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Abstract 
Rule-based systems have long been widely used for building 
expert systems to perform practical knowledge intensive 
tasks. One important issue that has not been addressed 
satisfactorily is the disjunction, and this significantly limits 
their problem solving power. In this paper, we show that 
some important types of disjunction can be modeled with 
Constraint Satisfaction Problem (CSP) techniques, 
employing their simple representation schemes and efticient 
algorithms. A key idea is that disjunctions are represented as 
constraint variables, relations among disjunctions are 
represented as constraints, and rule chaining is integrated 
with constraint solving. In this integration, a constraint 
variable or a constraint is regarded as a special fact, and 
rules can be written with constraints and information about 
constraints. Chaining of rules may trigger constraint 
propagation, and constraint propagation may cause fn-ing of 
rules. A prototype system (called CFR) based on this idea 
has been implemented. 

1. Introduction 
Rule-based systems are one of the great successes of AI 
(e.g., Newell 1973; Lucas & Van Der Gag). They are 
widely used to build knowledge-based systems to perform 
tasks that normally require human knowledge and 
intelligence. However, there are still some important 
issues that have not been addressed satisfactorily in the 
current rules-based systems. One of them is the 
disjunction. This limits their problem solving power. 

In the Constraint Satisfaction Problem (CSP) research, 
many efficient constraint propagation algorithms have 
been produced (Ma&worth 1977; Hentenryck et al 1992). 
A number of languages or systems based on the model 
have also been developed and used for solving real-life 
problems (JalYar & Maher 1994; Ilog Solver 1992). 

In this paper, we show that some types of important 
disjunctions can be modeled with CSP. Thus, it is possible 
to use the simple representation scheme and efficient 
problem solving methods in CSP to handle these types of 
disjunctions. Specifically, the disjunctions can be 
represented as constraint variables and their domains. The 
relations among disjunctions can be represented as 
constraints. In this paradigm, constraint propagation and 
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rule chaining are integrated. A constraint can be added as 
a special fact, and rules can be written with constraints 
and information about constraints. Chaining of rules may 
trigger constraint propagation, and constraint propagation 
may cause firing of rules. With the incorporation of CSP 
techniques, the power and the expressiveness of rule-based 
systems will be greatly increased. Based on this idea, a 
prototype system, called CFR, has also been implemented. 

The idea of incorporating CSP into a logic-based 
system is not new. Constraint solving has long been 
integrated with logic programming languages such as 
Prolog. This integration has resulted in a number of 
Constraint Logic Programming (CLP) languages (J&&r & 
Maher 1994), such as CLP(R) (Jaff’ar & Lassez, 1987) and 
Chip (Hentemyck 1989). These languages are primarily 
used for modeling and solving real-life optimization 
problems, such as scheduling and resource allocations. 
However, this work is different from that in CLP in a 
number of ways. The main difference is that CLP 
languages are all based on Horn clauses and backward 
chaining, while the proposed integration is based on 
forward chaining, which is suitable for solving a different 
class of reasoning problems. Integration of constraint 
solving and forward chaining has some specific problems 
that do not exist in CLP languages. The proposed 
integration is also mainly for improving reasoning 
capability of existing rule-based systems rather than for 
solving combinatorial search problems. Thus the types of 
constraints and their representations in the proposed 
approach are quite different from those in CLP languages. 

We regard this work as the first step to a full 
integration of the CSP model with forward chaining rule- 
based systems. The current integration presented in this 
paper is still restrictive in the sense that it is mainly to 
help model and handle the problems with some 
disjunctions. A full integration could potentially change 
the way that people use rule-based systems and change the 
way that people solve practical reasoning problems, which 
are the main applications of the rule-based systems today. 
It may be just like the way that CLP languages have 
changed the way that people model and solve practical 
combinatorial search problems. 
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2, &-Based Systems and Constraint 
Satisfaction Problems 

This section reviews rule-based systems and CSP. The 
coverage is by no means complete; rather the focus is on 
highlighting the problems with disjunctions in current 
rule-based systems. 

2.1. Rule-Based Systems 

A rule-based system consists of three main components. 
1. A working memory (WM): a set of facts representing 

the current state of the system. 
2. A rule memory (RM): a set of IF-THElIz’ rules to test 

and to alter the WM. 
3. A rule interpreter (RI): it applies the rules to the WM. 
The rule interpreter repeatedly looks for rules whose 
conditions match facts in the WM. On each cycle, it picks 
a rule, and performs its actions. A rule is of the form: 

lF <conditions> THEN <actions> 
There are three common connectives in a rule-based 
system, i.e., and, or and not. We will only discuss or here 
as we are mainly interested in disjunctions. or in logic can 
be defined as inclusive (v) or excltrsive (G3). Let us first 
look at the inclusive OY. For example, “if something is a 
block or a pyramid, then it is a pointy-object” (adapted 
from (Char&k et al 1987)) can be expressed as follows: 

IF isa(?x2 block) v isa(?x, pyramid) 
THEN add(isa(?x, pointy-object)) 

where 3x is a variable, and add adds a fact to the WM. 
This rule, however, cannot be used in a typical rule-based 
system. Instead, it is usually replaced by two rules: 

IF &a(?~, block) 
THEN add(isa(?x, pain@-object)), and 
IF isa(?x, pyramid) 
THEN add(isa(?x, pointy_object)). 

However, this does not say exactly the same thing as the v 
version does, since there might be situations where we 
know that either ?x is a block or ?x is a pyramid, but do 
not know which. In this case, neither of these rules 
applies, but the original one that uses v does. 

Now, let us look at the exclusive OK For example, the 
following formula says that “either NYC or albany is the 
capital of NY> but not both”. 

capital(l XYC) 03 capital(i%Yy albany) 
This can be rephrased as two rules: ‘?WC is the capital of 
IVY3 if albany is not”, and “albany is the capital of NY, if 
NYC is not” 

IF not(capitai(hY, albany)) 
THEN add(cupital(IVY, NYC)), and 
IF not(capitai(hY; AYC)) 
THEN add(capital(.?VY, alban)). 

Unfortunately, not used in current rule-based systems is 
different from l in logic. In a typical rule-based system, 
not(P) is satisfied if there is no fact in WM matching P. 

In general, disjunctions are difllcult to handle in 
reasoning. In Section 3, we will show that CSP provides a 
convenient model to represent these situations. 

2.2. Constraint Satisfaction Problem 

A Constraint SatisEaction Problem (CSP) is characterized 
as finding values for variables subject to a set of 
constraints. The standard CSP has three components: 
e Variables: A finite set Y = (VI, vz, . . . . v,} of n variables 

vi, which are also referred to as constraint variables. 
Values: Each variable lpi is associated with a finite 
domain Di, which contains all the possible alternative 
values for vi. 

e Constraints: A set C = (Ci, C2, . . . . C,> ofp constraints 
or relations on the variables. 

The main approach used for solving CSPs is to embed 
constraint propagation (also known as consistency check) 
techniques in a backtrack search environment, where 
backtrack search performs the search for a solution and 
consistency check techniques prune the search space. 

Consistency techniques are characterized by using 
constraints to remove inconsistent values from the 
domains of variables. Past research has produced many 
techniques for such a purpose. The main methods used in 
practice are arc consistency techniques, e.g., AC-3 
(Ma&worth 1977), AC-5 (Hentenryck et al, 1992), and 
AC-7 (Bessiere et nl 1995), and their generalizations and 
specializations (Hentenryck 1989; Hentenryck et al 1992; 
Liu 1996). For a complete treatment of these methods, 
please refer to (Ma&worth 1977; Mohr & Henderson 
1986; Hentemyck 1989; Hentemyck et al 1992; Bessiere 
et al 1995; Liu 1995; Liu 1996). 

3. Modeling isjunctions with CS 
This section shows how CSP can be used to model certain 
types of disjunction in a rule-based system. In this new 
paradigm with rules and constraints, the underlying 
techniques for reasoning are forward rule-chaining, 
constraint propagation and backtrack search. 

3.1. The New Paradigm 

In the new paradigm, constraints are integrated into rule- 
based reasoning. It is described by: 
1. A working memory (WM): a set of facts representing 

the current state of the system. There are three types .of 
facts: 
e Simple facts: these are the traditional facts used in 

the existing rule-based systems. 
9 csp-disjunctions (inclusive and exclusive): these are 

special types of disjunctions (defined below) 
represented by the CSP model. 

e Constraints: these are relations on the csp- 
disjunctions. 

2. A rule memory: a set of IF-THEAr rules. 
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3. A rule interpreter: this applies the rules to WM by 
using the traditional forward rule-chaining mechanism, 
and it is integrated with the constraint solver below. 

4, A constraint solver: this uses consistency check and 
backtrack search for constraint satisfaction. It is 
integrated with the rule interpreter above. 

Thus, the key advance of this new paradigm lies in its use 
of the CSP model and a constraint solver, resulting in an 
integration of forward chaining and constraint solving. 

3.2. Using Constraint Variables and Domains to 
Represent Disjunctions 

This sub-section describes how constraint variables and 
their domains can be used to represent disjunctions. We 
assume the basic definitions of term and atom, which are 
ground when they contain no variables. 

We now define the two kinds of disjunctions that we 
will handle, the inclusive cspdisjunctions and exclusive 
csp-disjunctions. In what follows, we shall, for simplicity 
with respect to our examples later, restrict the terms in 
disjunctions to differ only in the last argument. 
Definition 1: An exclusive csp-disjunction has the 

following form 
WV,, * b -9 Ll , GJl), Wl , * * -, GA, tn21, . . . ml, * - .f b-1, Ln)) 

where P(tl, . . . . t n-l) t,J is a ground atom, n 2 1, tni is a 
constant, and i f j implies tnj f tnj. The expression is 
TRUE iflexactly one of the m ground atoms is TRUE. 

Note that for all the atoms, the predicate symbols are the 
same, i.e.: P, and so are the first 11 -1 ground terms. Note 
also that tnj may appear in any position as long as they are 
at the same position in each atom. We arbitrarily choose to 
put them at the end. 

This exclusive csp-disjunction can be represented by an 
expression CBP(tl , . . .: tnel, D), where D is a set with the 
initial value (t,l, fn2, . . . . tJm>. During the reasoning 
process, some of the atoms (e.g., P(tl) . .., &-I, t,&) may be 
proven to be FALSE, then D will be modified to reflect the 
effect. Thus D changes during the reasoning process, but 
it is always a subset of (t,l, tn2, . . . . t,& When 101 = 1: we 
say D (= (tni}) is decided, which means that P(tl, . ..) tnml, 

tni) is TRUE. When D = 0, it means that the exclusive 
cs-disjunction is proven to be FALSE. 

An important point is that CDP(t,, . .., &-I, D) can be 
represented by a constraint variable, written as eP(tlz . .., 
t,,ml, 3: whose initial domain is D. 

For example, 
@Isa(john, (soldier, teacher)) 

can represent the fact that John is a soldier or a teacher, 
and that John is only in one of the professions. The 
corresponding constraint variable CBlsa(john, J can be 
used in constraints which hopefully eventually determine 
JoMs real profession. 

The second type of csp-disjunction is defined below. 

efhition 2: An inclusive csp-disjunction 
v(P(t1,. * .J”-1, t”l): P(t1, * * *, tn-1, bl2), - * -7 fvl , * * *, Ll , 4Im)) 

is like an exclusive csp-disjunction, except that this 
formula is TRUE z#3P(tl, . . . . fn-l, tni) is TRUE. 

This inclusive csp-disjunction can be represented by an 
expression vP(tl f . . . , tnml, S), where the initial value of S is 
the power set of (&I, tnzs . . . . tm} excluding the empty set. 
It is convenient to think of S in two parts (R, Q): 
0 A set of required elements R: the elements that have 

been proven to be true, i.e., whose associated atoms 
have been proven to be TRUE. 

0 A set of possible elements Q: the elements that belong 
to at least one possible value of S. 

Then, R and Q satis@ these. conditions: R n Q = 0 and R 
u Q c (tnl, ~2, . ..> t,&. The initial value of S may be (( ), 
U”l, 622: “‘, &}), and R will grow and Q will shrink in the 
reasoning process. When Q = 0 and PI = 0, we say the 
inclusive csg-disjunction is FALSE. When Q = 0 and PI 
f 0, we say S is decided, which means the following 
atoms are all TRUE: 

m, *-a, fn-1, rl), WI, . . . . h-1, r2), . ..r and P(tl , . ..) Ll, b) 

where R = (q p r2, . . ., rk) E (&.,I, tn2, . . .:, t,,>. We can see 
that vP(tl, . . . . t,l-l, (R, Q)) (or vP(tl: . . . . &-I, 5’)) can be 
represented by a constraint variable vP(t, , . . ., tnS1 : J 
whose initial domain is the pair (R, Q). Note that we now 
have constraint variables with a set as a domain, and with 
a pair of sets as a domain. Call the latter set constraint 
variables. 

For example, 
vIsFd@i@dke, (( >, (iohn, james, mar$>)) 

can represent the fact that john or janles or rnqJ is a 
friend of trike (or is inclusive) with R = (} and Q = fiohn, 
jumes: mary } . The corresponding constraint variable 
vlsFcC@nike, J can be used in constraints which 
hopefully eventually determine who are really mike’s 
friends. If it is decided that john is definitely a friend of 
mike, then R = (iohn> and Q = uames, maqf>. 

3.3. Using Constraints to Represent Relations 

After introducing the two types of constraint variables to 
represent the two types of disjunctions, we now in the 
position to describe some of the constraints that can be 
used for representing relations among the disjunctions. 
Constraint: 

cs@@P1(tl I, . . ., h+l), J, @Mf21 F . . . z t2(d ), J) 
where t11, . . . . tl+l~, t21: . . . . and r2(m-1) are ground terms. 

Let D1 and 02 be the domains of the constraint 
variables BP1 (tll) . . .> tltn-l 1: J and @P$zl, . . .> t~(,,,-~ ), 2) 
respectively. This constraint ensures that the sets D1 
and 02 are equal at all time. Its operational semantics is 
the following (which is an abstraction of the real 
algorithm implemented): 
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e D=D1nD2; ifD#0then 
if D = (v] then 

add Pl(tll, . . . . tl(,,+, v) to WM, 
add P2(t2,: . . . . f2(,,,-l), v) to WM 

endif 
D1=D;D2=D; 
return(TRUE); 

else return(FALSE) 
For example, we have 

Wsa(john, (soldier, teacher, professor, doctor)), and 
CMsa(james, (teacher, doctor, student)). 

If we know that john and jnnles have the same 
profession, we can e;tpress this with the constraint 

cst-eq(Wsa(/ohn, J, Wsa(james, J). 
The system will automatically propagate the 

constraint by using the built-in consistency algorithms 
to reduce both sets so that the following are obtained: 

@lsa(john, (teacher, doctor)), and 
Qlsn( james, ( teacher, doctor) ) 

If due to some other constraint (or information) it is 
decided that john is a teacher, then the following two 
elements will be added to WM: 

Isa(john, teacher), and Isa(james, teacher) 
If we have the following rule in the rule memory: 

IF Isa(?x, teacher) 
THEN add(has(?x, many_students)) 

This rule will be fired to obtain two more facts: 
hasuohn, many-students), and 
has(james, many-students) 

This example shows that constraint propagation and 
rule chaining are integrated. 

construint: 
csLnoteqFW(tl1: . . ., ~I(,-I ), .J, @P2(h? . ..) t2(4 ), 2) 

where h, . ..? h(,-l), hy . . . . and tz(m-1) are ground terms. 
Let D1 and D2 be the domains of @Pl(fll, . ..? tl(,_l), _) 

and QP2(t212 . . . . tz(,-l), J) respectively. Then the 
constraint’s operational semantics is given by: 
e if ID11 = 1 and 1D2/ > 1 then 

D2= D2-D,; 
if D2 =(v> then add P&,..., &(m-l;,:. v) to WM 
endif 
return(TRUE5); 

elseif l&l = 1 and p1I > 1 then 
this case is similar to the above one; 

elseif IDlf = 1 and lD4= 1 then 
if Dl f 02 then retum(TFtUE) else return(FALSE) 
endif 

else return(Tl3.m) 
For example, we have 

Wsa(john, (soldier, teacher, professor, doctor)), 
and Wsa(james, (teacher, doctor, student>>. 

The following constraint says that john and junres have 
different professions: 

cst-not-eq(@Lsa(john, _), Wsa(james, J) 
Constraint: 

cst-not_in(v, @P(tl, . . . . &-I, J) 

where tl, . ..? and &-I are ground terms, and v is a 
constant. 

Let D be the domain of @P(tl, . . . . &-I, J. This 
constraint constrains that v is not a possible element in 
D, w&h also means that P(tl, . . . . t,+l), v) is FALSE. 
We have: 

e D = D - (v>; if D = 0 then return(FALSE) 
else if D = (u> (or IDI = 1) then 

add P(tl,..., &,-I, u) to WM; 
endif 
return(TNJE) 

endif 
Constraint: 

cs~-=t_eq(vPl @I 1, . . . , h (4 1, J, vPdf21, . . ., t2(d 1, J> 
where tll, . . . . tl(,-l>, t21, . . . . and t7(m-lr are ground terms. 

Let (RI, Ql) and (R2, 92) be the domains of vPl(tll, 
. . . . tl (n-l),_) and vf’dh, . . . , t2(,,+ _) respectively. Then 
this constraint is handled by: 
0 R=R1uR2;Q={rIr~Ql~QZ,r~RR); 

ifRcR1uQl andR&uQ2and(R#00rQ#0) 
then R1=R;R2=R;Ql=Q;Q2=Q; 

foreachr E Randr 6E Rl do 
add Pl(h, . ..? &A)? f9 to w-w 

for each r E R and r 4 R2 do 
add P2(f21, . . . . t2+,ml): r) to WM; 

retum(TRUE); 
else return(FALSE) 

For example, we have 
vlsFdOfimike, ((iohn), (james, Steve, david))), and 
vlsFdOflandrew, ((Steve >, uohn, kate, david))) 

If we set the constraint 
cst-set-eq(vIsFdOf(mike, J, VlsFdOflandrew, J)$ 

which says that mike and andrew have the same set of 
friends, we will obtain: 

vlsFdO@dke, ( oohns Steve ), (david))), and 
VlsFdOfiandrew, (oohn, Steve), (david])). 

Two more facts will be added in WM: i.e., 
IsFdOJ(irtike, Steve), and IsFdOf(andrew, john). 

Constraint: 
cst-set-not-in@? vP(tl ) . . .) r,-l, J) 

where tl, . . . . and tnn-l are all ground terms. 
Let (R: Q) be the domain of vP(tlT . .., tnml, J, &is 

constraint constrains that v is not a possible element in 
Q, which means that P(tl, . . . . &-I, v) cannot be TRUE. 
Its operational semantics is obvious, and omitted. 

3.4. Introducing Choice Making and 

The consistency techniques used above for constraint 
solving are all based on arc consistency (Hentemyck e6 a2 
1992; Liu 1995). Arc consistency alone may not be 
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sufficient to solve a CSP because arc consistency does not 
guarantee global consistency (Mackworth 1977). Then, a 
combination of backtrack search and consistency check is 
required. This approach can be described as an iterative 
procedure of two steps: consistency check and choice 
making. If a choice is proved to be wrong (when the 
consistency check returns FALSE), backtracking will be 
initiated. In the process, the previous state is restored, and 
an alternative is selected (Hentenryck 1989). 

Let us define some choice making functions. Each of 
them sets up a choice point for later backtracking. The 
choice functions are also constraints because each value 
selection will trigger consistency check. 
Choice function: cst_select@P(t~, . .., tn-l, J, func) 

where tl, . . . . and tnel are all ground terms, and fulzc is a 
user defined procedure. 

Let D be the domain of @3&t,, .,., tnml, J, this 
hnction selects a value v from D using the procedure 
func. func allows the user to control the selection 
process in order to find the solution quickly. This 
choice function behaves as follows: 

e if there is no more vaIue to be selected in D then 
return(FALSE) 

else v is selected from D usingfix; 
D = (VI; 
addP&, . ..., tnml, V) in WM; 
return(TRUE) 

endif 
For example, we have: 

OCapital(.?VY, flVYCz albaqy]), 
which says that the capital of New York (NQ is either 
AK’ or albany, but not both. We can apply the 
selection by using 

cst-select(@Capital(IU, J: func). 
Suppose that func chooses the first possible value first, 
i.e., iVYC. After it is selected, CapitaI(hiy, NYC) will be 
automatically added in WM, and then constraint 
propagation will be carried out, etc. When backtracking 
occurs, the second value will be tried and so on. 

Choice function: cst-set-select(vP(tl? . . ., tnml : _), func) 
where tl, . . . . and tnml are all ground terms, and fulzc is a 
user defined procedure. 

Let (R, Q) be the domain of v&t, !, . . ., fnml 2 J. This 
friction selects a value Y (a set) from Q (I/’ E Q) using 
the procedurefllnc. It behaves as follows: 

0 if there is no more value to be selected from Q then 
return(FALSE) 

else A set Y is selected from & using&x; 
Q=0;R=RuK 
for each r E V do add I’&...: tnml, r) to WM; 
return(TRUE) 

endif 
For instance, we have 

vlsFdOf(mike, ((iohn >, (iames, mary, Steve))) 
and we know that mike has only two friends. We can try 
the following: 

cst-set-select(v.IsFdOf(mike, J? func) 
Suppose that fine chooses the first possible value first, 
i.e., james, which effectively rules out the other values. 
Then, mike’s Mends are john and james. We obtain 

vlsFdOf(nrike, (uohn, james], ())). 
After that, other necessary operations are performed, 

e.g., adding IsFdOJlntike, james) to WM and constraint 
propagation, etc. When a selection is proved to be 
wrong, backtracking will be performed. The second 
element, the third element, etc.: will be tried and so on. 

3.5. Some Test Functions on Constraint Variables 

Here, we present some test functions on constraint 
variables. They are used to exploit the partial information 
provided by disjunctions for various purposes. 
Test function: test-in(T, @P(tl, . . . . t,,-, , ,)) 

where tl, . . . . and tnel are all ground terms, and T is a set 
of constants. 

Let D be the domain of 0&t,, . . . . tnml: ,). This test 
fin&on behaves as follows: 

0 if D E T then retum(TRUE) else return(FALSE) 
For example, we have @CapitaZ(lVY, (MT, albany)), 
which says that the capital of New York (NY) is either 
M’C or albany, but not both, and the following rule: 

DF incllude(?tour, CapitaZOAiVY)) and 
test-in((,WC, albany), @Capiral(IVY, J) 

THEN add(join(l, ?tortr))) 
This rule allows the system to act on the partial 
information, i.e., test_in does not have to find the fact 
Capita&W, IVYC) or Capita&W, albany) in WM 
before firing. Instead, it only needs to check whether 
any one of these two cities or both are the only possible 
values for the capital of XY. It does not matter which. 

If WM has the following two facts: 
include(tourl6, capitaiOfi.VY)), and 
03Capitai(J?Y, (AYC, albany)) 

the rule will fire to add join(l; tourl6)) to WM. 

Test function: test-set-in(T, vP(tl, . . . . &-I, J) 
where tl, . . . . and tn-l are all ground terms, and T is a set 
of constants. 

Let (R, Q) be the domain of VP&, . . . . tnml, J, This 
test function behaves as follows: 

e if(T~R)#&Ior(R=0andQ~T)then 
return(TRUE) 

else return(FALSE) 
For example, we wish to express that “if something is a 
block or a pyramid, then it is a pointy-&ject” (or is 
inclusive). We cau write: 

IF test-set-in(( block, pyramid>, isa(?x, 2) 
‘THEN add(isa(?x, pain@-object)) 
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3.6. Complications With the Idegration of Choice 
Making and Rule Chaining 

Combining backtrack search and forward chaining creates 
some complications. The problem lies in the handling of 
inconsistency. For our discussion, we class@ two types of 
inconsistency. The first type is the normal inconsistency in 
logic (IL): e.g., both A and 4 are deduced, and the other 
is the inconsistency of constraints (IC). IC is easy to detect 
and to handle because when the domain of a constraint 
variable is empty, it is known that there is a inconsistency, 
and backtracking can be used to deal with it. However, IL 
is hard to detect as most rule-based systems are informal 
systems that have no mechanism for this purpose. This 
has some implications for our proposed integration. 
0 If a rule-based system is unable to detect IL, then (1) 

constraints cannot be conditions in a rule, (2) choice 
making and backtracking should not be allowed. 

The reason is that both (1) and (2) could introduce IL. 
Due to space limitation, we are unable to discuss this 
further. Interested readers, refer to (Liu & JafGr 1996). 

In general: if a rule-based system is unable to detect IL, 
(1) and (2) should not be allowed. Then, constraints can 
only appear as consequents of rules, and there will be no 
backtrack search but only consistency check. 

However: if an inconsistency checker is implemented 
for detecting IL, then both (1) and (2) can be allowed, and 
both IC and IL will trigger backtracking. 

Apart from the above two situations, a third one is also 
reasonable. We assume that only ICs may occur in an 
application, then we can also allow both (1) and (2) 
because IC is easily detected. Our prototype system makes 
this assumption. This assumption is realistic because that 
is the case in most existing rule-based systems. They do 
not have mechanisms for detecting IL. It is the user’s 
responsibility not to introduce any or to check it. 

4. An Implementation 
We have implemented a prototype system (called CFR) in 
Common Lisp. Below are some implementation issues. 
0 Apart from WM and rule memory in a rule-based 

system, a constraint variable memory is introduced to 
store constraint variables. 

0 For consistency check of constraints involving normal 
constraint variables, we used those algorithms in 
(Hentenryck et al 1992; Liu 1995) as they are the most 
efficient algorithms. For set constraints, we designed 
OUT own algorithms as there is little reported work on 
this type of constraints. Consistency check of cst-eq, 
cst-not-eq, and cst-set-eq can all be done in linear 
time to the size of the domain D or /R u Ql. cst-not-in 
and cst-set-not-in can be done in constant time. 

0 A choice stack is used to keep track of the choices that 
have been made and to remember the information 

necessary for restoring state upon backtracking. This is 
similar to CLP languages such as CHIP (Hentemyck 
1989). The difference is that each choice here has to 
remember the facts that have been added to WM after a 
choice is made. When backtracking comes to the 
choice, these facts must be removed. 

0 Finally, the pattern matching dlgorithm for rule- 
chaining needs to be modified to accommodate the 
constraint satisfaction facility. Due to the space 
limitation, we are unable to discuss this and many other 
issues. 

Below: we briefly describe the syntax of rules, constraint 
variables, and constraints in CFR. 
IF-THEN rules: A rule is defined using the construct: 

(define-rule <name <conditions> -> <actions>) 
For example, the rule: 

(define-rule is_food 
(edible ?x) 

-> (add ‘(is-food ,x))) 
says that if’ there is a fact in WM that matches (edible 
?x), this rule will fire and add the evaluation result 
‘(isfood ,x) to WM. ‘(isfood ,x) is in Lisp syntax (““‘, 
““‘, and “,“ are used according to their meanings in 
Lisp), and x here will be substituted to whatever value 
?x has after matching with the fact in WM. 

Constraint variable declarations: 
1). ep(t,, . . . . t,,-1, D) => (corresponding to) 

(cst-in ‘(P tl . . . tn-l D)) 
e.g., 03capitaZ(AT, (NYC, aibany)) => 

(cst-in ‘(capital NY (NYC albany))) 
2). vP(t,, . . . . b-1: CR, Q)) =’ 

(cst-set-in ‘(P tl . . . ht-1 CR Q>>, 
e.g., vlsFdOfioe, ((steve), uohn, kate))) => 

(cst-set-in ‘(IsFdOf joe ((Steve) (john kate)))) 

Constraints: 

1). csQqWdh1, -., tl(ff.4 j, 3, @P2(t21: . . ., f2(m-1 j, 3) 

=’ (cst_eq ‘(Pl t11 . . . tl(n-1 j _) I(P2 t21 . . . t2(m-l j _)) 

e.g., cst-eq@Isa(/ohn, J, @Isa(james, J) => 
(cst-eq ‘(Isa john J ‘(Isa james -)) 

2). cst~no~_eqWdhl,..., &+l),J,@P2(t21, .-., t22(m-l:f, -1) 

=> (cst_not_eq ‘(PI tl I . . . k-1) 3 YP2 f21 . . . t22(m-1;f 3) 

e.g., cst-not-eq(@Isa(john, ,), @Isa(james, J) => 
(cst-not-eq ‘(Isa john J ‘(Isa james J) 

3). cst_se~_eqWlUll,. . A (4 j, J, vW21, . . .) t2+1), _)) 
=’ w_set_eq ‘Vl t11 ** * h(n-1) ,) ‘(P2 f21 -*- t2(,1) J) 

e.g., cst-set-eq(vlsFdOf(mikez J,vlsFnOJ(ioe, J) 
=> (cst-set-eq ‘(IsFdOf mike _) ‘(IsFdOf joe J) 

Due to lack of space, we will not describe the 
corresponding constructs in CFR for the other constraints 
and choice and test functions. They are quite similar to the 
ones above. 
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5. An Example 
We now present a simple example to illustrate how rules 
and constraints interact with each other in the reasoning 
process. The rule definitions here are self-explanatory. 
(define-rule professor 

(isa ?x scienceqrofessor) 
-> (add ‘(works-in-a :x university)) 

(cst-in ‘(teaches ,x (computer math physics 
chemistry biology)))) 

(define-rule computer 
(isa ?x scienRJrqfessor) 
(has-no ?x computer) 
-> (cst-not-in ‘computer ’ (,x teaches J)) 

(define-rule math 
(is_good_in 2x math) 
(isa ?x scienceqrofessor) 
-> (cst-in ‘(teaches ,x (computer math physics)))) 

(define-rule csp-test 
(test-in (physics math) (teaches ?x _)) 
-> (add ‘(gives-lecture-in ,x science-building))) 

(define-rule lab 
(does-not-do ?x lab-work) 
-> (cst-not-in ‘chemistry ’ (teaches ,x _)) 

(cst-not-in ‘biology ’ (teaches ,x >>) 
(define-rule degree 

(teaches ?x ?y) 
-> (add ‘(likes ,x ,y)) 

(cst-set-in ‘(has :x ‘(((ND in ,y)) ‘((MSc in ,y)))))) 

Let us run the system with the following facts: 
(add ‘(isa fred sciencegrofessor)) 
(add ‘(has-no fred computer)) 
(add ‘(isa john sciencegrofessor)) 
(add ‘(does-not-do john lab-work)) 
(cst-eq ‘(teaches john -) ‘(teaches fred -)) 

After all the rule chaining and constraint propagation, the 
working memory becomes: 

1: (isa fred sciencegrofessor) 
2: (works-in-a fied university) 
3: (cst-fact (teaches fred _) (math physics)) 
4: (has-no fred computer) 
5: (isa john scienceqrofessor) 
6: (works-in-a john university) 
7: (cst-fact (teaches john _) (math physics)) 
8: (does-not-do john lab-work) 
9: (gives-lecture-in john science-building) 
10: (gives-lecture-in fied science-building) 

Fact 3 and 7 are special facts representing two constraint 
variables and their remaining domains. From them, we 
know that botllfred and j&n teach either math or phpics, 
but we still do not know which. 

Let us say that we are not satisfied with the result. We 
would like to make a guess about what they teach. We can 
use the following selection function: 

(&-select ‘(teaches f&d _) #‘car) 
This selects math as the subject that j?ed teaches. After 
constraint propagation and rule chaining, we obtain the 
fact that john also teaches math. The following facts are 
deduced: 

11: (teaches fred math) 
12: (teaches john math) 
13: (likes fied math) 
14: (likes john math) 
15: (hasfiXzd(PhDinmath)) 
16: (has john (PhD in math)) 
17: (cst-set-fact (has fred _) ((PhD in math)) 

(@EC in math))) 
18: (cst_set_fact (has john J ((PhD in math)) 

((MSc in math))) 
The last two facts (17 and 18) say that jkd and john have 
a PhD in math and may or mz~y not have a MS’c in math. 

If later we have some more information saying that fred 
does not have a PMI degree in math, this can be expressed 
like this: 

(cst-set-not-in ‘(PhD in math) ‘(has f&l -)) 
It immediately causes a conflict with fact 17 because fact 
17 says thatped has a PhD in math. Then, backtracking is 
performed. The facts from 11 to 18 are removed to restore 
the previous state. physics is selected this time as the 
subject thatfred teaches, which in turn causes a nufnber of 
facts to be produced: 

11: 
12: 
13: 
14: 
15: 
16: 
17: 

18: 

(teaches fied physics) 
(teaches john physics) 
(likes fred physics) 
(likes john physics) 
(has fred (PhD in physics)) 
(has john (PhD in physics)) 
(cst-set-fact (has fred J ((PhD in physics)) 

((MSc in physics))) 
(cst-set-fact (has john J ((PhD in physics)) 

((MSc in physics))) 
Since math is eliminated as the possible course that fred 
and john teach. Fact 3 and 7 in WM become: 

3: (cst-fact (teaches fred J (physics)) 
7: (cst-fact (teaches john _) (physics)) 

The kind of reasoning illustrated here cannof be carried 
out in an existing rule-based system. 

6. Related Work 
The most closely related work to our research is constraint 
logic programming (CLP) (Jtiar & Maher 1994) where a 
considerable amount of research has been done to 
integrate constraint satisfaction with logic programming. 
A number of systems have been built, and many successful 
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applications have also been reported (Jaf%r & Maher 
1994). Two representative CLP languages are CLP(R) 
(Jaffar & Lassez 1987) and CHIP (Hentemyck 1989). 
These languages are based on Horn clauses and backward 
chaining. Our work is different from CLP in a number of 
ways. The main differences are as follows. 
1. Our proposed technique is based on forward chaining 

rather than backward chaining as in CLP languages. 
Forward chaining and backward chaining reason from 
different directions and are suitable for solving different 
types of problems. Forward chaining are mainly used 
for building expert systems for solving real-life 
knowledge intensive tasks. Since the CLP languages 
based on backward chaining have been very successful 
in practice for solving practical combinatorial search 
problems, it is only natural that forward chaining 
should also be integrated with constraint solving to 
provide a more powerful reasoning technique for 
solving practical reasoning problems. 

2. In CLP languages, backtracking and choice making are 
provided by the host language Prolog. While in forward 
chaining, backtracking and choice making facilities 
have to be added, which creates some complications as 
discussed in Section 3.6. 

To the best our knowledge, limited work has been done on 
combining constraint solving with forward chaining rule- 
based system. BABYLON (Christaller et al 1992) is one 
of the hybrid environments for developing expert systems 
that has attempted to include constraint solving in its rule- 
based system. BABYLON provides representation 
formalisms of objects, rules, Prolog and constraints. 
CONSAT is the constraint system of BABYLON, which is 
separated from others and cannot access rules. Although 
in the condition part of the rules, it is possible to verify 
whether a constraint is satisfied, the action part of a rule 
cannot access constraints. This is quite different from our 
system, within which constraint solving and rule-chaining 
are integrated. Rules can post and test constraints, and 
constraint satisfaction can also trigger chaining of rules. 

7. Conclusion 
This paper shows how CSP can be used to model two 
types of important disjunctions in rule-based reasoning. 
These disjunctions have not been handled satisfactorily in 
the current rule-based systems. In the proposed scheme, 
the simple representation and efficient algorithms in CSP 
are used to deal with these types of disjunction. This 
results in the integration of two important types of 
reasoning techniques, i.e., constraint solving and 
(forward) rule-chaining. Hence. the power of rule-based 
systems is increased. 

The current integration of CSP with rule-based 
reasoning is still restricted, i.e., mainly for modeling the 

two types of disjunction. Our next step is to deal 
general constraints in a forward chaining framework. 
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