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Abstract 

We present a connectionist architecture that supports 
almost instantaneous deductive and abductive reason- 
ing. The deduction algorithm responds in few steps 
for single rule queries and in general, takes time that 
is linear with the number of rules in the query. The 
abduction algorithm produces an explanation in few 
steps and the best explanation in time linear with the 
size of the assumption set. The size of the network is 
polynomially related to the size of other representa- 
tions of the domain, and may even be smaller. 

We base our connectionist model on Valiant’s Neu- 
roidal model (Va194) and thus make minimal assump- 
tions about the computing elements, which are as- 
sumed to be classical threshold elements with states. 
Within this model we develop a reasoning framework 
that utilizes a model-based approach to reasoning 
(KKS93; KR94b). In particular, we suggest to inter- 
pret the connectionist architecture as encoding exam- 
ples of the domain we reason about and show how 
to perform various reasoning tasks with this interpre- 
tation. We then show that the representations used 
can be acquired efficiently from interactions with the 
environment and discuss how this learning process in- 
fluences the reasoning performance of the network. 

Introduction 
Any theory aiming at understanding commonsense rea- 
soning, the process that humans use to cope with the 
mundane but complex aspects of the world in evaluat- 
ing everyday situations, should account for the flexibil- 
ity, adaptability and speed of commonsense reasoning. 

Consider, for example, the task of language under- 
standing, which humans perform effortlessly and ef- 
fectively. It depends upon our ability to disambiguate 
word meanings, recognize speaker’s plans, perform pre- 
dictions and generate explanations. These, and other 
“high level” cognitive tasks such as high level vision 
and planning have been widely interpreted as inference 
tasks and collectively comprise what we call common- 
sense reasoning. 
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Deductive and abductive reasoning are the basic in- 
ference tasks considered in the context of high level 
cognitive tasks. In this paper we suggest an alterna- 
tive to the current connectionist account of these tasks. 

Connectionist networks have been argued to be bet- 
ter suited than traditional knowledge representations 
for studying everyday common sense reasoning. Some 
of the arguments used are that these models have the 
ability to simultaneously satisfy multiple constraints, 
dynamically adapt to changes, achieve robustness and 
provide a useful way to cope with conflicting and uncer- 
tain information (Sun95; Pin95; Der90). This should 
be contrasted with the view that connectionist model 
are incapable of performing high level cognitive tasks 
because of their difficulties with representing and ap- 
plying general knowledge rules (FP88). 

The latter opinion, we believe, may reflect on the 
fact that a lot of the research on understanding high 
level cognition using connectionist models is actually 
trying to represent and apply general knowledge rules. 

Indeed, a lot of the research in this direction 
is influenced by a research program launched in 
the fifties, the “knowledge-base+inference engine” ap- 
proach (McC58), which is still the generally accepted 
framework for reasoning in intelligent systems. The 
idea is to store the knowledge, expressed in some rep- 
resentation language with a well defined meaning as- 
signed to its sentences, in a Knowledge Base (li’B). 
The I<B is combined with a reasoning mechanism (“in- 
ference engine”) that is used to determine what can be 
inferred from the sentences in the K B. The effort to 
develop a logical inference engine within a connection- 
ist architecture is represented by works such as (BH93; 
IIK91; SA90; SA93; Sun95; LD91; Pin95; Der90). 

Given the intractability of the general purpose 
knowledge base+inference engine approach to reason- 
ing, a significant amount of recent work in reasoning 
concentrates on (1) identifying classes of limited ex- 
pressiveness, with which one can still perform reason- 
ing efficiently or (2) resorting to an approximate in- 
ference engine. These directions have been pursued 
both in the knowledge representation and reasoning 
(II’R&R) community and in the connectionism com- 
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munity. The former line of research is represented in 
KR&R by many works such as (BL84; Lev92; Rot93; 
SK90; Cad95) and in the connectionism community 
by (SA90; BH93; HK91). The latter usually builds on 
using Hopfield’s networks (HT82) or Boltzmann ma- 
chines (HS86), in an effort to solve optimization prob- 
lems that are relaxations of propositional satisfiabil- 
ity. This approach is used, for example, in (Pin95; 
Der90) and is related to approaches suggested in the 
KR&R community (SLM92; MJPSO). 

None of these works, however, meets the strong 
tractability requirements required for common-sense 
reasoning as argued e.g., in (Sha93). Moreover, 
many of these works have carried out the “knowledge 
baseSinference engine” research program also by ne- 
glecting to consider the question of how this knowledge 
might be acquired’ and by measuring performance of 
the reasoning process in absolute terms rather than 
with respect to the preceding learning process. 

We utilize a model-based approach to reasoning 
(KKS93; KR94b) to yield a network that is not a 
“logical inference engine” but, under some (formally 
phrased) restrictions, behaves “logically” with respect 
to a world it interacts with. Our model-based algo- 
rithms support instantaneous deduction and abduc- 
tion, in cases that are intractable using other knowl- 
edge representations. The interpretation of the con- 
nectionist architecture as encoding examples acquired 
via interaction with the environment, allows for the 
integration of the inference and learning processes 
(KR94a) and yields reasoning performance that nat- 
urally depends on the process of learning the network. 

We develop the reasoning framework within 
Valiant’s Neuroidal paradigm (Va194), a computational 
model that is intended to be consistent with the gross 
biological constraints we currently understand. In par- 
ticular, this is a programmable model which makes 
minimal assumptions about the computing elements, 
assumed to be classical threshold elements with states. 

In this abstract we focus on presenting the reason- 
ing framework: the architecture, its interpretation as 
a set of examples and the reasoning algorithms. The 
learning issues are discussed only briefly. 

The Reasoning Framework 
This paper considers two inference tasks, Deduction2 
and Abduction. Deduction, the basic inference task 
considered in the context of high level cognitive tasks 
is usually modeled as follows: given a Boolean function 
W, represented as a conjunction of rules and assumed 
to capture our knowledge of the world, and a Boolean 
function CY, a query that is supposed to capture the 

’ (Pin95) is an exception. 
2We emphasize that these terms are used only to give 

semantics to the network’s behavior. The network is not a 
“logical inference engine” but, under some restrictions on 
the queries presented, behaves “logically” with respect to 
a world it had interactions with. 

situation at hand, decide whether W logically implies 
o (denoted W b CY). Abduction is a term coined by 
Peirce (Pei55) to describe the inference rule that con- 
cludes A from an observation B and the rule A + B, 
given that there is no “better” rule explaining B. The 
importance of studying abduction became clear in the 
past few years when some general approaches to Natu- 
ral Language interpretation have been advanced within 
the abduction framework (HSME93). 

We adopt an alternative, model-based approach to 
the study of commonsense reasoning, in which the 
knowledge base is represented as a set of models (sat- 
isfying assignments) of the domain of interest (the 
“world”) rather than a logical formula describing it. 
It is not hard to motivate a model-based approach to 
reasoning from a cognitive point of view and indeed, 
most of the proponents of this approach to reason- 
ing have been cognitive psychologists (JL83; JLB91; 
Kos83), who have alluded to the notion of “reason- 
ing from examples” on a qualitative basis. Building 
on the work of (KKS93; KR94b) we show that model- 
based reasoning can be implemented in a connectionist 
network to yield an efficient reasoning network. 

In our framework, when reasoning with respect to 
the “world” W, information about the W is stored in 
a network N and is interpreted as a collections of exam- 
ples observed in W. 3 We present both deduction and 
the abductive task of verifying that an explanation is 
consistent as a series of forward evaluation tasks. Each 
takes 5 computational steps. The task of producing an 
explanation utilizes the backwards connections in the 
networks, and is also instantaneous. In both cases, if 
the content of the network is a good representation of 
W, in a well defined sense, for a wide class of queries 
the network response is provably correct. Interaction 
with the network for queries presentation and learn- 
ing the representation is done in a unified manner, via 
observations and the performance of the reasoning is 
shown to depend naturally on this interaction. 

Reasoning Tasks 
We briefly present the reasoning tasks and some rel- 
evant results. See (KR94b; KR94a) for details. We 
consider reasoning over a propositional domain. The 
reasoning queries are with respect to a “world” (do- 
main of interest) that is modeled as a Boolean func- 
tion (a propositional expression) f : (0, l}n + (0, 1). 
Let X = (~1,. . ., xfl} be a set of variables, each of 
which is associated with a world’s attribute and can 
take the value 1 or 0 to indicate whether the associ- 
ated attribute is true or false in the world. (n is our 
complexity parameter.) An assignment x E (0, l}n 
satisfies f if f(x) = 1. (x is also called a model of f.) 
By “f entails (implies) g” , denoted f b g, we mean 
that every model of f is also a model of g. 

3We restrict our discussion to this fragment of the net- 
work; in general, this will be part of a larger network and 
will overlap with network representations of other “worlds”. 
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In deduction (entailment), given Boolean functions 
f (assumed to capture our knowledge of the world) and 
cy (a query that is supposed to capture the situation 
at hand) we need to decide whether f implies o (de- 
noted f i= a). For abduction, we refer here to one 
of the propositional formalisms in which abduction is 
defined as the task of finding a minimal explanation, 
given a knowledge base f (the background theory), a set 
of propositional letters A (the assumption set), and a 
query letter q. An explanation of q is a minimal sub- 
set E 5 A such that (1) f A (/&Ex) b q and (2) 
f A (&v:EE x) # 8. Thus, abduction involves tests for 
entailment (1) and consistency (2), but also a search 
for a minimal4 explanation that passes both tests. 

Reasoning with Models 
The model based strategy for the deduction problem 
f b a is to try and verify the implication relation 
using model evaluation. In doing so, the knowledge 
base consists of a set I? of models of f rather than 
a Boolean function. When presented with a query CE 
the algorithm evaluates Q on all the models in I’. If a 
counterexample x such that a(x) = 0 is found, then the 
algorithm returns “No”. Otherwise it returns “Yes”. 

Clearly, the model based approach solves the infer- 
ence problem if I is the set of allmodels off. However, 
the set of all models might be too large, making this 
procedure infeasible computationally. A model-based 
approach becomes useful if one can show that it is pos- 
sible to use a fairly small set of models as the test set 
I’, and still perform reasonably good inference. 

Exact Reasoning using models is based on a the- 
ory developed in a series of papers (KKS93; KR94b; 
KR94a; KR95) where a characterization of when a 
model based approach to reasoning is feasible is de- 
veloped. An important feature of the theory is that 
the correctness of reasoning depends on the type of 
queries presented and not so much on the world we rea- 
son about (provided that the reasoner holds a “good” 
description of the world). The class of queries which al- 
lows efficient model-based reasoning is called the class 
of common queries (Qc). It contains a rich class of 
theories and, in particular, all Horn and all 1ognCNF 
functions. Proving the feasibility of model-based rea- 
soning involves showing that for the purpose of reason- 
ing with respect to Q,, a Boolean function f can be 
represented using a polynomial size set of models, I’f . 

Theorem 1 ((KR94b)) For any knowledge base f 
there exists a set rf of models whose size is 
poEynomially5 related to the DNF size of f. Deduc- 

4Here minimal means that no subset of it is a valid ex- 
planation. In general this is not, by itself, adequate for 
choosing among explanations and more general schema can 
be discussed in our framework. 

‘Thus, l?f is in general exponentially smaller than the 
number of satisfying assignments of f, and sometimes even 
exponentially smaller than the DNF representation. 

tion (with respect to Q,) and Abduction (given a query 
q and assumption set A) can be performed correctly in 
polynomial time, using rf . 
Approximate Reasoning is related to the notion 
of pat learning (Va184) and was developed in (KR94a). 
We assume that the occurrences of observations in the 
world is governed by a fixed but arbitrary and unknown 
probability distribution D defined on (0, 1)“. 

A query (Y is called (f, c)-fair if either f C a or 
Prob [f \ @I > E. An algorithm for approximate de- 
duction will is to err on non-fair queries. (Intuitively, 
it is allowed to err in case f p o, but the weight (un- 
der D) of f outside a is very small.) Along with the 
accuracy parameter E, we use a confidence parameter 
5 which stands for the small probability that the rea- 
soning algorithm errs on fair queries. 
Theorem 2 Let & be a class of queries of interest, 
and let 0 < S, E be given confidence and accuracy pa- 
rameters. Suppose that we select m = $(ln IQ1 + In $) 
independent examples according to D and store in I’ 
all those samples that satisfy f. Then the probability 
that the model-based deduction procedure errs on an 
(f, e)-fair query in Q is less than 6. 

Since the queries in Q are Boolean functions of polyno- 
mial size, the number m of samples required is polyno- 
mial. Moreover, given a set of possible explanations as 
input, this approach efficiently supports the entailment 
and consistency stages of abductive reasoning. 

The Connectionist Framework 
The architecture investigated is based on Valiant’s 
Neuroidal model (see (Va194) for details). We present 
just the few aspects we need to describe the knowledge 
representation that supports the reasoning tasks. 

Valiant’s Neuroidal model is a programmable model 
which makes minimal assumptions on the computing 
elements, assumed to be classical threshold elements 
with states. We make a few minor abstractions for 
methodological purposes. Most importantly, we ab- 
stract away the important notion that in the localist 
representation assumed, every item is represented as a 
“cloud” of nodes rather than a single node. 

A 5-tuple (G(G) E), W, M, S, X) defines a network 
N. Here G = G(G, E) is a directed graph describing 
the topology of the network, W is the set of possible 
weights on edges of G, IM is the set of modes a node 
can be in at any instant, S is the update function of the 
mode and X is the update function of the weights. 

We view the nodes of the net as a set G of proposi- 
tions. The set E is a set of directed edges between the 
nodes. The set of weights W is a set of numbers. eij 
denotes the edge directed from i to j, and its weight 
1s wij. Sometimes both eij, eji E E. The mode, (s, T), 
of the node describes every aspect of its instantaneous 
condition other than the weights on its incoming edges. 
s E S is a finite set of states and T is a threshold. In 
particular, S consists of two kinds of states F and &, 
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which stand for firing (that is, the node is active at 
this time), and quiescent (a non-active state). 

The mode transition function S specifies the updates 
that occur to the mode of the node from time t to 
t + 1. S depends on the current state of the node and 
the sum of weights zui = Ck{wlm E E,k E F}, 
of its active parents. Similarly, the weight transition 
function X defines for each weight WQ at time t the 
weight to which it will transit at time t + 1. The new 
value may depend on the values of the weights on the 
edges between node i and its parents, their firing state 
and the mode of i, all at time t. Two default transitions 
are assumed. First, a threshold transition by default 
occurs whenever w; > Ti at the ith node, provided 
that no explicit condition that overrides the default is 
stated. The second default assumed is that a node in 
a firing state ceases firing at the end of the time unit. 

To further specify a network we need to define the 
initial conditions IC, (i.e., initial weights and modes 
of the nodes) and input sequence IS. The interaction 
of the network with the outside world is modeled by 
assuming the existence of peripherals. They have the 
power to cause various sets of nodes in the network to 
fire simultaneously at various times. Every interaction 
like that we call here an observation. It specifies the set 
of nodes that the peripherals activate at an instant, i.e., 
the set of propositions that are observed to be active 
in the environment. The actual choices of the sets and 
the times in which the observations are presented to 
the network determine the input sequences IS. 

Timing is crucially important to the model. After 
the peripherals prompt the network and cause some 
subset of nodes to fire simultaneously, a cascade of 
computation follows, and the algorithm has to ensure 
that it terminates in a stable situation, before the 
time unit has elapsed. Typically, the peripherals will 
prompt low level nodes and the algorithm being exe- 
cuted may need to modify nodes representing higher 
level concepts, that are separated in the network from 
the prompted ones by several intermediate nodes. 

Knowledge Representation 
To emphasize the correspondence between the network 
and propositional reasoning, we consider a subset of 
the nodes in N which are controlled by the peripherals 
and view it as a set X = (21, . . . , x~} of propositions. 
For simplicity, in order to describe both the presence 
and the absence of an attribute xi, it is duplicated 
in the representation: one node describes zi and an- 
other describes z. We represent each interaction with 
the network as an observation ZI = (xi1 = zlil, xi2 = 
viz, * * *, q-j = vid), with d < n, vi E (0, l}, and this 
is translated to a corresponding node activation by 
the peripherals. For example, when the observation 
is (xi = 1,x2 = 1, x3 = 0), the peripherals activate 
nodes corresponding to xi, 22 and 83. An observation 
v can be interpreted also as a query presented to the 
network in the reasoning stage. The presentation of v 

is interpreted as the Boolean query (Y = Zi, A . . . A Zi, , 
where Zj = Xj if Vj = 1, Zi = 6 if Vj = 0. 
Definition 1 Let y be a node in N, EY = {zlezy E E) 
its set of parents. A node z E EY is called a model of y 
and e, = {i E Ezlwil = 1) its set of components. The 
model-based representation of y, iMY = {(z, e,)lz E 
E,), is the set of models and their components. 
We assume also that the positive and negative literals 
of each proposition are connected via a relay node. Fig- 
ure 1 depicts a model-based representation of y. The 
edges are assumed to be bidirectional (i.e., each line 
represents two edges) and all the weights on the edges 
drawn are assumed to be 1. Every model is connected 
to all 2n literals, and the n not drawn are assumed to 
have weight 0. Initially, all the thresholds in the repre- 
sentation are set to a high value, denoted by 00. The 
algorithms also assume a specific set of initial modes 
of the nodes in the representation. 

“1 “1 “3 “3 “4 “4 

Figure 1: A Connectionist Model-Based Representation 

A model z can be represented as a Boolean vector. If 
ez = (4, d2, . . .L) is a representation of z as a set of its 
components (Zi E {xi, q}), than e, = [bl, bar . . . b,] is 
its Boolean representation, where bi E (0, 1) is defined 
by: bi = 1 if Ii = xi, bi = 0 if Zi = c. It can be 
verified that the model-based representation presented 
in Figure 1 is the representation of the function f = 
{%A= + x3, -AC --+ x2, xi A x2 A x4 -+ x3) with 
respect to all Horn queries. (See (KR94b).) 

In general, a network N will be a collection of such 
model-based representations. These can share nodes 
and any input to the network may influence many of 
them. Thus, although we discuss “logical” behavior, 
no global consistency is required. Note that while n 
is our complexity parameter, it is not related to the 
size of the whole network, but only to the number of 
propositions “related” to y in its local network. 
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Reasoning in the Network 
We briefly describe the reasoning algorithms, for lack 
of space. A complete description appears in (Rot96a). 

We note that within this framework, there are quite 
a few other ways to achieve the same goal. In particu- 
lar, we could define other modes and use other ways to 
evaluate the queries on the models stored in the model- 
based representation. We emphasize two design deci- 
sions that we view as important to the approach. First, 
queries are presented to the network as conjunctions. 
Thus, consistently with the natural interface consid- 
ered when learning the network, queries are viewed as 
observations - a list of propositions that are active (or 
non-active) in the environment. Second, in our algo- 
rithms, the top node, where the decision is being made, 
need not know the size of its input domain (the number 
of propositional letters). This is essential also to the 
extension to reasoning with incomplete information. 

Let N be a network which contains a model-based 
representation for f. That is, there exists a network 
structure as in Definition 1 and Figure 1. We im- 
ply nothing on the models stored in the network (i.e., 
which are the components of the models). We also as- 
sume that various nodes are in suitable initial states. 

Algorithms are described in the format of a sequence 
of steps (following (Va194)). First, we describe the 
initial (pre-)conditions assumed in the network. The 
input (“prompt”) is orchestrated by the peripherals, 
which also “collect” the algorithm’s response, repre- 
sented as a pattern of firings of one or more nodes. At 
each step, “prompt” describes the input at this stage 
- the set of nodes that the peripherals force to fire this 
time. Then, we define the transitions that are invoked 
during the following time unit at the relevant nodes. 
All other aspects of the algorithm are fully distributed. 
The effect of the algorithm on any node not directly 
prompted is completely determined by the transition 
rules and by the conditions at this node and at its par- 
ents. The overall algorithm can be invoked at any time, 
by having the preconditions of the first step satisfied 
as a result of an appropriate prompt. 

Deduction Consider the deduction problem f /= a. 
Queries are presented to the network as conjunctions of 
rules, a = Cl A . . . A Ck. Every rule has the form C = 
A + B, where A and B are conjunctions of literals. 
Since f b Cl A . . . A cr, iff f b Ci ‘d’i E (1, k), it is 
sufficient to consider the single6 rule case. 

We respond to f j= (A -+ B) using the following 
version of the reasoning with models algorithm. Given 
the set I? of models, filter out the models that do not 
satisfy A. Respond no (y inactive) iff one of the re- 
maining models (which satisfied A) does not satisfy B. 

61t is easy to extend the algorithm to handle sequentially 
the presented rules, timed by the peripherals, and respond 
only after seeing the last rule. The thing to note is that 
it takes constant time to respond to a single rule, and the 
total time is linear in the number of rules. 

Only the top node y and the example nodes take part 
in the deduction algorithm AIgD. It takes five steps: in 
the first two steps, the A part of the query is presented 
by the peripherals and is evaluated on all the models; in 
the next two steps, the B part of the query is presented 
by the peripherals and is evaluated on all the models 
that satisfied the A part; finally, the top node fires if 
all the models that satisfied A satisfy also B. 

In the first step, an example node that receives ac- 
tivity wakes up and stores the total incoming weight 
for later comparison. A weight flip is used to evaluate 
the query presented to the network on the examples 
stored in it. In the second step, the same propositional 
nodes are prompted. This time, due to the weight flip, 
an example satisfies the observation (query) presented 
iff the input it sees doubles. In this case it fires and 
changes its mode to wait for the second part of the 
query. The same mechanisms works for the second part 
of the query, but applies only to examples which sat- 
isfied A. Therefore, it is sufficient for the top node to 
record (by setting its threshold) the number of these 
examples and make sure they all satisfy B also. Fi- 
nally, the peripherals also prompt the target node y 
and this is used for the case where no model satisfies 
A, in which the response should also be “yes”. The 
algorithm also makes sure that all the nodes return to 
their original states. Depending on the content of the 
representation we can prove: 

Theorem 3 Let y be a node in the network N, and 
let MY be its model-based representation. (1) If My 
consists of the set of models I’Fc then AIgD performs 
correct deduction whenever presented with a common 
!wJ-Y* (q If q/ consists of a set of models off ac- 
quired by sampling the environment according to dis- 
tribution D then, with high probability, AlgD performs 
correct deduction whenever presented with an (f, c)-fair 
query with respect to D. 

Abduction The algorithms for abductive reasoning, 
are not presented here. They perform the following 
tasks: (i) Given a candidate explanation f and a query, 
verify that E is a valid explanation. (ii) Provided that 
candidate explanations are represented as dedicated 
nodes in the network, given a query, the algorithm fires 
a valid explanation 2?. All these tasks can be performed 
in constant time. In addition, the peripherals can use 
(i) to greedily present (subsets of) the collected output 
of (ii), in search for a minimal explanation. 

The algorithm is similar to the deduction algorithm 
with the main distinction being that in this case we uti- 
lize the relay nodes and the backwards connections in 
order to communicate information down the network. 

Learning to Reason 
An essential part of the developed framework is 
that reasoning is performed by a network that has 
been learned from interaction with the environment 
(KR94a). For this purpose we have defined the interac- 
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tion with the network via queries that are represented 
as observations. This allows for combining the inter- 
faces to the world used by known learning models with 
the reasoning task. For example, the main avenue of 
interaction with the world used in the formal study of 
learning is an Example Oracle. When accessed, this 
oracle returns v E (0, l}“, drawn at random according 
to a distribution D; v can be viewed as an observa- 
tions v = (vii, . . . , vid) and interpreted also as a query. 
Examples presented in this way can be “memorized” 
into our network (Va194), and in combination with 
AlgD this provides a Learning to Reason algorithm 
that interacts with the environment, learns a model- 
based representation and supports correct entailment. 
Furthermore, using (2) of Theorem 3, the dependence 
of the reasoning performance on the learning process 
can be stated qualitatively. This type of interaction 
is supported also by the on-line L2R models (KR94a; 
Rot95) and can be shown to support other reasoning 
tasks, when augmented with membership and reason- 
ing queries. 

Conclusion 
This paper develops a new approach to reasoning in 
connectionist networks. We suggest to interpret the 
connectionist architecture as encoding examples and 
show how to perform various reasoning tasks with 
this interpretation. Assuming the network encodes a 
(reasonably small) set of representative examples of a 
“world”, we proved that our algorithms perform cor- 
rect deduction and abduction, tasks that were con- 
sidered intractable under other knowledge represen- 
tations. Moreover, our framework naturally supports 
Learning to Reason and the representations used can 
be efficiently acquired by interaction with the world. 

We believe that these results make this model suit- 
able for studying reflexive reasoning (Sha93; Va194). 

This work is part of a project in which we are trying 
to understand how networks of simple and slow neuron- 
like elements can encode a large body of knowledge and 
perform a wide range of interesting inferences almost 
instantaneously. It provides the theoretical framework 
for a system that learns knowledge representations for 
natural language understanding tasks. 
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