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Abstract 

The paper presents an efficient goal oriented algo- 
rithm for symbolic propagation in Bayesian net- 
works. The proposed algorithm performs sym- 
bolic propagation using numerical methods. It 
first takes advantage of the independence rela- 
tionships among the variables and produce a re- 
duced graph which contains only the relevant 
nodes and parameters required to compute the 
desired propagation. Then, the symbolic expres- 
sion of the solution is obtained by performing 
numerical propagations associated with specific 
values of the symbolic parameters. These spe- 
cific values are called the canonical components. 
Substantial savings are obtained with this new 
algorithm. Furthermore, the canonical compo- 
nents allow us to obtain lower and upper bounds 
for the symbolic expressions resulting from the 
propagation. An example is used to illustrate 
the proposed methodology. 

Introduction 
Bayesian networks are powerful tools both for graphi- 
cally representing the relationships among a set of vari- 
ables and for dealing with uncertainties in expert sys- 
tems. A key problem in Bayesian networks is evidence 
propagation, that is, obtaining the posterior distribu- 
tions of the variables when some evidence is observed. 
Several efficient exact and approximate methods for 
propagation of evidence in Bayesian networks have 
been proposed in recent years (see, for example, Pearl 
1988, Lauritzen and Spiegelhalter 1988, Henrion 1988, 
Shachter and Peot 1990, Fung and Chang 1990, Poole 
1993, Bouckaert, Castillo and Gutierrez 1995). How- 
ever, these methods require that the joint probabilities 
of the nodes be specified numerically, that is, all the pa- 
rameters must be assigned numeric values. In practice, 
when exact numeric specification of these parameters 
may not be available, or when sensitivity analysis is de- 
sired, there is a need for symbolic methods which are 
able to deal with the parameters themselves, without 
assigning them numeric values. Symbolic propagation 
leads to solutions which are expressed as functions of 
the parameters in symbolic form. 

Recently, two main approaches have been pro- 
posed for symbolic inference in Bayesian networks. 
The symbolic probabilistic inference algorithm (SPI) 
(Shachter, D’Ambrosio and DelFabero 1990 and Li and 
D’Ambrosio 1994) is a goal oriented method which 
performs only those calculations that are required to 
respond to queries. Symbolic expressions can be ob- 
tained by postponing evaluation of expressions, main- 
taining them in symbolic form. On the other hand, 
Castillo, Gutierrez and Hadi 1995, 1996a, 199613, ex- 
ploit the polynomial structure of the marginal and 
conditional probabilities in Bayesian networks to ef- 
ficiently perform symbolic propagation by calculating 
the associated numerical coefficients using standard 
numeric network inference algorithms (such as those 
in Lauritzen and Spiegelhalter). As opposed to the 
SPI algorithm, this method is not goal oriented, but 
allows us to obtain symbolic expressions for all the 
nodes in the network. In this paper we show that 
this algorithm is also suitable for goal oriented prob- 
lems. In this case, the performance of the method can 
be improved by taking advantage of the independence 
relationships among the variables and produce a re- 
duced graph which contains only the nodes relevant 
to the desired propagation. Thus, only those opera- 
tions required to obtain the desired computations are 
performed. 

We start by introducing the necessary notation. 
Then, an algorithm for efficient computation of the 
desired conditional probabilities is presented and illus- 
trated by an example. Finally, we show how to obtain 
lower and upper bounds for the symbolic expressions 
solution of the given problem. 

Notation 
Let X = {X1,X2,... , X,} be a set of n discrete vari- 
ables, each can take values in the set (0, 1, . . . , ri}, the 
possible states of the variable Xi. A Bayesian net- 
work over X is a pair (D, P), where the graph D is a 
directed acyclic graph (DAG) with one node for each 
variable in X and P = {JI~(z~[T~), . . . ,pn(z,~~,)} is a 
set of n conditional probabilities, one for each variable, 
where I& is the set of parents of node Xi. Using the 
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chain rule, the joint probability distribution of X can 
be written as: 

PhX2, * * * ,x7-J = fiPi(zih). (1) 
i=l 

Some of the conditional probability distributions 
(CDP) in (1) can be specified numerically and oth- 
ers symbolically, that is, pi(xi(ri) can be a parametric 
family. When pi(xi Ini) is a parametric family, we re- 
fer to the node Xi as a symbolic node. A convenient 
notation for the parameters in this case is given by 

eij, = pi(xi = jp, = 7-+ j E (0,. . . ,Q), (2) 
where 7r is any possible instantiation of the parents 
of Xi. Thus, the first subscript in B,j, refers to the 
node number, the second subscript refers to the state 
of the node, and the remaining subscripts refer to the 
parents’ instantiations. Since C,‘& Bijn = 1, for all i 
and r, any one of the parameters can be written as one 
minus the sum of all others. For example, Oirin is 

ri-1 

eirin = i - E &jr- (3) 
j=O 

If Xi has no parents, we use 0ij to denote pi(Xi = 
j>, j E {o, * - * , ri}, for simplicity. 

Goal Oriented Algorithm 
Suppose that we are interested in a given goal node Xi, 
and that we want to obtain the CDP p(Xi = j/E = 
e), where E is a set of evidential nodes with known 
values E = e. Using the algebraic characterization of 
the probabilities given by Castillo, Gutierrez and Hadi 
1995, the unnormalized probabilities Ij(Xi = jlE = e) 
are polynomials of the form: 

.P(Xi = jJE = e) = C Cjrmr = pj(O)y (4) 
m,EMj 

where mj are monomials in the symbolic parameters, 
0, contained in the probability distribution of the 
Bayesian network. For example, suppose we have a 
discrete Bayesian network consisting of five binary vari- 
ables {Xi,...,Xs}, with values in the set (0, 1). The 
associated DAG is given in Figure 1. Table 1 gives the 
corresponding parameters, some in numeric and oth- 
ers in symbolic form. Node X4 is numeric because it 
contains only numeric parameters and the other four 
nodes are symbolic because some of their parameters 
are specified only symbolically. 

For illustrative purposes, suppose that the target 
node is Xa and that we have the evidence X2 = 1. We 
wish to compute the conditional probabilities p(Xa = 
j(X2 = l),j = 0,l. We shall show that 

p(X3 = 01x2 = 1) 

o.4e10e210 + o.3e301 - o.3e10e301 (5) 
= 

0.3 - o.3elo + e10e210 , 
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Node 1 Parameters 

xi rIi xi = 0 
Xl None 810 =p(X, = 0) 

x2 Xl &?oo=px2=ox1=o 
I3201 = p(X, = 01x1 = 1) = 0.7 

x3 Xl 0300 = p(X3 = 01x1 = 0) = 0.4 
e301 = p(x3 = 01x1 = I) 

x4 x2,x3 o&-Joo = p x4 = 0 x2 = 0,x3 = 0 = 0.2 
64001 = p(X4 = 01x2 = 0,x3 = 1) = 0.4 
I94010 = p(X4 = 01x2 = 1, x3 = 0) = 0.7 
04011 = p(X4 = 01x2 = 1, X3 = 1) = 0.8 

X5 x3 f3500 = p(X5 = 0(X3 = 0) 

0501 =p(X5 = 01x3 = 1) 

I Node I Parameters I I 
xi rIi xi = 1 
Xl None 811 = p(X, = 1) 
x2 Xl &?1o=px2=1x~=o 

6211 = p(X2 = 11x1 = 1) = 0.3 

x3 Xl 0310 = p(X, = 11x1 = 0) = 0.6 
0311 = p(X3 = 11x1 = 1) 

x4 x2,x3 t9mo = p(X4 = 11x2 = 0, X3 = 0) = 0.8 
041~1 = p(X4 = 11x2 = 0, X3 = 1) = 0.6 
e411l-J = p(X4 = 11x2 = 1,x3 = 0) = 0.3 
f&111 = p(X4 = 11x2 = 1,x3 = 1) = 0.2 

x5 x3 e510 = p(X5 = 11x3 = 0) 
I9511 = p(X5 = 1(X3 = 1) 

Table 1: Numeric and symbolic conditional probabilities. 

and 
p(X3 = 11x2 = 1) 

0.3 - o.3elo + o.6e10e210 - o.3e301 + o.3e10e301 
= 

0.3 - o.3elo + e10e210 7 

(6) 
where the denominator in (5) and (6) is a normalizing 
constant. 

Algorithm 1 gives the solution for this goal oriented 
problem by calculating the coefficients cjT in (4) of 
these polynomials. It is organized in four main parts: 
o PART I : Identify all Relevant Nodes. 

The CDP p(Xi = j] E = e) does not necessarily 

Figure 1: An example of a five-node Bayesian Network. 



involve parameters associated with all nodes. Thus, 
we identify the set of nodes which are relevant to 
the calculation of p(Xi = jl E = e), using either 
one of the two algorithms given in Geiger, Verma, 
and Pearl 1990 and Shachter 1990. Once this has 
been done we can remove the remaining nodes from 
the graph and identify the associated set of relevant 
parameters 0. 
PART II : Identify Sufficient Parameters. 
By considering the values of the evidence variables, 
the set of parameters 0 can be further reduced by 
identifying and eliminating the set of parameters 
which are in contradiction with the evidence. These 
parameters are eliminated using the following two 
rules: 
- Rule 1: Eliminate the parameters ejkr if xj # k 

for every Xj E E. 
- Rule 2: Eliminate the parameters Bjkr if par- 

ents’ instantiations 7r are incompatible with the 
evidence. 

PART III : Identify Feasible Monomials. 
Once the minimal sufficient subsets of parameters 
have been identified, they are combined in monomi- 
als by taking the Cartesian product of the minimal 
sufficient subsets of parameters and eliminating the 
set of all infeasible combinations of the parameters 
using: 
- Rule 3: Parameters associated with contradic- 

tory conditioning instantiations cannot appear in 
the same monomial. 

PART IV : Calculate Coefficients of all Poly- 
nomials. 
This part calculates the coefficients applying nu- 
meric network inference methods to the reduced 
graph obtained in Part I. If the parameters 0 are as- 
signed numerical values, say 8, then pj (0) can be ob- 
tained using any numeric network inference method 
to compute p(Xi = jl E = e, 0 = 0). Similarly, the 
monomials m, take a numerical value, the product 
of the parameters involved in m,. Thus, we have 

P(Xi = j(E = e,O = e) = x cjrm, = pj(l3). 

m,.EM, 

(7) 

Note that in (7) all the monomials m, , and the 
unnormalized probability pj (0) are known numbers, 
and the only unknowns are the coefficients cjr. To 
compute these coefficients, we need to construct a 
set of independent equations each of the form in (7). 
These equations can be obtained using sets of dis- 
tinct instantiations 0. 
To illustrate the algorithm we use, in parallel, the 

previous example. 
Algorithm 1 Computes p(Xi = jl E = e). 

Input: A Bayesian network (D, P), a target node Xi 

(4 (b) 

Figure 2: (a) Augmented graph D* after adding a dummy 
node Vi for every symbolic node Xi, and (b) the reduced 
graph D’ sufficient to compute p(Xi = j IE = e). 

and an evidential set E (possibly empty) with eviden- 
tial values E = e. 

Output: The CPD p(Xi = jlE = e). 

PART I: 
Step 1: Construct a DAG D* by augmenting D 
with a dummy node Vj and adding a link Vj + Xj 
for every node Xj in D. The node Vj represents the 
parameters, Oj, of node Xj. 
Example: We add to the initial graph in Figure 1, 
the nodes VI, V2, V3, Vi, and Vs The resulting graph 
in shown in Figure 2(a). 
Step 2: Identify the set V of dummy nodes in D* 
not d-separated from the goal node Xi by E. Ob- 
tain a new graph D’ by removing from D those 
nodes whose corresponding dummy nodes are not 
contained in V with the exception of the target and 
evidential nodes. Let 0 be the set of all the param- 
eters associated with the symbolic nodes included in 
the new graph and V. 
Example: The set V of dummy nodes not d- 
separated from the goal node X3 by the evidence 
node E = {X2} is found to be V = {VI, V2, V3). 
Therefore, we remove X4 and X5 from the graph ob- 
taining the graph shown in Figure 2(b). Thus, the 
set of all the parameters associated with symbolic 
nodes of the new graph is 

PART II: 
e Step 3: If there is evidence, remove from 0 the 

parameters Ojkr if xj # k for Xj E E (Rule 1). 
o Example: The set 0 contains the symbolic param- 

eters 8200 and 0201 that do not match the evidence 
X2 = 1. Then, applying Rule 1 we eliminate these 
parameters from 0. 
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Step 4: If there is evidence, remove from 0 the pa- 
rameters O~,C* if the set of values of parents’ instan- 
tiations 7r are incompatible with the evidence (Rule 
2). 
Example: Since the only evidential node X2 has no 
children in the new graph, no further reduction is 
possible. Thus, we get the minimum set of sufficient 
parameters: 

PART III: 
Step 5: Obtain the set of monomials M by taking 
the Cartesian product of the subsets of parameters 
in 0. 
Example: The initial set of candidate monomials is 
given by taking the Cartesian product of the minimal 
sufficient subsets, that is, 

M = (ho, ell) x (0 210, e211j x {e300, e310, e301, e311). 

Thus, we obtain 16 different candidate monomials. 
Step 6: Using Rule 3, remove from M those mono- 
mials which contain a set of incompatible parame- 
ters. 
Example: Some of the monomials in M contain 
parameters with contradictory instantiations of the 
parents. For example, the monomial 0ia02ia&ai con- 
tains contradictory instantiations of the parents be- 
cause @ia indicates that Xi = 0 whereas @soi in- 
dicates that Xi = 1. Thus, applying Rule 3, we 
get the following set of feasible monomials M = 
~~10e210~300r ~10~210~310, ~11~211~301, ~11~211~311~. 
Step 7: If some of the parameters associated with 
the symbolic nodes are specified numerically, then 
remove these parameters from the resulting feasible 
monomials because they are part of the numerical 
coefficients. 
Example: Some symbolic nodes involve both nu- 
meric and symbolic parameters. Then, we remove 
from the monomials in M the numerical parame- 
ters &aa, 0310 and 0211 obtaining the set of feasi- 
ble monomials M = {hoezlo, fhe301, h~311). Note 
that, when removing these numeric parameters from 
0, the monomials &002100300 and &002100310 be- 
come eio&ia. Thus, finally, we only have three dif- 
ferent monomials associated with the probabilities 
p(X3 = jlX2 = l),j = 0,l. 

PART IV: 
e Step 8: For each possible state j of node Xi, j = 

0 Y”‘, ri, build the subset Mj by considering those 
monomials in M which do not contain any parameter 
of the form Oiqr, with q # j. 

o Example: The sets of monomials needed to 
calculate p(Xs = 01x2 = 1) and p(Xs = 
11x2 = 1) are MO = {~1&10,~118sai} and Ml = 

(Bia&ia, &i&ir}, respectively. Then, using (4), we 
have: 

PO(Q) = @x3 = 01x2 = 1) 
= co1mo1+ co277Jo2 

= ~ol~lo~210 + c02~11~301. 
(8) 

p1(0) = P(X3 = 11x2 = 1) 
= wwl + c12m12 (9) 
= d40~210 + c12he311. 

e Step 9: For each possible state j of node Xi, calcu- 
late the coefficients cjr of the conditional probabili- 
ties in (4)) r = 0, . . . , nj , as follows: 

Calculate nj different instantiations of 0, C = 
{b. . , elt3 ) such that the canonical nj x nj ma 
trix Tj, whose rs-th element is the value of the 
monomial m, obtained by replacing 0 by 8,, is a 
non-singular matrix. 
Use any numeric network inference method to 
compute the vector of numerical probabilities 
Pj = (lpj(h>,... , pj ( Bnj )) by propagating the evi- 
dence E = e in the reduced graph D’ obtained in 
Step 2. 
Calculate the vector of coefficients cj = 
(Cjl, - - . , cjnj) by solving the system of equations 

Tjcj = pj, (10) 

which implies 
(3 = Tr’pj. (11) 

Example: Thus, taking appropriate combina- 
tions of extreme values for the symbolic parame- 
ters (canonical components), we can obtain the nu- 
meric coefficients by propagating the evidence not 
in the original graph D (Castillo, Gutierrez and 
Hadi 1996), but in the reduced graph D’, saving 
a lot of computation time. We have the symbolic 
parameters 0 = (ho, h, e200, e210, e301, e3i1) con- 
tained in D’, We take the canonical components 81 = 
(l,O, l,O, 1,O) and e2 = (0, l,O, 1, 1,O) and using any 
(exact or approximate) numeric network inference 
methods to calculate the coefficients of PO(@). We 
obtain, p. (0,) = 0.4 and po(&) = 0.3. Note that, in 
the above equation, the vector (po(81),po(&)) can be 
calculated using any of the standard exact or approx- 
imate numeric network inference methods, because 
all the symbolic parameters have been assigned a 
numerical value: 

po(el) = p(x, = 01x2 = I, 0 = el) 
po(e2) = p(x3 = 01x2 = 1,o = e2). 

Then, no symbolic operations are performed to ob- 
tain the symbolic solution. Thus, (11) becomes 
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Similarly, taking the canonical components 8i = 
(1, 0, 1, 0, 1,O) and 02 = (0, 1, 0, 1, 0, l), for the prob- 
ability pl(0) we obtain 

Then, by substituting in (8) and (9), we obtain the 
unnormalized probabilities: 

@x3 = 0(x2 = 1) = o.4e10e210 + o.3e11e301, (14) 

w3 = 11x2 = 1) = o.6e10e210 + o.3e11e311. (15) 

Step 10: Calculate the unnormalized probabilities 
pj(Q), j = 0,. . . , ri and the conditional probabilities 
p(Xi = j(E = e) = pj(O)/N, where 

N = gP,(Q) 
j=O 

is the normalizing constant. 
Example: Finally, normalizing (14) and (15) we get 
the final polynomial expressions: 

p(X,=OIX2= l)= 

o.4e10e210 + o.3e11e301 
e1oe21o + o.3e11e301 + o.3e11e311 

(16) 

and 

p(X3 = 11x1 = 1) = 

o.6~10e210 + o.3e11e311 
e1oe21o + o.3e11e301 + o.3e11e311 

(17) 

Step 11: Use (3) to eliminate dependent parameters 
and obtain the final expression for the conditional 
probabilities. 
Example: Now, we apply the relationships among 
the parameters in (3) to simplify the above expres- 
sions . In this case, we have: t93ri = 1 - 0301 and 
011 = 1 - 810. Thus, we get Expressions (5) and (6). 
Equations (5) and (6) g ive the posterior distribution 
of the goal node X3 given the evidence X2 = 1 in 
symbolic form. Thus, p(X3 = jlX2 = l), j = 0,l 
can be evaluated directly by plugging in (5) and (6) 
any specific combination of values for the symbolic 
parameters without the need to redo the propagation 
from scratch for every given combination of values. 

In our case, u is the set of symbolic parameters 
and the fractional functions (18) are the symbolic ex- 
pressions associated with the probabilities, (5) and 
(6). In this case, the convex polyhedron is defined by 
u 5 1, u 2 0, that is, A is the identity matrix. Then, 
using Theorem 1, the lower and upper bounds of the 
symbolic expressions associated with the probabilities 
are attained at the vertices of this polyhedron. In our 
case, the vertices of the polyhedron are given by all 
possible combinations of values 0 or 1 of the symbolic 
parameters, that is, by the complete set of canonical 
components associated with the set of free symbolic pa- 
rameters appearing in the final symbolic expressions. 

Remark: In some cases, it is possible to obtain a set of As an example, Table 2 shows the canonical prob- 
canonical instantiations for the above algorithm that abilities associated with the symbolic expressions (5) 
leads to an identity matrix Tj. In those cases, the and (6) obtained for the CDP p(X3 = jlX2 = 1). 
coefficients of the symbolic expressions are directly ob- The minimum and maximum of these probabilities are 
tained from numeric network inferences, without the 0 and 1, respectively. Therefore, the lower and up- 
extra effort of solving a system of linear equations. per bounds are trivial bounds in this case. The same 

ok p(x3 = jlx2 = I,&) 

ho e210 e301 j=O j=l 
0 010 0.0 1.0 

Table 2: Conditional probabilities for the canonical cases 

associated with 1540,&o, and 8301. 

Sensitivity Analysis 
The lower and upper bound of the resulting symbolic 
expressions are a useful information for performing sen- 
sitivity analysis (Castillo, Gutierrez and Hadi 1996a). 
In this section we show how to obtain an interval, 
(1,~) c [0, l], that contains all the solutions of the 
given problem, for any combination of numerical val- 
ues for the symbolic parameters. The bounds of the 
obtained ratios of polynomials as, for example (5) and 
(6), are attained at one of the canonical components 
(vertices of the feasible convex parameter set). We use 
the following theorem given by Martos 1964. 
Theorem 1 If the linear fractional functional of u, 

c*u-co 
d*u-do’ 

where u is a vector, c and d are vector coefficients and 
co and do are real constants, is defined in the convex 
polyhedron Au 2 a~, u 2 0, where A is a constant 
matrix and aa is a constant vector, and the denomina- 
tor in (18) does not vanish in the polyhedron, then the 
functional reaches the maximum at least in one of the 
vertices of the polyhedron. 
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ok p(x3 = jlx2 = 1, ek) 

alo e210 j=O j=l 
0 0 0.5 0.5 

Table 3: Conditional probabilities for the canonical cases 
associated with 810 and 0210 for 0301 = 0.5. 

bounds are obtained when fixing the symbolic param- 
eters elo or e210 to a given numeric value. 

However, if we consider a numeric value for the 
symbolic parameter 0301, for example 8301 = 0.5, we 
obtain the canonical probabilities shown in Table 3. 
Therefore, the lower and upper bounds for the prob- 
ability p(X3 = 01x2 = 1) become (0.4,0.5), and for 
p(X3 = 11x2 = 1) are (0.5,0.6), i.e., a range of 0.1. 

If we instantiate another symbolic parameter, for ex- 
ample 810 = 0.1, the new range decreases. We obtain 
the lower and upper bounds (0.473,0.5) for p(X3 = 
01x2 = l), and (0.5,0.537) for p(X3 = 11x2 = 1). 

Conclusions and Recommendations 
The paper presents an efficient goal oriented algo- 
rithm for symbolic propagation in Bayesian networks, 
which allows dealing with symbolic or mixed cases of 
symbolic-numeric parameters. The main advantage of 
this algorithm is that uses numeric network inference 
methods, which make it superior than pure symbolic 
methods. First, the initial graph is reduced to produce 
a new graph which contains only the relevant nodes 
and parameters required to compute the desired prop- 
agation. Next, the relevant monomials in the symbolic 
parameters appearing in the target probabilities are 
identified. Then, the symbolic expression of the solu- 
tion is obtained by performing numerical propagations 
associated with specific numerical values of the sym- 
bolic parameters. An additional advantage is that the 
canonical components allow us to obtain lower and up- 
per bounds for the symbolic marginal or conditional 
probabilities. 
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