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Abstract 

Conditional Zogics play an important role in recent attempts 
to investigate default reasoning. This paper investigates first- 
order conditional logic. We show that, as for first-order 
probabilistic logic, it is important not to confound statisti- 
cal conditionals over the domain (such as “most birds fly”), 
and subjective conditionals over possible worlds (such as “I 
believe that lweety is unlikely to fly”). We then address 
the issue of ascribing semantics to first-order conditional 
logic. As in the propositional case, there are many possi- 
ble semantics. To study the problem in a coherent way, we 
use plausibility structures. These provide us with a general 
framework in which many of the standard approaches can be 
embedded. We show that while these standard approaches 
are all the same at the propositional level, they are signifi- 
cantly different in the context of a first-order language. We 
show that plausibilities provide the most natural extension of 
conditional logic to the first-order case: We provide a sound 
and complete axiomatization that contains only the KLM 
properties and standard axioms of first-order modal logic. 
We show that most of the other approaches have additional 
properties, which result in an inappropriate treatment of an 
infinitary version of the lottery paradox. 

ordering 4. If u, + w’, then the world w is strictly more 
preferred/more normal than w’. The formula Sird+FZy 
holds if in the most preferred worlds in which Bird holds, 
FZy also holds. (See Section 2 for more details about this 
and the other approaches.) 

1 Introduction 
In recent years, conditional logic has come to play a major 
role as an underlying foundation for default reasoning. Two 
of the more successful default reasoning systems (Geffner 
1992; Goldszmidt, Morris, & Pearl 1993) are based on con- 
ditional logic. Unfortunately, while it has long been rec- 
ognized that first-order expressive power is necessary for a 
default reasoning system, most of the work on conditional 
logic has been restricted to the propositional case. In this 
paper, we investigate the syntax and semantics ofJirst-order 
conditional logic, with the ultimate goal of providing a first- 
order default reasoning system. 

The extension of these approaches to the first-order case 
seems deceptively easy. After all, we can simply have 
a preferential ordering on first-order, rather than proposi- 
tional, worlds. However, there is a subtlety here. As in 
the case of first-order probabilistic logic (Bacchus 1990; 
Halpern 1990), there are two distinct ways to define condi- 
tionals in the first-order case. In the probabilistic case, the 
first corresponds to (objective) statistical statements, such 
as “90% of birds fly”. The second corresponds to subjec- 
tive degree of belief statements, such as “the probability that 
Tweety (a particular bird) flies is 0.9”. The first is captured 
by putting a probability distribution over the domain (so that 
the probability of the set of flying birds is 0.9 that of the set 
of birds), while the second is captured by putting a proba- 
bility on the set of possible worlds (so that the probability 
of the set of worlds where Tweety flies is 0.9 that of the set 
of worlds where Tweety is a bird). The same phenomenon 
occurs in the case of first-order conditional logic. Here, 
we can have a measure (e.g., a preferential ranking) over 
the domain, or a measure over the set of possible worlds. 
The first would allow us to capture qualitative statistical 
statements such as “most birds fly”, while the second would 
allow us to capture subjective beliefs such as “I believe that 
the bird Tweety is likely to fly”. It is important to have a 
language that allows us to distinguish between these two 
very different statements. Having distinguished between 
these two types of conditionals, we can ascribe semantics 
to each of them using any one of the standard approaches. 

Many seemingly different approaches have been pro- 
posed for giving semantics to conditional logic, including 
preferential structures (Lewis 1973; Boutilier 1994; Kraus, 
Lehmann, & Magidor 1990), e-semantics (Adams 1975; 
Pearl 1989), possibility theory (Benferhat, Dubois, & Prade 
1992), and K-rankings (Spohn 1987; Goldszmidt & Pearl 
1992). In preferential structures, for example, a model con- 
sists of a set of possible worlds, ordered by a preference 

There have been previous attempts to formalize first- 
order conditional logic; some are the natural exten- 
sion of some propositional formalism (Delgrande 1987; 
Brafman 1991), while others use alternative approaches 
(Lehmann & Magidor 1990; Schlechta 1995). (We defer 
a detailed discussion of these approaches to the full paper; 
see also Section 5.) How do we make sense of this plethora 
of alternatives? Rather than investigating them separately, 
we use a single common framework that generalizes almost 
all of them. This framework uses a notion of uncertainty 
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called a plausibility measure, introduced by Friedman and 
Halpern (1995). A plausibility measure associates with set 
of worlds its plausibility, which is just an element in a par- 
tially ordered space. Probability measures are a subclass of 
plausibility measures, in which the plausibilities lie in [0, 11, 
with the standard ordering. In (Friedman & Halpern 1996), 
it is shown that the different standard approaches to condi- 
tional logic can all be mapped to plausibility measures, if we 
interpret Bird4FZy as “the set of worlds where Bird A FZy 
holds has greater plausibility than that of the set of worlds 
where Bird A +Zy holds”. 

The existence of a single unifying framework has al- 
ready proved to be very useful in the case of propositional 
conditional logic. In particular, it allowed Friedman and 
Halpern (1996) to explain the intriguing “coincidence” that 
all of the different approaches to conditional logic result in 
an identical reasoning system, characterized by the KLM 
axioms (Kraus, Lehmann, & Magidor 1990). In this paper, 
we show that plausibility spaces can also be used to clarify 
the semantics of first-order conditional logic. However, we 
show that, unlike the propositional case, the different ap- 
proaches lead to different properties in the first-order case. 
Intuitively, these are infinitary properties that require quan- 
tifiers and therefore cannot be expressed in a propositional 
language. We show that, in some sense, plausibilities pro- 
vide the most natural extension of conditional logic to the 
first-order case. We provide a sound and complete axioma- 
tization for the subjective fragment of conditional logic that 
contains only the KLM properties and the standard axioms 
of first-order modal logic. i (We provide a similar axiom- 
atization for the statistical fragment of the language in the 
full paper.) Essentially the same axiomatization is shown 
to be sound and complete for the first-order version of C- 
semantics, but the other approaches are shown to satisfy 
additional properties. 

One might think that it is not so bad for a conditional logic 
to satisfy additional properties. After all, there are some 
properties- such as indifference to irrelevant information- 
that we would like to be able to get. Unfortunately, the ad- 
ditional properties that we get from using these approaches 
are not the ones we want. The properties we get are re- 
lated to the treatment of exceptional individuals. This issue 
is perhaps best illustrated by the lottery paradox (Kyburg 
1961).2 Suppose we believe about a lottery that any partic- 
ular individual typically does not win the lottery. Thus we 
get 

Vx(true-+lWinner(x)). (1) 

‘By way of contrast, there is no (recursively enumerable) ax- 
iomatization of first-order probabilistic logic (Halpern 1990). 

‘We are referring t o Kyburg’s original version of the lottery 
paradox (Kyburg 1961), and not to the finitary version discussed 
by Poole (1991). As Poole showed, any logic of defaults that 
satisfies certain minimal properties-properties which are satisfied 
by all the logics we consider-is bound to suffer from his version 
of the lottery paradox. 

Unfortunately, in many of the standard approaches, such as 
Delgrande’s (1987) version of first-order preferential struc- 
tures, from (1) we can conclude 

true4Vx(l Winner(x)). (3) 
Intuitively, from (1) it follows that in the most preferred 
worlds, each individual d does not win the lottery. There- 
fore, in the most preferred worlds, no individual wins. This 
is exactly what (3) says. Since (2) says that in the most pre- 
ferred worlds, some individual wins, it follows that there 
are no most preferred worlds, i.e., we have true4faZse. 
While this may be consistent (as it is in Delgrande’s logic), 
it implies that all defaults hold, which is surely not what we 
want. Of all the approaches, only c-semantics and plausi- 
bility structures, both of which are fully axiomatized by the 
first-order extension of the KLM axioms, do not suffer from 
this problem. 

It may seem that this problem is perhaps not so serious. 
After all, how often do we reason about lotteries? But, in 
fact, this problem arises in many situations which are clearly 
of the type with which we would like to deal. Assume, for 
example, that we express the default “birds typically fly” as 
Delgrande does, using the statement 

Vx(Sird(x)4FZy(x)). (4 
If we also believe that Tweety is a bird that does not 
fly, so that our knowledge base contains the statement 
true4Bird( Tweety) A +Zy( Tweety), we could similarly 
conclude true4faZse. Again, this is surely not what we 
want. 

Our framework allows us to deal with these problems. 
Using plausibilities, (1) and (2) do not imply true4faZse, 
since (3) does not follow from (1). That is, the lottery 
paradox simply does not exist if we use plausibilities. The 
flying bird example is somewhat more subtle. If we take 
Tweety to be a nonrigid designator (so that it might denote 
different individuals in different worlds), the two statements 
are consistent, and the problem disappears. If, however, 
Tweety is a rigid designator, the pair is inconsistent, as we 
would expect. 

This inconsistency suggests that we might not always 
want to use (4) to represent “birds typically fly”. After 
all, the former is a statement about a property believed to 
hold of each individual bird, while the latter is a state- 
ment about the class of birds. As argued in (Bacchus et al. 
1994), defaults often arise from statistical facts about the 
domain. That is, the default “birds typically fly” is often a 
consequence of the empirical observation that “almost all 
birds fly”. By defining a logic which allows us to express 
statistical conditional statements, we provide the user an 
alternative way of representing such defaults. We would, 
of course, like such statements to impact our beliefs about 
individual birds. In (Bacchus et al. 1994), the same issue 
was addressed in the probabilistic context, by presenting an 
approach for going from statistical knowledge bases to sub- 
jective degrees of belief. We leave the problem of providing 
a similar mechanism for conditional logic to future work. 

The rest of this paper is organized as follows. In Sec- 
tion 2, we review the various approaches to conditional 
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logic in the propositional case; we also review the defi- 
nition of plausibility measures from (Friedman & Halpern 
1996) and show how they provide a common framework 
for these different approaches. In Section 3, we discuss the 
two ways in which we can extend propositional conditional 
logic to first-order-statistical conditionals and subjective 
conditionals-and ascribe semantics to both using plausi- 
bilities. In Section 4, we provide a sound and complete 
axiomatization for first-order subjective conditional asser- 
tions. In Section 5, we discuss the generalization of the 
other propositional approaches to the first-order case, by 
investigating their behavior with respect to the lottery para- 
dox. We also provide a brief comparison to some of the 
other approaches suggested in the literature, deferring de- 
tailed discussion to the full paper. We conclude in Section 6 
with discussion and some directions for further work. 

2 Propositional conditional logic 
The syntax of propositional conditional logic is simple. We 
start with a set @ of propositions and close off under the 
usual propositional connectives (1, V, A, and a) and the 
conditional connective 4. That is, if ‘p and $ are formulas 
in the language, so is cp-++. 

Many semantics have been proposed in the literature for 
conditionals. Most of them involve structures of the form 
(W, X, T), where W is a set of possible worlds, K(W) is a 
truth assignment to primitive propositions, and X is some 
“measure” on W such as a preference ordering (Lewis 1973; 
Kraus, Lehmann, & Magidor 1990).3 We now describe 
some of the proposals in the literature, and then show how 
they can be generalized. Given a structure (W, X, T), let 
[p] C W be th e set of worlds satisfying cp. 

A possibility measure (Dubois & Prade 1990) Poss is a 
function Poss : 2w H [0, l] such that Poss( W) = 1, 
Poss(cI)) = 0, and Pass(A) = sup,,A(Poss({w}). A 
possibility structure is a tuple (W, Pass, T), where Poss 
is a possibility measure on W. It satisfies a conditional 
(p+$ if either Poss( [(PI) = 0 or Poss([cp A $1) > 
Poss([p A +J) (Dubois & Prade 1991). That is, ei- 
ther ‘p is impossible, in which case the conditional holds 
vacuously, or ‘p A $ is more possible than cp A T/J. 

A K-ranking (or ordinal ranking) on W (as defined by 
(Goldszmidt & Pearl 1992), based on ideas that go back 
to (Spohn 1987)) is a function K : 2w --+ N*, where 
nv* = LV U {oo}, such that K(W) = 0, ~(0) = 00, 
and K(A) = minzuEA(K({w})). Intuitively, an ordinal 
ranking assigns a degree of surprise to each subset of 
worlds in W, where 0 means unsurprising and higher 
numbers denote greater surprise. A K-structure is a tuple 
( W, K, n), where K is an ordinal ranking on W. It satisfies 
a conditional cp+$ if either K( [pII) = 00 or K( [(PA@]) < 

4~9 A +o. 
3We could also consider a more general definition, in which 

one associates a different “measure” with each world, as done by 
Lewis, for example (Lewis 1973). It is straightforward to extend 
our definitions to handle this. Since this issue is orthogonal to the 
main point of the paper, we do not discuss it further here. 

A preference ordering on W is a partial order + over 
W (Kraus, Lehmann, & Magidor 1990; Shoham 1987). 
Intuitively, w 4 w’ holds if w is preferred to w’. A 
preferential structure is a tuple (W, 4, T), where 4 is 
a partial order on W. The intuition (Shoham 1987) is 
that a preferential structure satisfies a conditional cp++ 
if all the most preferred worlds (i.e., the minimal worlds 
according to 4) in [(pn satisfy $. However, there may 
be no minimal worlds in [(p& This can happen if [[CpJ 
contains an infinite descending sequence . . . 4 202 4 wt. 
The simplest way to avoid this is to assume that 4 is 
well-founded; we do so here for simplicity. A yet more 
general definition-one that works even if 4 is not well- 
founded-is given in (Lewis 1973; Boutilier 1994). We 
discuss that in the full paper. 
A parameterized probability distribution (PPD) on W is 
a sequence {Pri. : i 2 0) of probability measures over 
W. A PPD structure is a tuple (W, {Pri : i > 0)) T), 
where {Pr;} is PPD over W. Intuitively, it satisfies a 
conditional cp+$ if the conditional probability 1c, given 
cp goes to 1 in the limit. Formally, cp+lc, is satisfied if 
lim++, Pri (Uti] I IWJ) = 1 (where Pri (IMI I UpI) is t&n 
to be 1 if Pri ([VI) = 0). PPD structures were introduced 
in (Goldszmidt, Morris, & Pearl 1993) as a reformulation 
of Pearl’s e-semantics (Pearl 1989). 

These variants are quite different from each other. However, 
as shown in (Friedman & Halpern 1996), we can provide a 
uniform framework for all of them using the notion of plau- 
sibility measures. In fact, plausibility measures generalize 
other types of measures, including probability measures (see 
(Friedman & Halpern 1995)). 

A plausibility measure PI on W is a function that maps 
subsets of W to elements in some arbitrary partially ordered 
set. We read PI(A) as “the plausibility of set A”. If PI(A) 5 
PI(B), then B is at least as plausible as A. Formally, a 
plausibility space is a tuple S = (W, PI), where W is a set 
of worlds and Pl maps subsets of W to some set D, partially 
ordered by a relation 5 (so that 5 is reflexive, transitive, 
and anti-symmetric). As usual, we define the ordering < by 
taking dl < d2 if dl < d2 and dl # d2. We assume that D 
is pointed: that is, it contains two special elements T and 
I such that J-5 d 5 T for all d E D; we further assume 
that Pl( W) = T and PI(@) =1. Since we want a set to be 
at least as plausible as any of its subsets, we require: 

Al. If A C B, then PI(A) 5 PI(B). 
Clearly, plausibility spaces generalize probability spaces. 

Other approaches to dealing with uncertainty, such as pos- 
sibility measures, K-rankings, and belief functions (Shafer 
1976), are also easily seen to be plausibility measures. 

We can give semantics to conditionals using plausibility 
in much the same way as it is done using possibility. A 
plausibility structure is a tuple PL = (W,Pl, sir), where Pl is 
a plausibility measure on W. We then define: 
o PL b cp+$ if either Pl( [(PI) =I or Pl([cp A $1) > 

pw A +n). 
Intuitively, cp+$ holds vacuously if cp is impossible; oth- 
erwise, it holds if ‘p A $ is more plausible than ‘p A v,b. It is 
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easy to see that this semantics for conditionals generalizes 
the semantics of conditionals in possibility structures and 
K-structures. As shown in (Friedman & Halpern 1996), it 
also generalizes the semantics of conditionals in preferential 
structures and PPD structures. More precisely, a mapping is 
given from preferential structures to plausibility structures 
such that (IV, 4, n) b cp if and only if (IV, Pl< , ;~r) b cp, 
where PI4 is the plausibility measure that corresponds to 4. 
A similar mapping is also provided for PPD structures. 

These results show that our semantics for conditionals 
in plausibility structures generalizes the various approaches 
examined in the literature. Does it capture our intuitions 
about conditionals? In the AI literature, there has been dis- 
cussion of the right properties of default statements (which 
are essentially conditionals). While there has been little 
consensus on what the “right” properties for defaults should 
be, there has been some consensus on a reasonable “core” of 
inference rules for default reasoning. This core, is known as 
the KLM properties (Kraus, Lehmann, & Magidor 1990).4 

Do conditionals in plausibility structures satisfy these 
properties? In general, they do not. To satisfy the KLM 
properties we must limit our attention to plausibility struc- 
tures that satisfy the following conditions: 

A2. If A, B, and C are pairwise disjoint sets, Pl(A U B) > 
Pl(C),andPl(AUC) > Pi(B), thenPl(A) > PI(BUC). 

A3. If PI(A) = Pi(B) =I, then Pl(A U B) =1. 

A plausibility space (W, Pl) is qualitative if it satisfies A2 
and A3. A plausibility structure (IV, PI, 7r) is qualitative 
if (IV, Pl) is a qualitative plausibility space. In (Friedman 
& Halpern 1996) it is shown that, in a very general sense, 
qualitative plausibility structures capture default reasoning. 
More precisely, the KLM properties are sound with respect 
to a class of plausibility structures if and only if the class 
consists of qualitative plausibility structures. Furthermore, 
a very weak condition is necessary and sufficient in order for 
the KLM properties to be a complete axiomatization of con- 
ditional logic. As a consequence, once we consider a class 
of structures where the KLM axioms are sound, it is almost 
inevitable that they will also be complete with respect to 
that class. This explains the somewhat surprising fact that 
KLM properties characterize default entailment not just in 
preferential structures, but also in E-semantics, possibility 
measures, and K-rankings. Each one of these approaches 
corresponds, in a precise sense, to a class of qualitative 
plausibility structures. These results show that plausibility 
structures provide a unifying framework for the characteri- 
zation of default entailment in these different logics. 

3 First-order conditional logic 
We now want to generalize conditional logic to the first- 
order case. As mentioned above, there are two distinct 
notions of conditionals in first-order logic, one involving 
statistical conditionals and one involving subjective con- 
ditionals. For each of these, we use a different syntax, 

4Due to space limitations we do not review the KLM properties 
here; see (Friedman & Halpem 1996) in this proceedings. 
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analogous to the syntax used in (Halpern 1990) for the prob- 
abilistic case. 

The syntax for statistical conditionals is fairly straightfor- 
ward. Let <p be a first-order vocabulary, consisting of predi- 
cate and function symbols. (As usual, constant symbols are 
viewed as O-at-y function symbols.) Starting with atomic 
formulas of first-order logic, we form more complicated 
formulas by closing off under truth-functional connectives 
(i.e., A, V ‘, 1, and +), first-order quantification, and the fam- 
ily of modal operators cp 0~ $,-where Z is a sequence of 
distinct variables. We denote the resulting language iCstat. 
The intuitive reading of cp ~2 $J is that almost all of the 
Z’s that satisfy cp also satisfy $J. Thus, the wz modality 
binds the variables 5’ in ‘p and $. A typical formula in this 
language is 3y(P(z, y) c\/fZ Q(x, y)), which can be read 
“there is some y such that most z’s satisfying P(x, y) also 
satisfy Q(z, Y)“.~ Note that we allow arbitrary nesting of 
first-order and modal operators. 

The syntax for subjective plausibilities is even sim- 
pler than that for statistical plausibilities. Starting with 
a first-order vocabulary a, we now close off under truth- 
functional connectives, first-order quantification, and the 
single modal operator +. Thus, a typical formula is 
Vz(P(z)+3yQ(z, y)). Let ,Csuaj be the resulting lan- 
guage (the “subj” stands for “subjective”, since the con- 
ditionals are viewed as expressing subjective degrees of 
belief). 

We can ascribe semantics to both types of conditionals 
using any one of the approaches described in the previous 
section, (In fact, we do not even have to use the same 
approach for both.) However, since we can embed all of the 
approaches within the class of plausibility structures, we use 
these as the basic semantics. As in the propositional case, 
we can then analyze the behavior of the other approaches 
simply by restricting attention to the appropriate subclass of 
plausibility structures. 

To give semantics to lCstat, we use (@St-order) statisti- 
cal plausibility structures, which generalize the semantics 
of statistical probabilistic structures (Halpern 1990) and 
statistical preferential structures (Brafman 1991). Statis- 
tical plausibility structures are tuples of the form PL = 
(Dam, K, P), where Dom is a domain, 7r is an interpretation 
assigning each predicate symbol and function symbol in @ 
a predicate or function of the right arity over Dom, and P 
associates with each number n a plausibility measure PI, 
on Damn. As usual, a valuation maps each variable to an 
element of Dom. Given a structure PL and a valuation V, 
we can associate with every formula cp a truth value in a 
straightforward way. The only nontrivial case is ‘p -5 $. 

We define &Y.,~ ,Q ( P> = {cf : (PL, z1[2/4) b cp}, where 

z~[Z/d is a valuation that maps each x in IE: to the corre- 
sponding element in d and agrees with v elsewhere. 
o (PL, V) b ‘p ~3 1c, if either PI, (1(p~,~ ,2)(v)) =I or 

PL(+L,,,&J A ti>) > ~L&Y+,z)(‘P A +>), where 
n is the length of Z. 

‘This syntax is borrowed from Brafman (1991), which in turn 
is based on that of (Bacchus 1990; Halpem 1990). 



We remark that we need the sequence of plausibility mea- 
sures to deal with tuples of different arity. The analogous se- 
quence of probability measures was not needed in (Halpern 
1990), since, given a probability measure on Dom, we can 
consider the product measure on Damn. In the full paper, 
we place some requirements on PI, to force it to have the 
key properties we expect of product measures. We omit 
further discussion of statistical plausibilities here, and focus 
instead on subjective plausibilities. 

To give semantics to C subj, we use (‘rst-order) subjec- 
tive plausibility structures. These are tuples of the form 
PL = (Dom, IV, PI, 7r), where Dom is a domain, (IV, PI) is 
a plausibility space and ~(20) is an interpretation assign- 
ing to each predicate symbol and function symbol in @ a 
predicate or function of the right arity over Dom. We de- 
fine the set of worlds that satisfy ‘p given the valuation v 
to be EP](PL+) = -b : (PL, UI, V) k cp}. (We omit the 
subscript whenever it is clear from context.) For subjective 
conditionals, we have 

We do not treat terms as rigid designators here. That is, 
in different worlds, a term can denote different individuals. 
For example, if n( zo) (c) # 7r( w’) (c), the constant c denotes 
different individuals in ‘w and UI’. Because terms are not 
rigid designators, we cannot substitute terms for universally 
quantified variables. (A similar phenomenon holds in other 
modal logics where terms are not rigid (Garson 1977).) For 
example, let Clap be an abbreviation for lcp+faZse. Notice 
that (PL, W) /= q  cp if Pl( [-(p]) =I; i.e., q  cp asserts that the 
plausibility of lcp is the same as that of the empty set, so that 
cp is true “almost everywhere”. We define 0~ as ~Olcp; 
this says that ‘p is true in some non-negligible set of worlds. 
Suppose c is a constant that does not appear in the formula 
‘p. As we show in the full paper, VxO~(x) + 09(c) is 
not valid in our framework; that is, we cannot substitute 
constants for universally quantified variables. We could 
substitute if c were rigid. We can get the effect of rigidity 
by assuming that 3x( 0(x = c)) holds. Thus, we do not 
lose expressive power by not assuming rigidity. 

4 Axiomatizing default reasoning in 
plausibility structures 

We now want to show that plausibility structures provide 
an appropriate semantics for a first-order logic of defaults. 
As in the propositional case, this is true only if we restrict 
attention to qualitative plausibility structures, i.e., those sat- 
isfying conditions A2 and A3 above. Let PzTf be the 
class of all subjective qualitative plausibility structures. We 
provide a sound and complete axiom system for Pz$F, and 
show that it is the natural extension of the KLM properties 
to the first-order case. 

The axiomatization C”” bj, specified in Figure 1, consists 
of three parts. The first set of axioms (CO-C5 together 
with the rules MP, LLE, and RW) is simply the standard 
axiomatization of propositional conditional logic (Hughes 

CO. 
Cl. 
c2. 
c3. 
c4. 
cs. 
Fl. 

All instances of propositional tautologies 
Y-Y 
b-44 A ((P-$2)) * (P-+1 A $2)) 

Ew-+Yv * ((P2-4)) * ((Pl v $92)~$9 

((w-+w) A (w-4)) * ((Pl A P2)-4) 

KY-+,) * %J-491 A HP-4) * q  +--+~,)] 
Vxy + y[x/t], where t is substitutable for x in the sense . -_ - 

discussed below 
F2. ‘v’x(p G- y!+ + (Vxp 3 b’x$) 
F3. cp + Vx y if x does not occur free in 9 
F4. x = x 
FS. x = y + (p + cp’), where p is a quantifier-free and +-free 

formula and ‘p’ is obtained from y by replacing zero or more 
occurrences of x in ~7 by y 

F6. q  vxp * vxop 
F7. x = y + 0(x = y) 
F8. x # Y * “(x # Y> 
Ml? From cp and cp j $ infer + 
LLE. From cpl H ~2 infer cpl-$ e ~2-+$ 
RW. From $1 + $2 infer v+$l + cp--+&. 

Figure 1: The system CSUbj consists of all generalizations 
of the following axioms (where cp is a generalization of 1c, 
if cp is of the form Vxi . . . Vxn $) and rules; x and y denote 
variables, while t denotes an arbitrary term. 

& Cresswell 1968); the second set (axioms Fl-F5) consists 
of the standard axioms of first-order logic (Enderton 1972); 
the final set (F6-F8) contains the standard axioms relating 
the two (Hughes & Cresswell 1968). F6 is known as the 
Barcan formula; it describes the relationship between 0 and 
‘v’ in structures where all the worlds have the same domain (as 
is the case here). F7 and F8 describe the interaction between 
0 and equality, and hold because we are essentially treating 
variables as rigid designators. 

It remains to explain the notion of “substitutable” in Fl. 
Clearly we cannot substitute a term t for x with free variables 
that might be captured by some quantifiers in cp; for example, 
while Vx3y( x # y) is true as long as the domain has at least 
two elements, if we substitute y for x, we get 3y(y # y), 
which is surely false. In the case of first-order logic, it 
suffices to define “substitutable” so as to make sure this does 
not happen (see (Enderton 1972) for details). However, in 
modal logics such as this one, we have to be a little more 
careful. As we observed in Section 3, we cannot substitute 
terms for universally quantified variables in a modal context, 
since terms are not in general rigid. Thus, we require that 
if cp is a formula that has occurrences of +, then the only 
terms that are substitutable for x in cp are other variables. 

Theorem 4.1: Csubj is a sound and complete axiomatiza- 
tion of Csubj with respect to P2UTJF. 

We claim that CSubj is the weakest “natural” first-order 
extension of the KLM properties. The bulk of the proposi- 
tional fragment of this axiom system (axioms Cl-C4, LLE, 
and RW) corresponds precisely to the KLM properties. The 
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remaining axiom (C5) captures the fact that the plausibility 
function PI is independent of the world. This property does 
not appear in (Kraus, Lehmann, & Magidor 1990) since they 
do not allow nesting of conditionals. As discussed above, 
the remaining axioms are standard properties of first-order 
modal logic. 

5 Alternative Approaches 
In the previous section we showed that CsUbj is sound and 
complete with respect to PyUTJF. What happens if we use 
one of the approaches described in Section 2 to give seman- 
tics to conditionals? As noted above, we can associate with 
each of these approach a subset of qualitative plausibility 
structures. Let ?f;yj , PfU bj , P,“, b j , ~~~~~ , and piU bj be the 

subsets of PyUfJ! that correspond to well-founded preferen- 
tial orderings, preferential orderings, K-rankings, possibility 
measures, and PPDs, respectively. From Theorem 4.1, we 
immediately get 

Theorem 5.1: Csubj is sound in P~~~j, Ps”;“bj, P~ubj, 
PK subj, PftijS, and Piz,bj. 

Is CSubj complete with respect to these approaches? 
Even at the propositional level, it is well known that be- 
cause K rankings and possibility measures induce plausibil- 
ity measures that are total (rather than partial) orders, they 
satisfy the following additional property: 

c6. cp++ A +P-+~~> =j (P A++). 
In addition, the plausibility measures induced by K rankings, 
possibility measures, and E semantics are easily seen to have 
the property that T > 1. This leads to the following axiom: 

C7. 1 (true--tfaZse) . 

In the propositional setting, these additional axioms and the 
basic propositional conditional system (i.e., CO-U, MP, 
LLE, and RW) lead to sound and complete axiomatization 
of the corresponding (propositional) structures. 

Does the same phenomenon occur in the first-order case? 
For c-semantics, it does. 

Theorem 5.2: Csubj +C7 is a sound and complete axiom- 
atization of Lsubj w.rt. Piubj. 

But, unlike the propositional case, the remaining approaches 
all satisfy properties beyond CSubj, C6, and C7. And these 
additional properties are ones that we would argue are un- 
desirable, since they cause the lottery paradox. Recall that 
the lottery paradox can be represented with two formulas: 
(1) Vx(true+lWinner(x)) states that every individual is 
unlikely to win the lottery, while (2) true+ElxWinner(x) 
states that is is likely that some individual does win the 
lottery. We start by showing that (1) and (2) are consis- 
tent in PzTf. We define a first-order subjective plau- 
sibility structure PLt,, = (Dowof, Wet, P1lof, u) as fol- 
lows: Domtot is a countable domain consisting of the in- 
dividuals 1,2,3, . . .; IVlot consists of a countable num- 
ber of worlds 2oi,u12, wg, . . .; Pll,, gives the empty set 
plausibility 0, each non-empty finite set plausibility l/2, 
and each infinite set plausibility 1; finally, the denotation 

of Winner in world wi according to Q,~ is the singleton 
set {di} (that is, in world wi the lottery winner is in- 
$idual di). It is easy to check that [lWinner(di)] = 

- { wi}, so PI& [rl Winner(d = 1 > l/2 = 
Pl( [Winner(di)]); h ence, PLtot satisfies (1). On the other 
hand, [3x Winner(x)] = 
PI& [13x Winner(x)]); 

W, so Plt,,([3xWinner(x)]) > 
h ence PLt,, satisfies (2). It is also 

easy to verify that Pll,, is a qualitativemeasure, i.e., satisfies 
A2 and A3. A similar construction allows us to capture a 
situation where birds typically fly but we know that Tweety 
does not fly. 

What happens to the lottery paradox in the other ap- 
proaches? First consider well-founded preferential struc- 
tures, i.e., Pf;yj. In these structures, ~47) holds if $ holds 
in all the preferred worlds that satisfy ‘p. Thus, (1) implies 
that for any domain element d, d is not a winner in the most 
preferred worlds. On the other hand, (2) implies that in 
the most preferred worlds, some domain element wins. To- 
gether both imply that there are no preferred worlds. When, 
in general, does an argument of this type go through? As 
we now show, it is a consequence of 

A2*. If {Ai : i E I} are pairwise disjoint sets, A = 
UiE=Ai, 0 E I, and for all i E I - {0}, Pl(A - Ai) > 
Pl(Ai), then Pl(Ae) > Pl(A - Ao). 

Recall that A2 states that if Ao, Al, and A2 are disjoint, 
Pl(Ao u A) > PI(&), and Pl(Ao U AZ) > Pl(At), then 
Pl(Ao) > Pl(Ai U AZ). It is easy to check that for any finite 
number of sets, a similar property follows from Al and A2 
by induction. A2* asserts that a condition of this type holds 
even for an infinite collection of sets. This is not implied 
by Al and A2. To see this, consider the plausibility model 
PLt,, that we used to capture the infinite lottery: Take A0 to 
be empty and take Ai, i > 1, to be the singleton consisting 
ofthe world wi. ThenPlI,,(A-Ai) = 1 > l/2 = PIi,,( 
but PII,, = 0 < 1 = Pl(Ui>oAi). Hence, A2* does not 
hold for plausibility structures in general. It does, however, 
hold for certain subclasses: 

Proposition 5.3: AZ* holds in every plausibility structure 
in ~‘;L’;(i 

- - 
and P,“, b j. 

In the full paper we show that A2* is characterized by the 
axiom called V3 by Delgrande: 

V3* Vx(cp+$) + (cp-+Vx7/~) if x does not occur free in cp. 
This axiom can be viewed as an infinitary version of ax- 
iom C2 (which is essentially IUM’s And Rule). Since A2* 
holds in Pf’hyj and P~ubj, it follows that V3 does as well. 
It is easy to see that the axiom V3 leads to the lottery para- 
dox: From Vx(true-+l Winner(x)), V3 would imply that 
true+Vx( 1 Winner(x)). 

As we show in the full paper, A2* does not hold in Przii 
and P~ubj. In fact, the infinite lottery is consistent in these 
classes, although a somewhat unnatural model is required 
to express it. For example, we can represent the lottery 
via a possibility structure (Domt,,, Wtot, Pass, Q,~), where 
all the components besides Poss are just as in the plausibil- 
ity structure PLt,, that represents the lottery scenario, and 
POSS(Wi) = i/(i + 1). Th is means that if i > j, then it 
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is more possible that individual i wins than individual j. 
Moreover, this possibility approaches 1 as i increases. It 
is not hard to show that -this possibility structure satisfies 
formulas (1) and (2). 

We can block this type of behavior by considering a 
crooked lottery, where there is one individual who is more 
likely to win than the rest, but is still unlikely to win. To 
formalize this in the language, we add the following formula 
that we call Crooked: 

dx(Winner(x)+faZse) A 3yVx(x # y * 
(( Winner( 2) V Winner(y)) -+ Winner( 9))) 

The first part of this formula states that each individual has 
some plausibility of winning; in the language of plausibility, 
this means that Pi(d) >I for each domain element d. The 
second part states that there is an individual who is more 
likely to win than the rest. To see this, recall that ((pV$) +$ 

implies that either Pl([cp V $1) =I (which cannot happen 
here because of the first clause of Crooked) or Pl( [(p]) < 
Pl( [[$I). We take the crooked lottery to be formalized by the 
formula Yx(true+l Winner(x)) A (true-ax Winner( 2)) A 
Crooked. Note, that \Jz (true+ lVGnner(z)) implies that 
every individual is unlikely to win. 

It is easy to model the crooked lottery using plausibil- 
ity. Consider the structure PLiOl = (Donq,,, VVIOt, Pl$,, Q~), 
which is identical to PLlot except for the plausibility mea- 
sure Pl$,. We define Pl$,(wt ) = 3/4; PI;&&) = l/2 
for i > 1; P&,(A) of a finite set A is 3/4 if w1 E A, 
and l/2 if wt @ A; and PII,, = 1 for infinite A. It 
is easy to verify that PL$, satisfies Crooked, taking dt 
to be the special individual who is most likely to win 
(since Pl( [Winner(dt)]) = 3/4 > l/2 = Pl( [winn+&)]) 
for i > 1). It is also easy to verify that PLiOt j= 
Vx(true-+~Winner(x:)) A (true+!lxWinner(x)). 

As we show in the full paper, the crooked lottery cannot 
be captured in P,“,“ig and P~~bi. This shows that, once we 
move to first-order logic, possibility structures and preferen- 
tial structures satisfy-extra properties over and above those 
characterized by CSubj. 

Although our focus thus far has been on subjective con- 
ditionals, the situation for statistical conditionals is similar. 
We have already remarked that we can construct “statisti- 
cal” first-order analogues of all the approaches considered 
in the propositional case. As in the subjective case, all of 
them suffer From problems except for the one based on 
e-semantics. We illustrate this using by considering the ex- 
tension of well-founded preferential structures to first-order 
conditionals over the domain, as defined by Brafman (199 1). 
Consider the statement 

Vy(true -2 %Varried( x, y)) (5) 

This states that for any individual y, most individuals are 
not married to y. This seems reasonable since each y is 
married to at most one individual, which clearly constitutes 
a small fraction of the population. The analogue of V3 holds 
in Brafman’s logic, for the same reason that it does in Pf;‘l(j. 
As a consequence, (5) implies 

true cvfI bfy+farried( x, y) . 

That is, most people are not married! This certainly does not 
seem to be a reasonable conclusion. It is straightforward to 
construct similar examples for the statistical variants of the 
other approaches, again, with the exception of plausibility 
structures and c-semantics. We note that these problems 
occur for precisely the same reasons they occur in the sub- 
jective case. In particular, property A2*, when stated for the 
plausibility over domain elements, is the necessary property 
for the statistical analogue of ‘~‘3. 

We observe that problems similar to the lottery paradox 
occur in the approach of Lehmann and Magidor (1990), 
which can be viewed as a hybrid of subjective and statistical 
conditionals based on on preferential structures. Finally, 
we observe that the approach of (Schlechta 1995), which 
is based on a novel representation of “large” subsets, is in 
the spirit of our notion of statistical defaults (although his 
language is somewhat less expressive than ours). We defer 
a detailed discussion of these approaches to the full paper. 

We have shown how to ascribe semantics to a first-order 
logic of conditionals in a number of ways. Our analysis 
shows that, once we move to the first-order case, significant 
differences arise between approaches that were shown to 
be equivalent in the propositional case. This vindicates the 
intuition that there are significant differences between these 
approaches, which the propositional language is simply too 
weak to capture. Our analysis also supports our choice of 
plausibility structures as the semantics for first-order de- 
faults: it shows that, with the exception of c-semantics, 
all the previous approaches have significant shortcomings, 
which manifest themselves in lottery-paradox type situa- 
tions. 

What does all this say about default reasoning? As we 
have argued, statements like “birds typically fly” should 
perhaps be thought of as statistical statements, and should 
thus be represented as Bird(x) -Z Fly(z). Such a repre- 
sentation gives us a logic of defaults, in which statements 
such as “birds typically fly” and “birds typically do not fly” 
are inconsistent, as we would expect. 

Of course, what we really want to do with such typicality 
statements is to draw default conclusions about individuals. 
Suppose we believe such a typicality statement. What other 
beliefs should follow? In general, Vx(Bird( x) +FZy( x)) 
does not follow; we should not necessarily believe that all 
birds are likely to fly. We may well know that Tacky the 
penguin does not fly. As long as Tacky is a rigid des- 
ignator, this is simply inconsistent with believing that all 
birds are likely to fly. In the absence of information about 
any particularly bird, ‘v’x(Bird(x) +FZy(x)) may well be 
a reasonable belief to hold. Moreover, no matter what we 
know about exceptional birds, it seems reasonable to believe 
true -E (Bird(x)+FZy(x)): almost all birds are likely to 
fly (assuming we have a logic that allows the obvious com- 
bination of statistical and subjective plausibility). 

Unfortunately, we do not have a general approach that will 
let us go from believing that birds typically fly to believing 
that almost all birds are likely to fly. Nor do we have an 
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approach that allows us to conclude that Tweety is likely to 
fly given that birds typically fly and Tweety is a bird (and 
that we know nothing else about Tweety). These issues were 
addressed in the first-order setting by both Lehmann and 
Magidor (1990) and Delgrande (1988). The key feature of 
their approaches, as well as other propositional approaches 
rests upon getting a suitable notion of irrelevance. While 
we also do not have a general solution to the problem of 
irrelevance, we believe that plausibility structures give us 
the tools to study it in an abstract setting. We suspect that 
many of the intuitions behind probabilistic approaches that 
allow us to cope with irrelevance (Bacchus et al. 1994) can 
also be brought to bear here. We hope to return to this issue 
in future work. 
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