
si ase so

Bing Liu and Joxan Jaffar

Department of Information Systems and Computer Science
National University of Singapore

Lower Kent Ridge Road, Singapore 119260, Republic of Singapore
(hub, joxan)@iscs.nus.sg

Abstract
Rule-based systems have long been widely used for building
expert systems to perform practical knowledge intensive
tasks. One important issue that has not been addressed
satisfactorily is the disjunction, and this significantly limits
their problem solving power. In this paper, we show that
some important types of disjunction can be modeled with
Constraint Satisfaction Problem (CSP) techniques,
employing their simple representation schemes and efticient
algorithms. A key idea is that disjunctions are represented as
constraint variables, relations among disjunctions are
represented as constraints, and rule chaining is integrated
with constraint solving. In this integration, a constraint
variable or a constraint is regarded as a special fact, and
rules can be written with constraints and information about
constraints. Chaining of rules may trigger constraint
propagation, and constraint propagation may cause fn-ing of
rules. A prototype system (called CFR) based on this idea
has been implemented.

1. Introduction
Rule-based systems are one of the great successes of AI
(e.g., Newell 1973; Lucas & Van Der Gag). They are
widely used to build knowledge-based systems to perform
tasks that normally require human knowledge and
intelligence. However, there are still some important
issues that have not been addressed satisfactorily in the
current rules-based systems. One of them is the
disjunction. This limits their problem solving power.

In the Constraint Satisfaction Problem (CSP) research,
many efficient constraint propagation algorithms have
been produced (Ma&worth 1977; Hentenryck et al 1992).
A number of languages or systems based on the model
have also been developed and used for solving real-life
problems (JalYar & Maher 1994; Ilog Solver 1992).

In this paper, we show that some types of important
disjunctions can be modeled with CSP. Thus, it is possible
to use the simple representation scheme and efficient
problem solving methods in CSP to handle these types of
disjunctions. Specifically, the disjunctions can be
represented as constraint variables and their domains. The
relations among disjunctions can be represented as
constraints. In this paradigm, constraint propagation and

1248 Rule-Based Reasoning & Connectionism

rule chaining are integrated. A constraint can be added as
a special fact, and rules can be written with constraints
and information about constraints. Chaining of rules may
trigger constraint propagation, and constraint propagation
may cause firing of rules. With the incorporation of CSP
techniques, the power and the expressiveness of rule-based
systems will be greatly increased. Based on this idea, a
prototype system, called CFR, has also been implemented.

The idea of incorporating CSP into a logic-based
system is not new. Constraint solving has long been
integrated with logic programming languages such as
Prolog. This integration has resulted in a number of
Constraint Logic Programming (CLP) languages (J&&r &
Maher 1994), such as CLP(R) (Jaff’ar & Lassez, 1987) and
Chip (Hentemyck 1989). These languages are primarily
used for modeling and solving real-life optimization
problems, such as scheduling and resource allocations.
However, this work is different from that in CLP in a
number of ways. The main difference is that CLP
languages are all based on Horn clauses and backward
chaining, while the proposed integration is based on
forward chaining, which is suitable for solving a different
class of reasoning problems. Integration of constraint
solving and forward chaining has some specific problems
that do not exist in CLP languages. The proposed
integration is also mainly for improving reasoning
capability of existing rule-based systems rather than for
solving combinatorial search problems. Thus the types of
constraints and their representations in the proposed
approach are quite different from those in CLP languages.

We regard this work as the first step to a full
integration of the CSP model with forward chaining rule-
based systems. The current integration presented in this
paper is still restrictive in the sense that it is mainly to
help model and handle the problems with some
disjunctions. A full integration could potentially change
the way that people use rule-based systems and change the
way that people solve practical reasoning problems, which
are the main applications of the rule-based systems today.
It may be just like the way that CLP languages have
changed the way that people model and solve practical
combinatorial search problems.

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

2, &-Based Systems and Constraint
Satisfaction Problems

This section reviews rule-based systems and CSP. The
coverage is by no means complete; rather the focus is on
highlighting the problems with disjunctions in current
rule-based systems.

2.1. Rule-Based Systems

A rule-based system consists of three main components.
1. A working memory (WM): a set of facts representing

the current state of the system.
2. A rule memory (RM): a set of IF-THElIz’ rules to test

and to alter the WM.
3. A rule interpreter (RI): it applies the rules to the WM.
The rule interpreter repeatedly looks for rules whose
conditions match facts in the WM. On each cycle, it picks
a rule, and performs its actions. A rule is of the form:

lF <conditions> THEN <actions>
There are three common connectives in a rule-based
system, i.e., and, or and not. We will only discuss or here
as we are mainly interested in disjunctions. or in logic can
be defined as inclusive (v) or excltrsive (G3). Let us first
look at the inclusive OY. For example, “if something is a
block or a pyramid, then it is a pointy-object” (adapted
from (Char&k et al 1987)) can be expressed as follows:

IF isa(?x2 block) v isa(?x, pyramid)
THEN add(isa(?x, pointy-object))

where 3x is a variable, and add adds a fact to the WM.
This rule, however, cannot be used in a typical rule-based
system. Instead, it is usually replaced by two rules:

IF &a(?~, block)
THEN add(isa(?x, pain@-object)), and
IF isa(?x, pyramid)
THEN add(isa(?x, pointy_object)).

However, this does not say exactly the same thing as the v
version does, since there might be situations where we
know that either ?x is a block or ?x is a pyramid, but do
not know which. In this case, neither of these rules
applies, but the original one that uses v does.

Now, let us look at the exclusive OK For example, the
following formula says that “either NYC or albany is the
capital of NY> but not both”.

capital(l XYC) 03 capital(i%Yy albany)
This can be rephrased as two rules: ‘?WC is the capital of
IVY3 if albany is not”, and “albany is the capital of NY, if
NYC is not”

IF not(capitai(hY, albany))
THEN add(cupital(IVY, NYC)), and
IF not(capitai(hY; AYC))
THEN add(capital(.?VY, alban)).

Unfortunately, not used in current rule-based systems is
different from l in logic. In a typical rule-based system,
not(P) is satisfied if there is no fact in WM matching P.

In general, disjunctions are difllcult to handle in
reasoning. In Section 3, we will show that CSP provides a
convenient model to represent these situations.

2.2. Constraint Satisfaction Problem

A Constraint SatisEaction Problem (CSP) is characterized
as finding values for variables subject to a set of
constraints. The standard CSP has three components:
e Variables: A finite set Y = (VI, vz, v,} of n variables

vi, which are also referred to as constraint variables.
Values: Each variable lpi is associated with a finite
domain Di, which contains all the possible alternative
values for vi.

e Constraints: A set C = (Ci, C2, C,> ofp constraints
or relations on the variables.

The main approach used for solving CSPs is to embed
constraint propagation (also known as consistency check)
techniques in a backtrack search environment, where
backtrack search performs the search for a solution and
consistency check techniques prune the search space.

Consistency techniques are characterized by using
constraints to remove inconsistent values from the
domains of variables. Past research has produced many
techniques for such a purpose. The main methods used in
practice are arc consistency techniques, e.g., AC-3
(Ma&worth 1977), AC-5 (Hentenryck et al, 1992), and
AC-7 (Bessiere et nl 1995), and their generalizations and
specializations (Hentenryck 1989; Hentenryck et al 1992;
Liu 1996). For a complete treatment of these methods,
please refer to (Ma&worth 1977; Mohr & Henderson
1986; Hentemyck 1989; Hentemyck et al 1992; Bessiere
et al 1995; Liu 1995; Liu 1996).

3. Modeling isjunctions with CS
This section shows how CSP can be used to model certain
types of disjunction in a rule-based system. In this new
paradigm with rules and constraints, the underlying
techniques for reasoning are forward rule-chaining,
constraint propagation and backtrack search.

3.1. The New Paradigm

In the new paradigm, constraints are integrated into rule-
based reasoning. It is described by:
1. A working memory (WM): a set of facts representing

the current state of the system. There are three types .of
facts:
e Simple facts: these are the traditional facts used in

the existing rule-based systems.
9 csp-disjunctions (inclusive and exclusive): these are

special types of disjunctions (defined below)
represented by the CSP model.

e Constraints: these are relations on the csp-
disjunctions.

2. A rule memory: a set of IF-THEAr rules.

Rule-Based Reasoning & Connectionism 1249

3. A rule interpreter: this applies the rules to WM by
using the traditional forward rule-chaining mechanism,
and it is integrated with the constraint solver below.

4, A constraint solver: this uses consistency check and
backtrack search for constraint satisfaction. It is
integrated with the rule interpreter above.

Thus, the key advance of this new paradigm lies in its use
of the CSP model and a constraint solver, resulting in an
integration of forward chaining and constraint solving.

3.2. Using Constraint Variables and Domains to
Represent Disjunctions

This sub-section describes how constraint variables and
their domains can be used to represent disjunctions. We
assume the basic definitions of term and atom, which are
ground when they contain no variables.

We now define the two kinds of disjunctions that we
will handle, the inclusive cspdisjunctions and exclusive
csp-disjunctions. In what follows, we shall, for simplicity
with respect to our examples later, restrict the terms in
disjunctions to differ only in the last argument.
Definition 1: An exclusive csp-disjunction has the

following form
WV,, * b -9 Ll , GJl), Wl , * * -, GA, tn21, . . . ml, * - .f b-1, Ln))

where P(tl, t n-l) t,J is a ground atom, n 2 1, tni is a
constant, and i f j implies tnj f tnj. The expression is
TRUE iflexactly one of the m ground atoms is TRUE.

Note that for all the atoms, the predicate symbols are the
same, i.e.: P, and so are the first 11 -1 ground terms. Note
also that tnj may appear in any position as long as they are
at the same position in each atom. We arbitrarily choose to
put them at the end.

This exclusive csp-disjunction can be represented by an
expression CBP(tl , . . .: tnel, D), where D is a set with the
initial value (t,l, fn2, tJm>. During the reasoning
process, some of the atoms (e.g., P(tl) . .., &-I, t,&) may be
proven to be FALSE, then D will be modified to reflect the
effect. Thus D changes during the reasoning process, but
it is always a subset of (t,l, tn2, t,& When 101 = 1: we
say D (= (tni}) is decided, which means that P(tl, . ..) tnml,

tni) is TRUE. When D = 0, it means that the exclusive
cs-disjunction is proven to be FALSE.

An important point is that CDP(t,, . .., &-I, D) can be
represented by a constraint variable, written as eP(tlz . ..,
t,,ml, 3: whose initial domain is D.

For example,
@Isa(john, (soldier, teacher))

can represent the fact that John is a soldier or a teacher,
and that John is only in one of the professions. The
corresponding constraint variable CBlsa(john, J can be
used in constraints which hopefully eventually determine
JoMs real profession.

The second type of csp-disjunction is defined below.

efhition 2: An inclusive csp-disjunction
v(P(t1,. * .J”-1, t”l): P(t1, * * *, tn-1, bl2), - * -7 fvl , * * *, Ll , 4Im))

is like an exclusive csp-disjunction, except that this
formula is TRUE z#3P(tl, fn-l, tni) is TRUE.

This inclusive csp-disjunction can be represented by an
expression vP(tl f . . . , tnml, S), where the initial value of S is
the power set of (&I, tnzs tm} excluding the empty set.
It is convenient to think of S in two parts (R, Q):
0 A set of required elements R: the elements that have

been proven to be true, i.e., whose associated atoms
have been proven to be TRUE.

0 A set of possible elements Q: the elements that belong
to at least one possible value of S.

Then, R and Q satis@ these. conditions: R n Q = 0 and R
u Q c (tnl, ~2, . ..> t,&. The initial value of S may be ((),
U”l, 622: “‘, &}), and R will grow and Q will shrink in the
reasoning process. When Q = 0 and PI = 0, we say the
inclusive csg-disjunction is FALSE. When Q = 0 and PI
f 0, we say S is decided, which means the following
atoms are all TRUE:

m, *-a, fn-1, rl), WI, h-1, r2), . ..r and P(tl , . ..) Ll, b)

where R = (q p r2, . . ., rk) E (&.,I, tn2, . . .:, t,,>. We can see
that vP(tl, t,l-l, (R, Q)) (or vP(tl: &-I, 5’)) can be
represented by a constraint variable vP(t, , . . ., tnS1 : J
whose initial domain is the pair (R, Q). Note that we now
have constraint variables with a set as a domain, and with
a pair of sets as a domain. Call the latter set constraint
variables.

For example,
vIsFd@i@dke, ((>, (iohn, james, mar$>))

can represent the fact that john or janles or rnqJ is a
friend of trike (or is inclusive) with R = (} and Q = fiohn,
jumes: mary } . The corresponding constraint variable
vlsFcC@nike, J can be used in constraints which
hopefully eventually determine who are really mike’s
friends. If it is decided that john is definitely a friend of
mike, then R = (iohn> and Q = uames, maqf>.

3.3. Using Constraints to Represent Relations

After introducing the two types of constraint variables to
represent the two types of disjunctions, we now in the
position to describe some of the constraints that can be
used for representing relations among the disjunctions.
Constraint:

cs@@P1(tl I, . . ., h+l), J, @Mf21 F . . . z t2(d), J)
where t11, tl+l~, t21: and r2(m-1) are ground terms.

Let D1 and 02 be the domains of the constraint
variables BP1 (tll) . . .> tltn-l 1: J and @P$zl, . . .> t~(,,,-~), 2)
respectively. This constraint ensures that the sets D1
and 02 are equal at all time. Its operational semantics is
the following (which is an abstraction of the real
algorithm implemented):

1250 Rule-Based Reasoning 81 Connectionism

e D=D1nD2; ifD#0then
if D = (v] then

add Pl(tll, tl(,,+, v) to WM,
add P2(t2,: f2(,,,-l), v) to WM

endif
D1=D;D2=D;
return(TRUE);

else return(FALSE)
For example, we have

Wsa(john, (soldier, teacher, professor, doctor)), and
CMsa(james, (teacher, doctor, student)).

If we know that john and jnnles have the same
profession, we can e;tpress this with the constraint

cst-eq(Wsa(/ohn, J, Wsa(james, J).
The system will automatically propagate the

constraint by using the built-in consistency algorithms
to reduce both sets so that the following are obtained:

@lsa(john, (teacher, doctor)), and
Qlsn(james, (teacher, doctor))

If due to some other constraint (or information) it is
decided that john is a teacher, then the following two
elements will be added to WM:

Isa(john, teacher), and Isa(james, teacher)
If we have the following rule in the rule memory:

IF Isa(?x, teacher)
THEN add(has(?x, many_students))

This rule will be fired to obtain two more facts:
hasuohn, many-students), and
has(james, many-students)

This example shows that constraint propagation and
rule chaining are integrated.

construint:
csLnoteqFW(tl1: . . ., ~I(,-I), .J, @P2(h? . ..) t2(4), 2)

where h, . ..? h(,-l), hy and tz(m-1) are ground terms.
Let D1 and D2 be the domains of @Pl(fll, . ..? tl(,_l), _)

and QP2(t212 tz(,-l), J) respectively. Then the
constraint’s operational semantics is given by:
e if ID11 = 1 and 1D2/ > 1 then

D2= D2-D,;
if D2 =(v> then add P&,..., &(m-l;,:. v) to WM
endif
return(TRUE5);

elseif l&l = 1 and p1I > 1 then
this case is similar to the above one;

elseif IDlf = 1 and lD4= 1 then
if Dl f 02 then retum(TFtUE) else return(FALSE)
endif

else return(Tl3.m)
For example, we have

Wsa(john, (soldier, teacher, professor, doctor)),
and Wsa(james, (teacher, doctor, student>>.

The following constraint says that john and junres have
different professions:

cst-not-eq(@Lsa(john, _), Wsa(james, J)
Constraint:

cst-not_in(v, @P(tl, &-I, J)

where tl, . ..? and &-I are ground terms, and v is a
constant.

Let D be the domain of @P(tl, &-I, J. This
constraint constrains that v is not a possible element in
D, w&h also means that P(tl, t,+l), v) is FALSE.
We have:

e D = D - (v>; if D = 0 then return(FALSE)
else if D = (u> (or IDI = 1) then

add P(tl,..., &,-I, u) to WM;
endif
return(TNJE)

endif
Constraint:

cs~-=t_eq(vPl @I 1, . . . , h (4 1, J, vPdf21, . . ., t2(d 1, J>
where tll, tl(,-l>, t21, and t7(m-lr are ground terms.

Let (RI, Ql) and (R2, 92) be the domains of vPl(tll,
. . . . tl (n-l),_) and vf’dh, . . . , t2(,,+ _) respectively. Then
this constraint is handled by:
0 R=R1uR2;Q={rIr~Ql~QZ,r~RR);

ifRcR1uQl andR&uQ2and(R#00rQ#0)
then R1=R;R2=R;Ql=Q;Q2=Q;

foreachr E Randr 6E Rl do
add Pl(h, . ..? &A)? f9 to w-w

for each r E R and r 4 R2 do
add P2(f21, t2+,ml): r) to WM;

retum(TRUE);
else return(FALSE)

For example, we have
vlsFdOfimike, ((iohn), (james, Steve, david))), and
vlsFdOflandrew, ((Steve >, uohn, kate, david)))

If we set the constraint
cst-set-eq(vIsFdOf(mike, J, VlsFdOflandrew, J)$

which says that mike and andrew have the same set of
friends, we will obtain:

vlsFdO@dke, (oohns Steve), (david))), and
VlsFdOfiandrew, (oohn, Steve), (david])).

Two more facts will be added in WM: i.e.,
IsFdOJ(irtike, Steve), and IsFdOf(andrew, john).

Constraint:
cst-set-not-in@? vP(tl) . . .) r,-l, J)

where tl, and tnn-l are all ground terms.
Let (R: Q) be the domain of vP(tlT . .., tnml, J, &is

constraint constrains that v is not a possible element in
Q, which means that P(tl, &-I, v) cannot be TRUE.
Its operational semantics is obvious, and omitted.

3.4. Introducing Choice Making and

The consistency techniques used above for constraint
solving are all based on arc consistency (Hentemyck e6 a2
1992; Liu 1995). Arc consistency alone may not be

Rule-Based Reasoning & Connectionism 1251

sufficient to solve a CSP because arc consistency does not
guarantee global consistency (Mackworth 1977). Then, a
combination of backtrack search and consistency check is
required. This approach can be described as an iterative
procedure of two steps: consistency check and choice
making. If a choice is proved to be wrong (when the
consistency check returns FALSE), backtracking will be
initiated. In the process, the previous state is restored, and
an alternative is selected (Hentenryck 1989).

Let us define some choice making functions. Each of
them sets up a choice point for later backtracking. The
choice functions are also constraints because each value
selection will trigger consistency check.
Choice function: cst_select@P(t~, . .., tn-l, J, func)

where tl, and tnel are all ground terms, and fulzc is a
user defined procedure.

Let D be the domain of @3&t,, .,., tnml, J, this
hnction selects a value v from D using the procedure
func. func allows the user to control the selection
process in order to find the solution quickly. This
choice function behaves as follows:

e if there is no more vaIue to be selected in D then
return(FALSE)

else v is selected from D usingfix;
D = (VI;
addP&,, tnml, V) in WM;
return(TRUE)

endif
For example, we have:

OCapital(.?VY, flVYCz albaqy]),
which says that the capital of New York (NQ is either
AK’ or albany, but not both. We can apply the
selection by using

cst-select(@Capital(IU, J: func).
Suppose that func chooses the first possible value first,
i.e., iVYC. After it is selected, CapitaI(hiy, NYC) will be
automatically added in WM, and then constraint
propagation will be carried out, etc. When backtracking
occurs, the second value will be tried and so on.

Choice function: cst-set-select(vP(tl? . . ., tnml : _), func)
where tl, and tnml are all ground terms, and fulzc is a
user defined procedure.

Let (R, Q) be the domain of v&t, !, . . ., fnml 2 J. This
friction selects a value Y (a set) from Q (I/’ E Q) using
the procedurefllnc. It behaves as follows:

0 if there is no more value to be selected from Q then
return(FALSE)

else A set Y is selected from & using&x;
Q=0;R=RuK
for each r E V do add I’&...: tnml, r) to WM;
return(TRUE)

endif
For instance, we have

vlsFdOf(mike, ((iohn >, (iames, mary, Steve)))
and we know that mike has only two friends. We can try
the following:

cst-set-select(v.IsFdOf(mike, J? func)
Suppose that fine chooses the first possible value first,
i.e., james, which effectively rules out the other values.
Then, mike’s Mends are john and james. We obtain

vlsFdOf(nrike, (uohn, james], ())).
After that, other necessary operations are performed,

e.g., adding IsFdOJlntike, james) to WM and constraint
propagation, etc. When a selection is proved to be
wrong, backtracking will be performed. The second
element, the third element, etc.: will be tried and so on.

3.5. Some Test Functions on Constraint Variables

Here, we present some test functions on constraint
variables. They are used to exploit the partial information
provided by disjunctions for various purposes.
Test function: test-in(T, @P(tl, t,,-, , ,))

where tl, and tnel are all ground terms, and T is a set
of constants.

Let D be the domain of 0&t,, tnml: ,). This test
fin&on behaves as follows:

0 if D E T then retum(TRUE) else return(FALSE)
For example, we have @CapitaZ(lVY, (MT, albany)),
which says that the capital of New York (NY) is either
M’C or albany, but not both, and the following rule:

DF incllude(?tour, CapitaZOAiVY)) and
test-in((,WC, albany), @Capiral(IVY, J)

THEN add(join(l, ?tortr)))
This rule allows the system to act on the partial
information, i.e., test_in does not have to find the fact
Capita&W, IVYC) or Capita&W, albany) in WM
before firing. Instead, it only needs to check whether
any one of these two cities or both are the only possible
values for the capital of XY. It does not matter which.

If WM has the following two facts:
include(tourl6, capitaiOfi.VY)), and
03Capitai(J?Y, (AYC, albany))

the rule will fire to add join(l; tourl6)) to WM.

Test function: test-set-in(T, vP(tl, &-I, J)
where tl, and tn-l are all ground terms, and T is a set
of constants.

Let (R, Q) be the domain of VP&, tnml, J, This
test function behaves as follows:

e if(T~R)#&Ior(R=0andQ~T)then
return(TRUE)

else return(FALSE)
For example, we wish to express that “if something is a
block or a pyramid, then it is a pointy-&ject” (or is
inclusive). We cau write:

IF test-set-in((block, pyramid>, isa(?x, 2)
‘THEN add(isa(?x, pain@-object))

1252 Rule-Based Reasoning & Connectionism

3.6. Complications With the Idegration of Choice
Making and Rule Chaining

Combining backtrack search and forward chaining creates
some complications. The problem lies in the handling of
inconsistency. For our discussion, we class@ two types of
inconsistency. The first type is the normal inconsistency in
logic (IL): e.g., both A and 4 are deduced, and the other
is the inconsistency of constraints (IC). IC is easy to detect
and to handle because when the domain of a constraint
variable is empty, it is known that there is a inconsistency,
and backtracking can be used to deal with it. However, IL
is hard to detect as most rule-based systems are informal
systems that have no mechanism for this purpose. This
has some implications for our proposed integration.
0 If a rule-based system is unable to detect IL, then (1)

constraints cannot be conditions in a rule, (2) choice
making and backtracking should not be allowed.

The reason is that both (1) and (2) could introduce IL.
Due to space limitation, we are unable to discuss this
further. Interested readers, refer to (Liu & JafGr 1996).

In general: if a rule-based system is unable to detect IL,
(1) and (2) should not be allowed. Then, constraints can
only appear as consequents of rules, and there will be no
backtrack search but only consistency check.

However: if an inconsistency checker is implemented
for detecting IL, then both (1) and (2) can be allowed, and
both IC and IL will trigger backtracking.

Apart from the above two situations, a third one is also
reasonable. We assume that only ICs may occur in an
application, then we can also allow both (1) and (2)
because IC is easily detected. Our prototype system makes
this assumption. This assumption is realistic because that
is the case in most existing rule-based systems. They do
not have mechanisms for detecting IL. It is the user’s
responsibility not to introduce any or to check it.

4. An Implementation
We have implemented a prototype system (called CFR) in
Common Lisp. Below are some implementation issues.
0 Apart from WM and rule memory in a rule-based

system, a constraint variable memory is introduced to
store constraint variables.

0 For consistency check of constraints involving normal
constraint variables, we used those algorithms in
(Hentenryck et al 1992; Liu 1995) as they are the most
efficient algorithms. For set constraints, we designed
OUT own algorithms as there is little reported work on
this type of constraints. Consistency check of cst-eq,
cst-not-eq, and cst-set-eq can all be done in linear
time to the size of the domain D or /R u Ql. cst-not-in
and cst-set-not-in can be done in constant time.

0 A choice stack is used to keep track of the choices that
have been made and to remember the information

necessary for restoring state upon backtracking. This is
similar to CLP languages such as CHIP (Hentemyck
1989). The difference is that each choice here has to
remember the facts that have been added to WM after a
choice is made. When backtracking comes to the
choice, these facts must be removed.

0 Finally, the pattern matching dlgorithm for rule-
chaining needs to be modified to accommodate the
constraint satisfaction facility. Due to the space
limitation, we are unable to discuss this and many other
issues.

Below: we briefly describe the syntax of rules, constraint
variables, and constraints in CFR.
IF-THEN rules: A rule is defined using the construct:

(define-rule <name <conditions> -> <actions>)
For example, the rule:

(define-rule is_food
(edible ?x)

-> (add ‘(is-food ,x)))
says that if’ there is a fact in WM that matches (edible
?x), this rule will fire and add the evaluation result
‘(isfood ,x) to WM. ‘(isfood ,x) is in Lisp syntax (““‘,
““‘, and “,“ are used according to their meanings in
Lisp), and x here will be substituted to whatever value
?x has after matching with the fact in WM.

Constraint variable declarations:
1). ep(t,, t,,-1, D) => (corresponding to)

(cst-in ‘(P tl . . . tn-l D))
e.g., 03capitaZ(AT, (NYC, aibany)) =>

(cst-in ‘(capital NY (NYC albany)))
2). vP(t,, b-1: CR, Q)) =’

(cst-set-in ‘(P tl . . . ht-1 CR Q>>,
e.g., vlsFdOfioe, ((steve), uohn, kate))) =>

(cst-set-in ‘(IsFdOf joe ((Steve) (john kate))))

Constraints:

1). csQqWdh1, -., tl(ff.4 j, 3, @P2(t21: . . ., f2(m-1 j, 3)

=’ (cst_eq ‘(Pl t11 . . . tl(n-1 j _) I(P2 t21 . . . t2(m-l j _))

e.g., cst-eq@Isa(/ohn, J, @Isa(james, J) =>
(cst-eq ‘(Isa john J ‘(Isa james -))

2). cst~no~_eqWdhl,..., &+l),J,@P2(t21, .-., t22(m-l:f, -1)

=> (cst_not_eq ‘(PI tl I . . . k-1) 3 YP2 f21 . . . t22(m-1;f 3)

e.g., cst-not-eq(@Isa(john, ,), @Isa(james, J) =>
(cst-not-eq ‘(Isa john J ‘(Isa james J)

3). cst_se~_eqWlUll,. . A (4 j, J, vW21, . . .) t2+1), _))
=’ w_set_eq ‘Vl t11 ** * h(n-1) ,) ‘(P2 f21 -*- t2(,1) J)

e.g., cst-set-eq(vlsFdOf(mikez J,vlsFnOJ(ioe, J)
=> (cst-set-eq ‘(IsFdOf mike _) ‘(IsFdOf joe J)

Due to lack of space, we will not describe the
corresponding constructs in CFR for the other constraints
and choice and test functions. They are quite similar to the
ones above.

Rule-Based Reasoning & Connectionism 1253

5. An Example
We now present a simple example to illustrate how rules
and constraints interact with each other in the reasoning
process. The rule definitions here are self-explanatory.
(define-rule professor

(isa ?x scienceqrofessor)
-> (add ‘(works-in-a :x university))

(cst-in ‘(teaches ,x (computer math physics
chemistry biology))))

(define-rule computer
(isa ?x scienRJrqfessor)
(has-no ?x computer)
-> (cst-not-in ‘computer ’ (,x teaches J))

(define-rule math
(is_good_in 2x math)
(isa ?x scienceqrofessor)
-> (cst-in ‘(teaches ,x (computer math physics))))

(define-rule csp-test
(test-in (physics math) (teaches ?x _))
-> (add ‘(gives-lecture-in ,x science-building)))

(define-rule lab
(does-not-do ?x lab-work)
-> (cst-not-in ‘chemistry ’ (teaches ,x _))

(cst-not-in ‘biology ’ (teaches ,x >>)
(define-rule degree

(teaches ?x ?y)
-> (add ‘(likes ,x ,y))

(cst-set-in ‘(has :x ‘(((ND in ,y)) ‘((MSc in ,y))))))

Let us run the system with the following facts:
(add ‘(isa fred sciencegrofessor))
(add ‘(has-no fred computer))
(add ‘(isa john sciencegrofessor))
(add ‘(does-not-do john lab-work))
(cst-eq ‘(teaches john -) ‘(teaches fred -))

After all the rule chaining and constraint propagation, the
working memory becomes:

1: (isa fred sciencegrofessor)
2: (works-in-a fied university)
3: (cst-fact (teaches fred _) (math physics))
4: (has-no fred computer)
5: (isa john scienceqrofessor)
6: (works-in-a john university)
7: (cst-fact (teaches john _) (math physics))
8: (does-not-do john lab-work)
9: (gives-lecture-in john science-building)
10: (gives-lecture-in fied science-building)

Fact 3 and 7 are special facts representing two constraint
variables and their remaining domains. From them, we
know that botllfred and j&n teach either math or phpics,
but we still do not know which.

Let us say that we are not satisfied with the result. We
would like to make a guess about what they teach. We can
use the following selection function:

(&-select ‘(teaches f&d _) #‘car)
This selects math as the subject that j?ed teaches. After
constraint propagation and rule chaining, we obtain the
fact that john also teaches math. The following facts are
deduced:

11: (teaches fred math)
12: (teaches john math)
13: (likes fied math)
14: (likes john math)
15: (hasfiXzd(PhDinmath))
16: (has john (PhD in math))
17: (cst-set-fact (has fred _) ((PhD in math))

(@EC in math)))
18: (cst_set_fact (has john J ((PhD in math))

((MSc in math)))
The last two facts (17 and 18) say that jkd and john have
a PhD in math and may or mz~y not have a MS’c in math.

If later we have some more information saying that fred
does not have a PMI degree in math, this can be expressed
like this:

(cst-set-not-in ‘(PhD in math) ‘(has f&l -))
It immediately causes a conflict with fact 17 because fact
17 says thatped has a PhD in math. Then, backtracking is
performed. The facts from 11 to 18 are removed to restore
the previous state. physics is selected this time as the
subject thatfred teaches, which in turn causes a nufnber of
facts to be produced:

11:
12:
13:
14:
15:
16:
17:

18:

(teaches fied physics)
(teaches john physics)
(likes fred physics)
(likes john physics)
(has fred (PhD in physics))
(has john (PhD in physics))
(cst-set-fact (has fred J ((PhD in physics))

((MSc in physics)))
(cst-set-fact (has john J ((PhD in physics))

((MSc in physics)))
Since math is eliminated as the possible course that fred
and john teach. Fact 3 and 7 in WM become:

3: (cst-fact (teaches fred J (physics))
7: (cst-fact (teaches john _) (physics))

The kind of reasoning illustrated here cannof be carried
out in an existing rule-based system.

6. Related Work
The most closely related work to our research is constraint
logic programming (CLP) (Jtiar & Maher 1994) where a
considerable amount of research has been done to
integrate constraint satisfaction with logic programming.
A number of systems have been built, and many successful

1254 Rule-Based Reasoning & Connectionism

applications have also been reported (Jaf%r & Maher
1994). Two representative CLP languages are CLP(R)
(Jaffar & Lassez 1987) and CHIP (Hentemyck 1989).
These languages are based on Horn clauses and backward
chaining. Our work is different from CLP in a number of
ways. The main differences are as follows.
1. Our proposed technique is based on forward chaining

rather than backward chaining as in CLP languages.
Forward chaining and backward chaining reason from
different directions and are suitable for solving different
types of problems. Forward chaining are mainly used
for building expert systems for solving real-life
knowledge intensive tasks. Since the CLP languages
based on backward chaining have been very successful
in practice for solving practical combinatorial search
problems, it is only natural that forward chaining
should also be integrated with constraint solving to
provide a more powerful reasoning technique for
solving practical reasoning problems.

2. In CLP languages, backtracking and choice making are
provided by the host language Prolog. While in forward
chaining, backtracking and choice making facilities
have to be added, which creates some complications as
discussed in Section 3.6.

To the best our knowledge, limited work has been done on
combining constraint solving with forward chaining rule-
based system. BABYLON (Christaller et al 1992) is one
of the hybrid environments for developing expert systems
that has attempted to include constraint solving in its rule-
based system. BABYLON provides representation
formalisms of objects, rules, Prolog and constraints.
CONSAT is the constraint system of BABYLON, which is
separated from others and cannot access rules. Although
in the condition part of the rules, it is possible to verify
whether a constraint is satisfied, the action part of a rule
cannot access constraints. This is quite different from our
system, within which constraint solving and rule-chaining
are integrated. Rules can post and test constraints, and
constraint satisfaction can also trigger chaining of rules.

7. Conclusion
This paper shows how CSP can be used to model two
types of important disjunctions in rule-based reasoning.
These disjunctions have not been handled satisfactorily in
the current rule-based systems. In the proposed scheme,
the simple representation and efficient algorithms in CSP
are used to deal with these types of disjunction. This
results in the integration of two important types of
reasoning techniques, i.e., constraint solving and
(forward) rule-chaining. Hence. the power of rule-based
systems is increased.

The current integration of CSP with rule-based
reasoning is still restricted, i.e., mainly for modeling the

two types of disjunction. Our next step is to deal
general constraints in a forward chaining framework.

with

S: Bing Liu thanks Peter Lucas from
r his advice on some expert system

and Yap for his help. Finally, we are
grateful to the AAAI reviewers for their insightful
comments.

eferences
Bessiere, C., Freuder, E. C. and Regin, J-C. 1995. “Using

inference to reduce arc consistency computation,”
IJCAI-95, 592-598.

Charniak, E., Riesbeck, C., McDermott, D. and Meehan,
J. 1987. Arti$cinl Intelligence Programming, Lawrence
Erlbaum Associates Inc.

Christaller, T., di Primio, F., Schnepf, U. and Voss, A.
1992. The AI Workbench BABYLOX. Academic Press.

Hentenryck, P.V. 1989. Constraint Satisfaction in Logic
Programming, MIT Press.

Hentemyck’ P.V., Deville, Y. and Teng, C-M. 1992. “A
generic arc consistency algorithm and its
specializations,” Artificial Intelligence 27, 291-322.

Ilog Solver. 1992. Reference Manual, ILOG, France.
JafFar, J. and Lassez, J. 1987. “Constraint logic

programming,” Proceedings of the Fourteenth Annual
A CM Symposium on Principle of Programming
Language.

Jafhar, J. and Maher, M. 1994. “Constraint logic
programming: a survey.” J. Logic Programming 19,
503-58 1.

Liu, B. 1995. “Increasing fimctional constraints need to be
checked only once”’ IJCAI-95, 586-59 1.

Liu, B. and Jtiar, J. 1996. Using Constraints to Model
Disjunction in Rule-Based Reasoning. DISCS
Technical Report.

Liu, B. 1996. “An improved generic arc consistency
algorithm and its specializations.” To Appear in
Proceedings of Fourth Pacijk Rim International
Conference On ArtiJicial Intelligence (PRICU-96).

Lucas, P. and Van Der Gaag, L. 1991. Principles of
Expert @stems, Addison-Wesley.

Ma&worth, AK. 1977. ‘Consistency in networks of
relations,” Artificial Intelligence 8, 99-l 18.

Mackvvorth, AK 1992. “The logic of co~Mmir~t
satisfaction,” ArtiJiciai Intelligence 58, 3-20.

Mohr, R. and Henderson, T. 1986. “Arc and path
consistency revisited,” Artificial Intelligence 28, 225-
233.

Newell, A. 1973. “Production systems: models for control
structure,” In Visual Information Processing, W.G.
Chase (Eds)’ Academic Press, 1973.

Rule-Based Reasoning & Connectionism 1255

