPlan(4 S’, L’, O’, B’, 0, sgi , 0 +).
i

5. [Update Queue]
Merge the plan 4 S’, L’, O’, B’,d’, SG, g, h’ F back into Q
sorted by its g + h’ value.

Figure 1: The Search for a Global Plan

There are two alternatives for subplanning. In
this paper, we assume that subplanning is done by a
fairly standard POCL algorithm, performing best first
search. The subplanning process is invoked from the
main program (in Step 4) with its steps, links, and
ordering and binding constraints initialized to their
equivalents in the global plan. The set of open condi-
tions is initialized to sgi, which consists of the open
conditions associated with the ith original subgoal:
any conditions from the original partition that remain
open, plus any open conditions along paths to mem-
bers of sgi.3 Essentially, when subplanning begins, it
is as if it were already in the midst of planning, and
had found the global partial plan; it then forms a plan
for the set of open conditions associated with a top-
level subgoal. As a result, the plan for the subgoal will
be consistent with global plan. If a consistent subplan
cannot be found, then the global plan is due to fail
Subplanning can thus detect dead-end paths.

3The main algorithm tags each establisher chosen in
step 2a with the top-level goal(s) that it supports. We _ _ __ _ ---
have omitted this detail from the Figure 1 to help improve
readibility.

1224 Planning

The subplanning process keeps track of the actual
cost of the complete subplan found, and returns that
value to the main algorithm.

An alternative method for subplanning would be to
recursively call the global planning algorithm in Fig-
ure 1. This would be likely to further reduce the
amount of time spent on each node, because it would
amount to assuming independence not only among top-
level goals, but also among their subgoals, and their
subgoals’ subgoals, and so on. On the other hand, it
would lead to a less accurate heuristic estimate, and
thus might reduce the amount of pruning. We are
conducting further experiments, not reported in this
paper, to analyze this trade-off.

Complexity
We next analyze the complexity of the cost-directed
planning algorithm. Let b be the maximum branching
factor (number of possible refinements for each node),
and let d be the depth of search (number of refine-
ments performed to generate a complete plan). Then,
as is well known, the worst-case complexity of plan-
ning search is O(@). D uring each iteration of the cost-
directed algorithm, the most promising partial plan is
refined, and, for each possible refinement, a complete
subplan for each of the n elements of the original sub- q~=r
goal set (SG) is generated. Let bi and di denote the -
breadth and depth of subplanning for the subgoal sg,,
and let & = maxi bi, and let (ii = maxi di (1 < i < n).
Then the complexity of each subplanning step in the al-
gorithm (Step 4) is O(n x (ii)‘;). So in the worst case,
if there is no pruning, the overall complexity of the
search is O(bd x n x (ii)“). Because & 5 b, and & 5 d,
the absolute worst case complexity is O(n x b2d).

However, for many planning domains, & and t& are
likely to be smaller than b and d. As noted by Korf
(Korf 1987, p.68), and by Yang et ab. (Yang, Nau,
& Hendler 1992), planning separately for n subgoals
will tend to reduce both b and d by a factor of n, i.e.,
bi x i and di x $. Note that reduction in search
depth is due to the fact that, if there were no interac-
tions among the subgoals, an overall plan would have
length equal to the sum of the lengths of the plans
for the subgoals. Of course, positive interactions will
decrease the length of the overall plan, while negative
interactions will increase it. We assume that the ef-
fects of negative interactions will be at least as great
as the effects of positive interactions, which appears to
be the case in many domains.

To obtain the maximum benefits of planning for in-
dividual subgoals separately, the subgoals must be of
roughly equal “complexity” to one another. If virtu-
ally all of the work of the top-level planning problem
is associated with a single subgoal, then planning sep-
arately for that subgoal will be almost as costly as
planning for the entire set of subgoals. We therefore
also assume planning domains in which it is possible

to partition subgoals into sets of equal complexity. For
domains for which this does not hold, it may still be
possible to use the cost-directed planning algorithm,
but it would require invoking it recursively for sub-
planning, as described earlier.

We next consider the effect of pruning. The heuris-
tic function in the A* search reduces the complexity of
the search from O(bd) to O(hd) where h is the heuris-
tic branching factor (Korf 1987). Thus, for planning
problems with the properties mentioned above (bal-
anced positive and negative interactions; capable of
being paritioned into subgoals with roughly equal com-
plexity) the overall complexity of the cost-directed al-
gorithm is O(hd x n x (i)t). Cost-directed search for
these problems will thus consume less time than a full
breadth-first planner as long as the following inequality
holds:4

n/(n - 1)logh 5 logb - logn

Of course, no POCL planning algorithms actually use
breadth-first node selection; this inequality simply pro-
vides a baseline for theoretical comparison. Later, we
provide experimental comparison of our algorithm with
best-first and branch-and-bound control strategies.

Branching Factor = 3. nepch = 9

d/n)) -
b**d

.9s

Factor (h/b)

Figure 2: Typical Search Space Complexity

Figure 2 illustrates the inequality, comparing the
complexity of cost-directed search with a breadth-first
search (the level plane) as a function of the number of
subgoals (n) and the pruning effect (h/b). We use a
planning problem with a branching factor of 3 and a
depth of 9 as an example. As the figure demonstrates,
there exists a region in which the cost-directed planner
performs better, namely the area in which the values of
the curve fall below the level plane. In general, the ef-
fectiveness of the cost-directed planner increases with
the pruning effect and the number of subgoals being
used.

Note that this analysis assumes that the pruning fac-
tor is independent of the number of subgoal partitions.

4The complete derivation is given in (Ephrati, Pollack,
& Miishtein 1996).

Temporal Reasoning 1225

In reality, the pruning factor is inversely related to the
number of subgoals-the higher the number of sub-
goals that are being used, the less accurate the heuris-
tic evaluation will tend to become. Thus, for a specific
problem, there exists some domain-dependent decom-
position into subgoals which will optimize the perfor-
mance of cost-directed search.

Caching Subplans

In the algorithm as so far presented, all subplans are
recomputed on each iteration. Often, however, previ-
ously generated subplans may remain compatible with
the current global partial plan, and it may thus make
sense to cache subplans, and to check whether they are
still consistent before attempting to regenerate them.
An added advantage of caching the subplans is that the
top-level planner can then at tempt to re-use subplan
steps; this helps maintain the accuracy of the heuristic
evaluation function.

We therefore modify the original algorithm by at-
taching to each global plan a set of subplans (P =
-pl,- - .,EJ) instead of just a partition of subgoals.
Then, following each refinement of the global plan, the
set of subplans is checked for consistency (with the
newly refined global plan) and only the subplans that
are incompatible are regenerated.

Although caching subplans may significantly reduce
the number of subplans generated, it can also increase
space complexity; details of this trade-off are given in
(Ephrati, Pollack, & Milshtein 1996). In all the exper-
iments reported below, subplans were cached.

Experimental Results

The complexity analysis above demonstrates the po-
tential advantages of our approach. To verify the ad-
vantages in practice, we conducted a series of experi-
ments comparing the cost-directed search with caching
against the standard UCPOP algorithm with the built-
in default search control, and againt UCPOP with a
control mechanism that finds the minimal cost plan
using branch-and-bound over action costs (henceforth
called B&B).

Effects of Subgoal Independence

In the first experiment, our aim was to study the per-
formance of the algorithms in domains in which the
top-level subgoals had different levels of dependence.
We therefore constructed three synthetic operator sets
in the style of (Barrett & Weld 1994):

l Independent Subgoals: Barrett and Weld’s BjD”Sn
(p. 86). sn means that it takes n steps to achieve
each top-level subgoal. Do means that the delete
set of each operators is empty, so all the top-level
subgoals are independent. @j means that there are j
different operators to achieve each precondition.

1226 Planning

Heavily Dependent Subgoals: Barrett and Weld’s
6j D”S” * (p. 93). As above, there are j different op-
erators to achieve each precondition, and each top-
level subgoal requires an n-step plan. Dm* refers to
a pattern of interaction among the operators. There
is a single operator that must end up in the middle
of the plan, because it deletes all the preconditions
of the operators in stages 1 through k for some k, as
well as all the effects of the operators in stages k + 1
through n. In addition, for each stage, the opera-
tors for the ith subgoal delete all the preconditions
of the same-stage operators for subgoals j < i. Con-
sequently, there is only a single valid linearization
of the overall plan; the dependency among top-level
subgoals is heavy.

Moderately Dependent Subplans: A variant of Bar-
rett and Weld’s 6jDmSn (p. 91). Here again there
are j different operators to achieve each precondi-
tion, and each top-level subgoal requires an n-step
plan. In addition, the union of delete lists of the
k + 1st stage operators for each subgoal sgi delete
abb of the preconditions for the kth stage operators
for all other sgj, j # i. Because these preconditions
are partitioned among the alternative kth stage op-
erators, there are multiple valid linearizations of the
overall plan. Although the top-level subgoals inter-
act, the dependency isn’t as tight, given the multiple
possible solutions.

One thing to note is that the individual subplanning
tasks in our experiments are relatively easy: the in-
teractions occur among the subplans for diRerent sub-
goals. Of course, this means that planning for UCPOP
and B&B is comparatively easy as well. Further exper-
iments are being conducted using operator sets with
interactions within each subplan.

For the first experiment, we used problems with 4
top-level subgoals, and built the operator sets so that
each top-level subgoal required a plan of length 3 (i.e.,
we used the S3 version of each of the operator sets).
The actions were randomly assigned costs between 1
and 10. Finally, we varied the number of operators
achieving each goal (the j in 6j) to achieve actual
branching factors, as measured by UCPOP, of about
3 for the case of independent subgoals, about 2 for
medium dependent subgoals, and about 1.5 for heavily
dependent subgoals. The results are shown in Table 1,
which lists

o the number of nodes generated and the number of
nodes visited (these numbers are separated by an
arrow in the tables);

* the CPU time spent in planning.5

5For certain problems that required a great deal of mem-
ory, the garbage collection process caused Lisp to crash, re-
porting an internal error. Schubert and Gerevini (Schubert
& Gerevini 1995) encountered the same problem in their
UCPOP-based experiments, with problems that required a

a the cost of the plans generated (sum of action costs).

As can be seen in the table, COST performed best in
all cases, not only examining significantly fewer nodes,
but taking an order of magnitude less time to find a
solution than B&B. Not surprisingly, COST’s advan-
tage increases with the degree of independence among
the subgoals: the greater the degree of independence
among the subplans, the more accurate is COST’s
heuristic function, and thus the more effective its prun-
ing. However, even in the case of heavy dependence
among top-level subgoals, COST performs quite well.

same costs, then no pruning will result from a strat-
egy based on cost comparison, and the space taken by
caching subplans will be enormous.

Degree Planner Nodes Time cost

UCPOP failure 28980.45 -
Low B&B failure 26165.37 -

COST 70 + 26 210.44 2167
UCPOP failure 36519.96 -

Medium B&B failure 26952.57 -
COST 134 + 44 407.84 54

UCPOP failure 14986.58 -
High B&B failure 27304.23 -

COST failure *

Dependency Planner Nodes Time 1 Cost
UCPOP failure 39927.89 -

Independent B&B 35806 + 12900 2183.21 37
COST 60 + 22 126.13 37
UCPOP failure 40348.54 -

Medium B&B 214 failures 9185.691 -
14827 -+ 5198 (succ. only)

COST 309 4 146 613.54 37

UCPOP failure * -
Heavy B&B 214 failures 12727.83 -

42978 -+ 17567 (sncc. only)
COST 780 + 444 3834.517 37

Table 1: Varying dependency (4 medium uniform sub-
goals, 3 Steps each, b M 3 for independent, b x 2 for
medium, b x 1.5 for heavy)

Effects of Uniformity
The next thing we varied was the uniformity of action
cost: see Tables 2 and 3. For this experiment, we used
the independent subgoal operator set described above,
with 3 steps to achieve each subgoal, and an actual
branching factor of approximately 3. The experiment
in Table 2 involved 6 top-level subgoals, while the ex-
periment in Table 3 involved 4. In both experiments,
we varied the distribution of action costs: in the highly
uniform environment, all actions were assigned a cost
of 1; in the medium uniform environment, they were
randomly assigned a cost between 1 and 10; in the
the low uniform environments, they were randomly as-
signed a cost between 1 and 100.

Both UCPOP and B&B failed to find a solution for
problems with 6, and even with 4 independent subgoals
within the 150,000 nodes-generated limit. In highly
uniform domains, i.e., those in which alI actions had
the same cost, our cost-directed algorithm fared no
better: it also failed, although by exceeding memory
limits. This is not surprising: if all actions have the

lot of memory. We do not report results for these problems,
but instead put an asterisk (*) in the time column. Also,
in some cases, B&B succeeded- on some operator sets, and
failed on others. For those cases, we report the average
time taken on all runs (which will be an underestimate,
as the failed run were terminated after 150,000 generated
nodes). We report the number of nodes only for the suc-
cessful cases. Finally, we do not report the costs found in
these cases, because the high-cost plans are typically the
cases that fail. In no case did B&B find a lower-cost plan
than COST.

Table 2: Varying Uniformity (6 independent subgoals,
3 Steps each, b x 3)

Degree Planner Nodes Time cost
UCPOP failure 14617.54 -

Low B&B 65000 + 23158 12708.66 1761
COST 50 + 18 98.22 1761

UCPOP failure 39927.89 -
Medium B&B 35806 + 12900 2183.21 37

COST 60 + 22 126.13 37

UCPOP failure 14528.38 -
High B&B failure 26988.26 -

COST failure *

Table 3: Varying Uniformity (4 independent subgoals,
3 Steps each, b x 3)

However, when the environments become less uni-
form, we see the payoff in the cost-directed approach.
For low uniform environments and a planning problem
with 6 subgoals (Table 2), the cost-directed planner
finds plans by generating less than 70 nodes, taking
about 3.5 minutes-while UCPOP and B&B failed, af-
ter generating 150,000 nodes, and taking over 7 hours.
Even with medium uniformity, cost-directed planning
succeeds quickly, while the other two approaches fail.
Similar results are observed for the smaller (4 subgoal)
problem (Table 3).

Note again that these are very easy problems, given
the independence of the top-level subgoals. Indeed, the
optimal strategy would have been to plan completely
separately for each subgoal, and then simply concate-
nate the resulting plans. However, one may not know,
in general, whether a set of subgoals is independent,
prior to performing planning. The cost-directed search
performs very well, while maintaining a general, POCL
strategy that is applicable to interacting, as well as in-
dependent, goals.

Other Factors Effecting Planning
Several other key factors that are known to effect the
efficiency of planning are the average branching factor,
the length of the plan, and the number of top-level
subgoals. We have conducted, and are continuing to
conduct, experiments that vary each of these factors;
so far, our results demonstrate that in a wide range of
environments, the COST algorithm performs very well,
finding low-cost plans in less time than either UCPOP
or B&B (Ephrati, Pollack, & Milshtein 1996).

Temporal Reasoning 1227

Related Research
Prior work on plan merging (Fousler, Li, & Yang 1992;
Yang, Nau, & Hendler 1992) has studied the problem
of forming plans for subgoals independently and then
merging them back together. Although similarly mo-
tivated by the speed-up one gets from attending to
subgoals individually, our work differs in performing
complete planning using a POCL-style algorithm, as
opposed to using separate plan merging procedures.

The idea of using information about plan quality
during plan generation dates back to (Feldman &
Sproull 1977); more recent work on this topic has in-
volved the introduction of decision-theoretic notions
(Haddawy & Suwandi 1994). Perez studied the prob-
lem of enabling a system to learn ways to improve the
quality of the plans it generates (Perez 1995). Particu-
larly relevant is Williamson’s work on the PYRRHUS
system (Williamson & Hanks 1994), which uses plan
quality information to find an optimal plan. It per-
forms standard POCL planning, but does not termi-
nate with the first complete plan. Instead, it computes
the plans’s utility, prunes from the seach space any par-
tial plans that are guaranteed to have lower utility, and
then resumes execution. The process terminates when
no partial plans remain, at which point PYRRHUS is
guaranteed to have found an optimal plan. What is in-
teresting about PYRRHUS from the perspective of the
current paper is that, although one might expect that
PYRRHUS would take significantly longer to find an
optimal plan than to find an arbitrary plan, in fact, in
many circumstances it does not. The information pro-
vided by the utility model results in enough pruning
of the search space to outweigh the additional costs of
seeking an optimal solution. This result, although ob-
tained in a different framework from our own, bears a
strong similarity to our main conclusion, which is that
the pruning that results from attending to plan quality
can outweigh the cost of computing plan quality.

Conclusions
We have presented an efficient cost-directed planning
algorithm. The key idea underlying it is to replace a
shallow, syntactic heuristic for node selection in POCL
planning with an approximate, full-depth lookahead
that computes complete subplans for a set of top-level
subgoals, under the assumption that these subgoals are
independent. Our analytical and experimental results
demonstrate that in addition to finding low-cost plans,
the algorithm can significantly improve planning time
in many circumstances. The performance of the algo-
rithm is dependent upon the possibility of decompos-
ing the global goal into subgoal sets that are relatively
(though not necessarily completely) independent, and
that are roughly equivalent in complexity to one an-
other.

The experiments we presented in this paper support
the main hypothesis, but are by no means complete.
We are continuing our experimentation, in particular,

studying domains that involve a greater degree of in-
teraction within each subplan. In addition, we are
investigating the trade-off between using a complete
POCL planner for subplanning, as in the experiments
reported here, and recursively calling the main algo-
rithm for subplanning. Finally, we are developing tech-
niques to make the cost-directed search admissible.

Acknowledgments This work has been supported by
the Rome Laboratory of the Air Force Material Command
and the Advanced Research Projects Agency (Contract
F30602-93-C-0038), by the Office of Naval Research (Con-
tract N00014-95-l-1161) and by an NSF Young Investiga-
tor’s Award (IRS9258392).

References
Barrett, A., and Weld, D. 1994. Partial-order plan-
ning: Evaluating possible efficiency gains. Artificial
Intelligence 67(1):71-112.
Ephrati, E.; Pollack, M. E.; and Milshtein, M. 1996.
A cost-directed planner. Technical Report, Dept. of
Computer Science, Univ. of Pittsburgh, in prepara-
tion.
Feldman, J. A., and Sproull, R. F. 1977. Decision the-
ory and artificial intelligence II: The hungry monkey.
Cognitive Science 1:158-192.
Fousler, D.; Li, M.; and Yang, Q. 1992. Theory and
algorithms for plan merging. Arti$ciab Intelligence
57:143-181.
Haddawy, P., and Suwandi, M. 1994. Decision-
theoretic refinement planning using inheritance ab-
straction. In Proceedings of the Second International
Conference on AI Planning Systems, 266-271.
Korf, R. E. 1987. Planning as search: A quantitative
approach. Artificial Intelligence 33:65-88.
Perez, M. A. 1995. Improving search control
knoweldge to improve plan quality. Technical Re-
port CMU-CS-95-175, Dept. of Computer Science,
Carnegie Mellon University. Ph.D. Dissertation.
Schubert, L., and Gerevini, A. 1996. Accelerating
partial order planners by improving plan and goal
choices. Technical Report 96-607, Univ. of Rochester
Dept. of Computer Science.
Williamson, M., and Hanks, S. 1994. Optimal plan-
ning with a goal-directed utility model. In Proceedings
of the Second International Conference on Artificial
Intelligence Planning Systems, 176-181.
Yang, Q.; Nau, D. S.; and Hendler, J. 1992. Merg-
ing separately generated plans with restricted inter-
actions. Computational Intelligence 8(2):648-676.

1228 Planning

