
Production Systems Nee ure
an Minh Dung

Computer Science rogram, Asian Institute of Technology
PO Box 2754, Bangkok 10501, Thailand

dung@cs.ait.ac.th

aolo Mancarella
Dipartimento di Informatica, University of Pisa

Corso Italia 40, 56125 Pisa, Italy
paolo@di.unipi.it

Abstract

We study action rule based systems with two forms
of negation, namely classical negation and “negation
as failure to find a course of actions”. We show by
several examples that adding negation as failure to
such systems increase their expressiveness, in the sense
that real life problems can be represented in a natu-
ral and simple way. Then, we address the problem of
providing a formal declarative semantics to these ex-
tended systems, by adopting an argumentation based
approach, which has been shown to be a simple uni-
fying framework for understanding the declarative se-
mantics of various nonmonotonic formalisms. In this
way, we naturally define the grounded (well-founded),
stable and preferred semantics for production systems
with negation as failure. Next, we characterize the
class of stratified production systems, which enjoy the
properties that the above mentioned semantics coin-
cide and that negation as failure can be computed by
a simple bottom-up operator.

Introduction and Motivations
In this section we first give examples to motivate the
extension of the production systems paradigm (Wayes-
Roth 1985) by the introduction of negation as failure
(to find a course of actions). We then discuss its role
as a specification mechanism for reactive systems.

On the need for negation as failure in
production systems
Example 1 Imagine the situation of a person doing
his household work. Clothes have to be washed and
the person has two options, either hand washing or
machine washing. If there is machine powder in house,
then machine washing can take place. This is repre-
sented by the production rule

r1 : if Powder then machine-wash.
If no machine powder is in house, then it can be ac-
quired by either buying it in the shop (provided the
shops are open) or by borrowing it from the neighbor
(if he is in). The rules for acquiring powder can be
represented by the following two classical production
rules

f-2 : if 1 Powder, Shop-Open then buy
r3 : if 1 Powder, Neighbor-In then borrow.

1242 Rule-Based Reasoning & Connectionism

Of course, hand washing is undesirable and will be
taken up if there is no way to acquire machine pow-
der. The naive representation of this rule using classi-
cal negation

if 1 Powder then hand-wash
is clearly not correct, since the meaning of such a rule
is that if there is no machine powder in house at the
current state, then the clothes should be hand washed,
while the intuitive meaning of “there is no way to ac-
quire machine powder” is that there is no course of
actions starting from the current state leading to ac-
quiring machine powder. Hence in a state where there
is no machine powder in house and the neighbor is in,
the above naive representation would allow hand wash-
ing though there is a way to acquire machine powder
by borrowing it from the neighbor. Hence it fails to
capture the intuitive understanding of the problem.

Here we need to use a different kind of negation,
called negation as failure (to find a course of actions)
and denoted by the operator not. The previous naive
representation is now replaced by

f4 : if not Powder then hand-wash.

It is not difficult to find other real life situations gov-
erned by rules with negation as failure.

Example 2 Consider the rules for reviewing the work
of faculties at the end of each academic year in a uni-
versity. The first rule specifies the conditions for of-
fering tenure to assistant professors. It states that as-
sistant professors with good publications and with a
working experience of at least five years should be of-
fered tenure. This rule could be formalized by:

if Assistant-Prof(X), Good-Pub(X),
Work-at-least-5-years(X) then offer-tenure(X).

The second rule states that if an assistant professor has
no prospect of getting a tenure then fire him. Though
the intuitive meaning of this rule is clear, it is not pos-
sible to represent it as a classical production rule since
the premises of a classical production rule represent
conditions which must be satisfied in the current state
of the world while the premises of the second rule repre-
sent a projection into the future. It says that if there is
no possibility for an assistant professor to get a tenure
in the future then sack him now. In other words, the
rule says that if an assistant will fail in all possible

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

course of actions in the future to get a tenure then fire
him. To represent this rule, we use again negation as
failure to find a course of actions. The second rule can
then be represented as follows:

if Assistant-Prof(X), not Getting-Tenure(X)
then f’ire(X)

In real life, we often find ourselves in situations where
we have to deal with risky or undesirable actions. For
example, a doctor may have to take the decision of cut-
ting the foot of his patient due to some severe frostbite.
This is a very risky, undesirable decision and the com-
monsense rule specifying the conditions for taking this
action is that the doctor is allowed to cut if there is no
other way to save the foot of the patient. This can be
represented, using negation as failure, as follows:

if not Save then cut.
Finally, we can expect that in real life, intelligent
systems could be employed to satisfy multiple goals.
These goals can have different priorities, and negation
as failure (to find a course of actions) can be used to
represent these priorities as in the following example.

Example 3 Consider a robot fire fighter that should
be sent into a fire to save lives and properties. The
priority here is certainly saving lives first. Imagine now
that the robot is standing before a valuable artifact.
Should it, take it and get out of the fire? The answer
should be yes only if the robot is certain that there
is notthing it can do to save any life. The rule can be
represented as follows

if Artifact(X), In-Danger(X), not Human-Found
then save(X)

Note that the not Human-Found here means that no
human being could be found in the current and all
other possible states of the world reachable by firing a
sequence of actions the robot is enabled to perform.

Negation as failure as a specification
mechanism for reactive systems
Let us consider again the example 1. Checking whether
the conditions of the rule

* 1’4 . if not Powder then hand-wash
are satisfied in the current state involves checking
whether there is any way to acquire machine powder
from the current state, a process which could be time
consuming and expensive. In a concrete application, as
in our example where there are only two ways to get
powder: buying it in the shop or borrowing it from the
neighbor, negation as failure can be “compiled” into
classical negation to produce a more efficient rule:

if 1 Powder, 1 Shop-Open, 1 Neighbor-In
then hand-wash.

However, the environment in which a production
system with the above rule is applied can change. For
example, you may get a new neighbor who may not
have any interest for good relations to other peoples,
and so you will not be able to borrow anything from
him. Hence the rule for borrowing must be dropped.

Consequently the above production rule must be re-
vised to

if 1 Powder, 1 Shop-Open then hand-wash
It is clear that the rule r4 with negation as failure is
still correct and serves as a specification for checking
the correctness of the new rule.

The point we want to make here is that in many
cases, though negation as failure is not employed di-
rectly, it could be used as a specification mechanism
for a classical production system. This situation can
be encountered quite often in many real life situations.
Imagine the work of a physician in an emergency case
dealing with a patient who is severely injured in a road
accident. In such cases, where time is crucial, what a
doctor would do is to follow certain treatments he has
been taught to apply in such situations. He more or
less simply react depending on the physical conditions
of the patient. The treatment may even suggest a fate-
ful decision to operate the patient to cut some of his
organs. Now it is clear that such treatment changes
according to the progress of the medical science. One
treatment which was correct yesterday may be wrong
today. So what decides the correctness of such treat-
ments? We can think of such treatments in a simpli-
fied way as a set of production rules telling the doctors
what to do in a concrete state of a patient. The cor-
rectness of such rules are determined by such common-
sense principles like: Operate and cut an organ only if
there is no other way to save the patient. And such a
principle can be expressed using negation as failure.

Aim of this work

We have seen in the examples that using negation as
failure in production systems allows one to naturally
and correctly represent many real life problems. The
main aim of this paper is to provide a declarative
semantics to production systems where two kinds of
negation are used, classical negation and negation as
failure (to find a course of actions). In this respect, we
show that the argumentation based approach (Dung
1995), which has been successfully adopted to under-
stand logic programming with negation as failure as
well as many other nonmonotonic formalisms, can also
be adopted to provide a natural and simple declara-
tive semantics to production systems with two kind
of negations. The basic idea is that negation as fail-
ure literals, such as “not Powder” in example 1, repre-
sent assumptions underlying potential computations of
a production system. The intuitive meaning of such an
assumption is that the computation goes on by assum-
ing that there is no coukse of actions (i.e. computation)
from the current state of the world leading to a state
which defeats the assumption itself. Referring back to
example 1, assuming not Powder corresponds to as-
suming that from the current state there is no course
of actions leading to a state where machine powder
is in house. A computation which is supported by a
sequence of assumptions is plausible (acceptable) if its

Rule-Based Reasoning & Connectionism 1243

underlying assumptions cannot be defeated by actually
find a course of actions which defeats them.

These informal, intuitive notions can be formalized
by viewing a production system as an argumentation
system along the lines of (Dung 1995). This provides
us with many natural semantics, such as the grounded
(well-founded), the preferred and the stable semantics
(Dung 1995). Th ese semantics are arguably the most
popular and widely accepted semantics for nonmono-
tonic and commonsense reasoning in the literature
(Gelfond & Lifschitz 1988; Bondarenko et al. 1995;
McDermott & Doyle 1980; VanGelder, Ross, & Schlipf
1988).

Moreover, we address the problem of actually com-
puting negation as failure. In this respect, we intro-
duce the class of stratified production systems, where
negation as failure can be computed using a simple
bottom-up operator. As for the case of general strati-
fied argumentation systems, stratified production sys-
tems enjoy the property that all the previously men-
tioned semantics (grounded, preferred and stable) co-
incide.

Classical production systems
We introduce here the notations and basic terminolo-
gies we are going to use in the following. The produc-
tion system language we use is similar to classical ones
(see, e.g. (Forgy 1981)). We assume a first order lan-
guage l representing the ontology used to describe the
domain of interest. A state of the world is interpreted
as a snapshot of this world, hence is represented as a
Herbrand interpretation of ,C, i.e. as a set of ground
atoms of ,C. The set of states is denoted by Stat. Fur-
ther we assume that a set of primitive actions A is
given. The semantics (effect) of actions is described
by the function

eJQrect : A x Stat --+ Stat.
A production rule is a rule of the form

if /I,. . . , 1, then a
where II, . 1 *-, n are ground literals of L and a is an
action in A. The conditions (resp. action) of a rule
r will be referred to by cond(r) (resp. action(r)). A
production system P is a set of production rules.

A production rule if dl, . . . , I, then a is said to be
upplicabEe in a state S iff the conditions dl, . . . , d, are
true in S, i.e. S k Zr A . . . A I,.

Definition 4 A partial computation C of a produc-
tion system P is a sequence

so -5 Sl . . . = s,
n 2 0, such that Si’s are states, ri’s are production
rules in P and for each i > 1, ri is applicable in Si-1,
and Si = eflect(uction(ri), $-I). So will be referred
to as initial(C) and S, as final(C).

A partial computation C
so 2 s1 . . . -2- s,

is called a complete computation if no production rule
in P is applicable in S,. 0

Note that, if n = 0, then the partial computation is an
empty computation.

The behavior of a production system P can be de-
fined as the set of pairs of states (S, S’) such that S
(resp. S’) is the initial (resp. final) state of some com-
plete computation of P. This is formalized in the next
definition.
Definition 5 For a production system P, the input-
output semantics of P is defined by

TO(P) = ((initiul(C),f;nu/(C)) 1 C is a
complete computation of P}. 0

Production rules with NAF
We introduce a new form of negation into the language
L, denoted by not. A general literal is now either a
(classical) literal 1 or a nuf-literal not d, where 1 is a
classical literal. For each classical literal d, the intuition
of not I is that it is not possible to find a course of
actions to achieve d.
Definition 6 A general production rule has the form

if II,.. . , I, then ai
where each Zi is a ground general literal. 0

Given a general production rule
if II,. . . , d, then ai

the set of classical literals in r will be referred to as
cl-cond(r), and the set of naf-literals will be referred
to as hyp(r).

A general production system (GPS) P is a set of
general production rules. A general production rule
is said to be possibly applicable in a state S if S +
cl-cond(r). Notice that a rule satisfying the condition
that S /= cl-cond(r) in a state S is not necessarily
applicable in S since it is not clear whether its naf-
conditions are satisfied in S.
Definition 7 Given a GPS P, a possible partial com-
putation in P is a sequence

where Si’s are states, ri’s are general production rules
in P, for each i 2 1, ri is possibly applicable in Si- 1
and Sa = eflect(uction(ri), Si-1).

Given a GPS P, the set of all possible partial com-
putations of P is denoted by C(P). 0

When a possible partial computation is
acceptable: a motivating discussion
The basic idea in understanding the meaning of naf-
conditions not I’s in general production rules is to view
them as hypotheses which can be assumed if there is no
possible course of actions to achieve d. So, intuitively
we can say that a rule is applicable in a state S if it
is possibly applicable and each of its hypotheses could
be assumed. A partial (pre)computation is then an
acceptable partial computation if each of its rules is
applicable. The whole problem here is to understand
formally what does it mean that there is no possible
course of actions starting from a state S to achieve
some result 1. Let us consider again the example 1.

1244 Rule-Based Reasoning & Connectionism

Example 8 Let us consider again the washing exam-
ple. The effects of the actions are specified below:

e@ect(hand-wash, S) = S U {Clean, Tired}
eflect (machine-wash, S) = (S\ {Powder}) U {Clean}

if Powder E S
e*ffect (machine-wash, S) = S if Powder @ S
eflect(buy, S) = S U {Powder, Less-Money}
eflect (borrow, S) = S U {Powder}

Assume that in the initial state we have no powder,
shops are closed and the neighbor is in. This state
is represented by the interpretation So = {Neighbor-
In}. From this state there are three possible nonempty
partial computations starting from So, namely

Cl : so 2 {Neighbor-In, Clean, Tired}

ca: so -2 {Neighbor-In, Powder} 2
{Neighbor-In, Clean}.

c3 : so -5. {Neighbor-In, Powder}
First, notice that both Cz and C’s are not based on
any assumption. Our commonsense dictate that C2
and C’s represent acceptable course of actions from the
initial state which lead to the commonsense result that
clothes a.re machine washed. Hence they both must be
accepted as possible courses of actions. On the other
hand Cl is based on the assumption “not Powder”,
meaning that (2’1 assumes that there is no possible way
to acquire the machine powder. However, C’s repre-
sents just one such possible way. Hence, C’s represents
an attack against the assumption “not Powder”. So C’s
can also be viewed as an attack against the acceptabil-
ity of Cl as a legitimate computation. On the other
hand, both C:! and C’s are not based on any assump-
tion, hence there is no way they can be attacked.

This example points out that the semantics of GPS’s
is a form of argumentation reasoning, where arguments
are represented by possible partial computations. In
t,he following, we first recall the general notion of ar-
gumentation systems from (Dung 1995) and then we
show that the natural semantics of GPS can be defined
using the theory of argumentation.

Argumentation systems We review here the basic
notions and definitions of argumentation systems (the
reader can refer to (Dung 1995) for more details and
for a discussion of the role of argumentation systems
in many fields of Artificial Intelligence).

An argumentation system is a pair (AR, uttucks)
where AR is the set of all possible arguments and
attacks C_ AR x AR, representing the attack relation-
ship between arguments. If the pair (A, B) E attacks,
then we say that A attacks B or B is attacked by A.
Moreover, A attacks a set of .arguments H if A attacks
an argument B E H. We also say that H attacks A if
an argument B E H attacks A.

A set H of arguments is conflict-free if no argument
in H attacks H.

An argument A is defended by a set of arguments
H if H attacks any attack against A, i.e. for each

argument B E AR, if B attacks A then H attacks B.
We also say that H defends A if A is defended by H.

The basic notion which underlies all the semantics
for argumentation systems that we are going to review
in the rest of this section, is the following, intuitive
notion of acceptability of a set of arguments. A set H
of arguments is acceptable if it is conflict-free and it
can defend each argument in it.

Let H be a set of arguments and let Def (H) be
the set of all arguments which are defended by H. It
is not difficult to see that H is acceptable iff H &
Def (H) and H is conflict-free. Further it is easy to
see that oef : P(AR) - P(AR) is monotonic. Hence
the equation H = Def (H) has a least solution which is
also acceptable (following from the fact that Def (0) is
acceptable and if H is acceptable then also H UDef (H)
is also accept able).

The various semantics for argumentation systems
are basically solutions of the above equation H =
Def (H). In particular, the grounded (well-founded)
semantics of an argumentation system is the least so-
lution of the equation H = Def (H).

Another semantics for argumentation systems,
called the preferred semantics, is defined by the maxi-
mal acceptable sets of arguments. It is not difficult to
see that these sets are the conflict-free maximal solu-
tions of the equation H = Def (H). In general, pre-
ferred sets contain the grounded semantics, but do not
coincide with it. In the next section, we will give an
example for this.

Finally, a popular semantics of nonmonotonic rea-
soning and argumentation systems is the stable seman-
tics, defined as follows. A conflict-free set of arguments
H is said to be stable if it attacks each argument not
belonging to it. It is not difficult to see that each sta-
ble set of arguments is acceptable. Furthermore, it is
also easy to see that each stable set is preferred, hence
it is a maximal, conflict-free solution of the equation
H = Def (H), but not vice versa.

It has been shown that argumentation systems pro-
vide a simple and unifying semantical framework for
commonsense reasoning. For example, logic program-
ming and different logics for nonmonotonic reasoning
and n-person games are showed to be different rep-
resentations of the argumentation systems presented
above (see (Dung 1995) for further details)- where for
instance, the grounded semantics of argumentation
corresponds to the well-founded semantics in logic pro-
gramming (Van Gelder, Ross, & Schlipf 1988) and sta-
ble semantics of argumentation correspond to stable
semantics of logic programming (Gelfond & Lifschitz
1988) and other prominent nonmonotonic logics like
Reiter’s default logic (Reiter 1980) or Moore’s au-
toepistemic logic (Moore 1985).

In the following we show that general production
systems with two kinds of negation are also a form of
argumentation systems.

Rule-Based Reasoning h Connectionism 1245

Computations as arguments The semantics of a
GPS P is defined by viewing it as an argumentation
framework (AR(P), attacks), where AR(P) is the set of
all possible partial computations of P and the relation
attacks is defined as follows.

Definition 9 Let C be a possible partial computation
so -Lsl I.,. ----+si %s;+1 -+...-Ys,.

An attack against C is a possible partial computation
C’ such that initiul(C’) = Si, for some i, and there
exists an underlying assumption not I in hyp(ri+l) such
that I holds in finul(C’). 0

Remark: Empty computations cannot be attacked.
Hence, empty computations are contained in any se-
mantics.

Notice that, in the above definition, the initial state
of the attack C’, which defeats the assumption not lun-
derlying C, has to be the actual state Si in which such
an assumption was made. In other words, whether
an assumption not I can be defeated or not, depends
on the state in which this assumption is made and on
whether or not this state can be lead by a computation
to a state in which I holds.

The view of a GPS as an argumentation system, al-
lows us to provide it with three different semantics:
grounded (well-founded), preferred and stable seman-
tics.

It is easy to see that the following proposition hold.

Proposition 10
(i) If a computation C attacks a computation C’ and
C’ is a prefix of C”, then C also attacks C”.
(ii) Let H be a set of computations which is either
the grounded, or a preferred, or a stable set. For any
C E H, any prefix of C also belongs to H. 0

We can now define the set of complete acceptable
computations, with respect to a selected semantics.

Definition 11 Let P be a GPS and R be a selected
semantics of P, i.e. R is either the grounded, or a pre-
ferred, or a stable, set of possible partial computations.
A partial computation C E R is called an R-complete
computation if there exists no other partial computa-
tion C’ E R such that C is a prefix of C’. 0

If all the semantics of a GPS coincide, we simply talk
about complete computations instead of R-complete
computations. Referring back to the example 8, the
only complete computation starting from So is C2.

The input-output semantics of classical production
systems can be extended to general production systems
with respect to a selected (grounded, preferred, stable)
semantics.

Definition 12 Let P be a GPS.
(i) The grounded input-output semantics of P is de-
fined by

ZOc(P) = {(initiuZ(C),finul(C)) 1 C is a
grounded complete computation}.

(ii) Let R be a set of arguments which is preferred or
stable. Then

Z&(P) = {(initiu/(C),finud(C)) 1 C is an
R-complete computation of P }. 0

Stratified Production Systems
In this section we consider only special kinds of GPS,
where the actions are of two types, assert(p) and
retract(p), where p is an atom. The effect of assert(p)
(resp. retract(p)) on a state S is adding (resp. remov-
ing) p to S (resp. from S). Moreover, the rules have
the following structure:

lp, II,. . . , dk, not Zk+l, . . . , not I, + assert(p)
p, dl, . . . ,11, not Ik+l, . . . , not & --+ retract(p)

where Zi’s are classical literals. Rules of the first kind
are called assert rules, and rules of the second kind are
called retract rules. If it is not important to distinguish
between
a rule as

assert and retract rules, we will simply write

d, dl, . . . , lk, not ik+l, . . . , not 1, - a.
Taking inspiration from the notion of stratification in
logic programming (Apt, Blair, & Walker 1988)) we
define stratified GPS’s in such a way that negation as
failure can be computed bottom-up. In the following,
given a classical literal I, we refer to the atom of I as 1
if it is a positive atom, and as p if d is lp.

Definition 13 A GPS P is stratified if there exists a
partition PolJ.. .UP, of its rules such that the following
conditions are satisfied. Let

b)11,. . . ,!k,not /k+l,..., not dh - a
be a rule in Pj. Then
(i) for each li, i = 1,. . . , k, each rule containing the
atom of Zi in the head must belong to U P,

m<j
(ii) for each Zi, i = k + 1, . . . , h, each rule containing
the atom of li in the head must belong to U Pm. o

m<j

For stratified GPS’s, the grounded, preferred and
stable semantics coincide (see theorem 15). Moreover,
this semantics can be computed in a bottom-up way,
by a simple operator S, that we define next.

Let C be a possible partial computation
s++s~...=s,.

Then for any h, k such that 0 <_ h < k 5 n, the se-
quence

sh ‘= $+I . . . = Sk
is called a subcomputation of C.

Definition 14 Let P = PO U . . . U Pn be a stratified
GPS. Let S be the operator defined as follows.

gdu= Wo)
0 . . . u Pi+1) = {C E C(P0 u . . . u Pi+1) J

* for each subcomputation C’ of C if
C’ E C(Pf-J u . . . U Pi) then C’ E S(Po U . . . U Pi)

* for each subcomputation of C of the form

Sj-1 -X Sj such that rj E Pi+1 then for
each not d E hyp(rj), there is no computation

Rule-Based Reasoning & Connectionism

C’ E S(P0l.J.. .UPi) such that iniiial(C’) = Sj _ 1
and final /= a} 0

Roughly speaking, the operator S formalizes the in-
tuition that the acceptability of a possible partial com-
putation using rules in PO U . . . U Pi+1 depends only on
computations in PO U . . . U Pi. Thus, the semantics
of a stratified GPS P can be computed bottom-up by
iterating the operator S on the strata of P.

Theorem 15 Let P be a stratified GPS. Then:
(i) S(P) is grounded
(ii) S(P) is the unique preferred set of computations
(iii) S(P) is the unique stable set of computations o

Conclusions and future work
Production systems with negation as failure to find a
course of actions are a natural extension of classical
production systems, which increases their expressive-
ness in the sense that they allow a natural and simple
representation (specification) of many real life prob-
lems. This extension can be given a simple seman-
tics based on an argumentation theoretic framework.
There are still several issues which deserve a deeper
study and understanding.

We have seen that our semantics reflects the inher-
ent nondeterminism of production systems. In fact, in
our semantics different complete computations start-
ing from the same initial state can yield different fi-
nal states, even for stratified GPS’s. This contrasts
with many efforts in the literature aiming at find-
ing a method to select one of the complete compu-
tations as the expected semantics (Froidevaux 1992;
Raschid 1994). Even though we believe that in many
cases these efforts contrast with the inherent nonde-
terministic nature of the problems represented by the
production rules, there are situations in which select-
ing only one out of (possibly) many complete compu-
tations may not harm at all. In these cases, it is worth
studying computational strategies which basically pro-
vide us with a deterministic operational semantics for
production systems. Still, the declarative semantics
serves as a basis for reasoning about the correctness of
these methods.

We are investigating the application of our approach
in the active databases area. Active databases-(Ceri,
Dayal, & Widom 1995) is an important research topic
in the database community due to the fact that they
find many applications in practice. Typical active
daftabase rule is an event-condition-act& form. We
are currently extending our argumentation based ap-
proach to active rules which also contain negation as
failure in the condition part of the rules.

Finally, a few words about the relationship between
“negation as failure
sented in this paper
in logic programming.
-I, ^___^ A AL-C ^-.^-_- . ..--...

to find a course of actions” pre-
and “negation as failure to prove”

In (Dung 1995), it has been
* ---L-L.-- I?-‘-^- -^------ l- ^-- L - bllUWCU Lrlab every arguIIlerllJ ci.blU11 1ra1 rre WV1 K cm1 oe

represented by a simple logic program using negation

as failure to prove. This means that negation as fail-
ure to find a course of actions can be represented using
naf to prove. In a following paper we have also showed
that naf to prove is a special kind of negation as fail-
ure to find a course of actions. Hence the conclusion
is that the two kinds of naf have the same expressive
power. Which one should be used in a concrete ap-
plication depends on which one allows a more natural
specification of the problem at hand.

Acknowledgments This research was supported in
part by EEC Keep in Touch Activity KITOll-LPKRR.

eferences
Apt, K.; Blair, H.; and Walker, A. 1988. Towards a
theory of declarative knowledge. In Minker, J., ed.,
Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann.
Bondarenko, A.; Dung, P.; Kowalski, R.; and Toni, F.
1995. An abstract, argumentation-based theoretic ap-
proach to default reasoning. Technical report, Dept.
of Computing, Imperial College of Science, Technol-
ogy and Medicine, London.
Ceri, S.; Dayal, U.; and Widom, J. 1995. Active
Database Systems. Morgan-Kauffman.
Dung, P. 1995. The acceptability of arguments and
its fundamental role in logic programming, nonmono-
tonic reasoning and n-person games. ArtificiaE Intel-
ligence 77(2).
Forgy, C. 1981. OPS5 user’s manual. Technical Re-
port CMU-CS-81-135, Carnegie Mellon University.
Froidevaux, C. 1992. Default logic for action rule-
based systems. In Neumann, B., ed., Proc. 10th Euro-
pean Conference on Artificial Intelligence (ECAI 92),
413-417. John Wiley & Sons.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R.,
and Bowen, K., eds., Proceedings ofthe Fifth Interna-
tional Conference on Logic Programming, 1070-1080.
The MIT Press.
Hayes-Roth, F. 1985. Rule based systems. Commu-
nications of the ACM 28(9).
McDermott, D., and Doyle, J. 1980. Non-Monotonic
Logic I. Artificial Intelligence 13(l-2):41-72.
Moore, R. 1985. Semantical considerations on non-
monotonic logics. Artificial Intelligence 25(1):75-94.
Raschid, L. 1994. A semantics for a class of strat-
ified production system programs. Journal of Logic
programming.
Reiter, R. 1980. A logic for default reasoning. Arti-
ficial Intelligence 13:81-132.
VanGelder, A.; Ross, K.; and Schlipf, J. 1988. Un-
founded sets and well-founded semantics for general
logic programs. In Proceedings of the Seventh Sym-
posium on Principles of Database Systems, ACM-
SIGACT-SIGCOM, 221-230. The MIT Press.

Rule-Based Reasoning & Connectionism 1247

