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Abstract 

Cox’s well-known theorem justifying the use of probability 
is shown not to hold in finite domains. The counterexample 
also suggests that Cox’s assumptions are insufficient to prove 
the result even in infinite domains. The same counterexample 
is used to disprove a result of Fine on comparative conditional 
probability. 

1 Introduction 
One of the best-known and seemingly most compelling ar- 
guments in favor of the use of probability is given by Cox 
(1946). Suppose we have a function Be1 that associates a 
real number with each pair (U, V) of subsets of a domain W 
such that U # 8. We write Bel( V 1 U) rather than Bel( U, V), 
since we think of Bel( V ] U) as the credibility or likelihood 
of V given U. ’ Cox further assumes that Bel(V]U) is a 
function of Bel( V ] U) (where 7 denotes the complement of 
V in W), that is, there is a function S such that 
Al. Bel(v]U) = S(Bel(V]U)) if U # 8, 

and that Bel( V n V' I U) is a function of Bel( V' IV n U) and 
Bel( VIU), that is, there is a function F such that 
A2Vel&; V'IU) = F(Bel(V’]V n U), Bel(V]U)) if 

. 
Notice that if Be1 is a probability function, then we can 

take S(Z) = 1 - x and F(x, y) = xy. Cox makes much 
weaker assumptions: he assumes that F is twice differen- 
tiable, with a continuous second derivative, and that S is 
twice differentiable. Under these assumptions, he shows 
that Be1 is isomorphic to a probability distribution in the 
sense that there is a continuous one-to-one onto function 
g : IR --+ lR such that g o Be1 is a probability distribution 
on W, and 

g(Bel(V]U))xg(Bel(U)) = g(Bel(VflU)) if U # 8, (1) 

where Bel( U) is an abbreviation for Bel( U 1 W). 
Not surprisingly, Cox’s result has attracted a great deal of 

interest in the AI literature. For example 

’ Cox writes VI U rather than Bel( VI V), and takes U and V to 
be propositions in some language rather than events, i.e., subsets 
of a given set. This difference is minor-there are well-known 
mappings from propositions to events, and vice versa. I use events 
here since they are more standard in the probability literature. 

e Cheeseman (1988) has called it the “strongest argument 
for use of standard (Bayesian) probability theory”. 

8 Horvitz, Heckerman, and Langlotz (1986) used it as a 
basis for comparison of probability and other nonproba- 
bilistic approaches to reasoning about uncertainty. 

o Heckerman (1988) uses it as a basis for providing an 
axiomatization for belief update. 

The main contribution of this paper is to show (by means 
of an explicit counterexample), that Cox’s result does not 
hold in finite domains, even under strong assumptions on S 
and F (stronger than those made by Cox and those made 
in all papers proving variants of Cox’s results). Since finite 
domains are arguably those of most interest in AI appli- 
cations, this suggests that arguments for using probability 
based on Cox’s result-and other justifications similar in 
spirit-must be taken with a grain of salt, and their proofs 
carefully reviewed. Moreover, the counterexample suggests 
that Cox’s assumptions are insufficient to prove the result 
even in infinite domains. 

It is known that some assumptions regarding F and S 
must be made to prove Cox’s result. Dubois and Prade 
(1990) give an example of a function Bel, defined on a finite 
domain, that is not isomorphic to a probability distribution. 
For this choice of Bel, we can take F(x, y) = min(z, y) 
and S(x) = 1 - x. Since min is not twice differentiable, 
Cox’s assumptions block the Dubois-Prade example. 

Aczel (1966, Section 7 (Theorem 1)) does not make any 
assumptions about F, but he does make two other assump- 
tions, each of which block the Dubois-Prade example. The 
first is that the Bel( VI U) takes on every value in some range 
[e, E], with e < E. In the Dubois-Prade example, the do- 
main is finite, so this certainly cannot hold. The second 
is that if V and V' are disjoint, then there is a continuous 
function G : JR2 + R, strictly increasing in each argument, 
such that 
A3. Bel(V U V'IU) = G(Bel(V]U), Bel(V’]U)). 
Dubois and Prade point out that, in their example, there is 
no function G satisfying A3 (even if we drop the require- 
ment that G be continuous and strictly increasing in each 
argument).2 With these assumptions, he gives a proof much 

21n fact Acztl allows there to be a different function Gv for 
each set U on the right-hand side of the conditional. However, the 
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in the spirit of that of Cox to show that Be1 is essentially a 
probability distribution. 

Reichenbach (1949) earlier proved a result similar to 
Aczel’s, under somewhat stronger assumptions. In par- 
ticular, he assumed A3, with G being +. 

Other variants of Cox’s result have also been consid- 
ered in the literature. For example, Heckerman (1988) and 
Horvitz, Heckerman, and Langlotz (1986) assume that F 
is continuous and strictly increasing in each argument and 
S is continuous and strictly decreasing. Since min is not 
strictly continuous in each argument, it fails this restriction 
too.3 Aleliunas (1988) gives yet another collection of as- 
sumptions and claims that they suffice to guarantee that Be1 
is essentially a probability distribution. 

The first to observe potential problems with Cox’s result 
is Paris (1994). As he puts it, “Cox’s proof is not, perhaps, as 
rigorous as some pedants might prefer and when an attempt 
is made to fill in all the details some of the attractiveness 
of the original is lost.” Paris provides a rigorous proof of 
the result, assuming that the range of Be1 is contained in 
[0, l] and using assumptions similar to those of Horvitz, 
Heckerman, and Langlotz. In particular, he assumes that 
F is continuous and strictly increasing in (0, 112 and that 
S is decreasing. However, he makes use of one additional 
assumption that, as he himself says, is not very appealing: 

A4. For any 0 5 Q, ,0, y 5 1 and E > 0, there are sets U1, 
U2, U3, and U4 such that U3 n U2 fl U1 # 8, and each of 
]Bel(U& 0 U2 n VI) - CX], )Bel(Us]U2 n VI) --PI, and 
IBel(U2lUi) - y] is less than E. 

Notice that this assumption forces the range of Be1 to be 
dense in [0, 11. This means that, in particular, the domain 
W on which Be1 is defined cannot be finite. 

Is this assumption really necessary? Paris suggests that 
Aczel needs something like it. (This issue is discussed in 
further detail below.) The counterexample of this paper 
gives further evidence. It shows that Cox’s result fails in 
finite domains, even if we assume that the range of Be1 is in 
[O, 11, S(x) = 1 - x (so that, in particular, S is twice differ- 
entiable and monotonically decreasing), G(x, y) = x + y, 
and F is infinitely differentiable and strictly increasing on 
(0, 112. We can further assume that F is commutative, 
F(0, x) = F(z, 0) = 0, and that F(x, 1) = F(l, x) = x. 
The example emphasizes the point that the applicability of 
Cox’s result is far narrower than was previously believed. 
It remains an open question as to whether there is an ap- 
propriate strengthening of the assumptions that does give us 
Cox’s result in finite settings. 

In fact, the example shows even more. In the course of 
his proof, Cox claims to show that F must be an associa- 
tive function, that is, that F(x, F(y, z)) = F(F(x, y), z). 
For the Be1 of the counterexample, there can be no associa- 
tive function F satisfying A2. It is this observation that is 

the key to showing that there is no probability distribution 
isomorphic to Bel. 

What is going on here? Actually, Cox’s proof just shows 
that F(x, F(y, z)) = F(F(x, y), z) only for those triples 
(x, y, z) such that, for some sets 171, U2, U3, and U4, we 
have x = Bel(U4lUs n U2 n U,), y = Bel(UsIU2 n VI), 
and z = Bel( 772 I VI). If the set of such triples (x, y, z) is 
dense in [0, l]“, then we conclude by continuity that F is 
associative. The content of A4 is precisely that the set of 
such triples is dense in [0, 113. Of course, if W is finite, 
we cannot have density. As my counterexample shows, 
we do not in general have associativity in finite domains. 
Moreover, this lack of associativity can result in the failure 
of Cox’s theorem. 

A similar problem seems to exist in Aczel’s proof (as 
already observed by Paris (1994)). While Aczel’s proof does 
not involve showing that F is associative, it does involve 
showing that G is associative. Again, it is not hard to show 
that G is associative for appropriate triples, just as is the case 
for F. But it seems that Aczel also needs an assumption 
that guarantees that the appropriate set of triples is dense, 
and it is not clear that his assumptions do in fact guarantee 
this.4 As shown in Section 2, the problem also arises in 
Reichenbach’s proof. 

This observation also shows that another well-known re- 
sult in the literature is not completely correct. In his semi- 
nal book on probability and qualitative probability (1973), 
Fine considers a non-numeric notion of comparative (con- 
ditional)probability, which allows us to say “U given V is 
at least as probable as U’ given V”‘, denoted U I V t: U’ 1 V’. 
Conditions on t are given that are claimed to force the ex- 
istence of (among other things) a function Be1 such that 
UIV k U’IV’ iff Bel(U]V) > Bel(U’IV’) and an asso- 
ciative function F satisfying A2. (This is Theorem 8 of 
Chapter II in (Fine 1973).) However, the Be1 defined in 
my counterexample to Cox’s theorem can be used to give a 
counterexample to this result as well, 

The remainder of this paper is organized as follows. In 
the next section there is a more detailed discussion of the 
problem in Cox’s proof. The counterexample to Cox’s the- 
orem is given in Section 3. The following section shows 
that it is also a counterexample to Fine’s theorem. Section 5 
concludes with some discussion. 

2 
To understand the problems with Cox’s proof, I actually con- 
sider Reichenbach’s proof, which is similar in spirit Cox’s 
proof (it is actually even close to AczCl’s proof), but uses 
some additional assumptions, which makes it easier to ex- 
plain in detail. AczCl, Cox, and Reichenbach all make 
critical use of functional equations in their proof, and they 
make the same (seemingly unjustified) leap at correspond- 
ing points in their proofs. 

Dubois-Prade example does not even satisfy this weaker condition. 
3Actually, the restriction that F be strictly increasing in each 

argument is a little too strong. If e = BeI( then it can be shown 
that F(e,o) = F(z, e) = e for all z, so that F is not strictly 
increasing if one of its arguments is e. 

41 should stress that my counterexample is not a counterexam- 
ple to Aczel’s theorem, since he explicitly assumes that the range 
of Be1 is infinite. However, it does point out potential problems 
with his proof, and certainly shows that his argument does not 
apply to finite domains. 
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In the notation of this paper, Reichenbach (1949, pp. 65- 
67) assumes (1) that the range of Bel(.].) is a subset of 
[O, 11, (2) Bel(VIU) = 1 if U C V, (3) that if V and V’ 
are disjoint, then Bel(VUV’]U) = Bel(V]U) +Bel(V’]U) 
(thus, he assumes that A3 holds, with G being +), and (4) 
that A2 holds with a function F that is differentiable. (He 
remarks that the result holds even without assumption (4), 
although the proof is more complicated; AczCl in fact does 
not make an assumption like (4).) 

Reichenbach’s proof proceeds as follows: Replacing V’ 
in A2 by VI U Vi, where VI and V2 are disjoint, we get that 

Bel(Vn(Vi uV2)lU) = F(Bel(Vi uV$frlU), Bel(V]U)). 
(2) 

Using the fact that G is +, we immediately get 

Bel(V n (VI u V2)]U) = Bel(V n V$J) + Bel(V n V$) 
(3) 

and 

F(Bel(Vi U V# fl U), Bel(V]U)) 
= F(Bel(Vi IV n U) + Bel(V2IV n U), Bel(V]U)) 

(4) 
Moreover, by A2, we also have, for i = 1,2, 

Bel(V n V&Y) = F(Bel(V n V$f n U), Bel(V]U)). (5) 

Putting together (2), (3), (4), and (5), we get that 

F(Bel(V n Vl IV n U), Bel(V]U)) + 
F(Bel(V n V# n U), Bel(V]U)) 

= F(Bel(V n Vl IV n U) + Bel(V n V2]V n U, Bel(V]U)) 
(6) 

Takingx = Bel(VnVI]VflU),y = Bel(VnV2]VnU), 
and z = Bel(V]U) in (6), we get the functional equation 

F(x, z) + F(y, z) = F(x + y, 2). (7) 

Suppose we assume (as Reichenbach implicitly does) 
that this functional equation holds for all (x, y, z) E P = 
uxc, Y, 4 E LO, II3 : x + y < 1). The rest of the proof now 
follows easily. First, taking x = 0 in (7), it follows that 

F(O, z) + F(Y, z> = F(Y, z>, 

from which we get that 

F(0, z) = 0. 

Next, fix z and let gz (2) = F(x, z). Since F is, by assump- 
tion, differentiable, from (7) we have that 

g:(x) = ;Fo(F(x + Y, 2) - F(x, z)/Y) = ;eoF(y, z)/Y. 

It thus follows that g: (x) is a constant, independent of x. 
Since the constant may depend on z, there is some function 
h such that gi (x) = h(z). Using the fact that F(0, z) = 0, 
elementary calculus tells us that 

g,(x) = F(x, z) = h(z)x. 

Using the assumption that for all U, V, we have Bel( VI U) = 
1 if U C_ V, we get that 

Bel(V]U) = Bel(V fl VlU) 
= F(Bel(V]V n U), Bel(V]U)) = F( 1, Bel(V]U)). 

Thus, we have that 

F(l, z) = h(z) = z. 

We conclude that F(x, z) = xz. 
Note, however, that this conclusion depends in a crucial 

way on the assumption that the functional equation (7) holds 
for all (x, y, z) E P. 5 In fact, all that we can conclude 
from (6) is that it holds for all (x, y, z) such that there 
exist U, V, VI, and V2, with VI and V2 disjoint, such that 
x = Bel(V n Vl]V n U), y = Bel(V n V$7 n U), and 
z = Bel(V]U). 

Let us say that a triple that satisfies this condition is ac- 
ceptable. As I mentioned earlier, Aczel also assumes that 
Bel(V]U) takes on all values in [e, E], where e = Bel(@]U) 
and E = Bel( U] U). (In Reichenbach’s formulation, e = 0 
and E = 1.) There are two ways to interpret this assump- 
tion. The weak interpretation is that for each x E [0, 11, 
there exist U, V such that Bel( V]U) = x. The strong in- 
terpretation is that for each U and x, there exists V such 
that Bel(V]U) = x. It is not clear which interpretation is 
intended by Aczel. Neither one obviously suffices to prove 
that every triple in P is acceptable, although it does seem 
plausible that it might follow from the second assumption. 

In any case, both Aczel and Reichenbach (as well as Cox, 
in his analogous functional equation) see no need to check 
that Equation (7) holds throughout P. However, it turns 
out to be quite necessary to do this. Moreover, it is clear 
that if W is finite, there are only finitely tuples in P which 
are acceptable, and it is not the case that all of P is. As 
we shall see in the next section, this observation has serious 
consequences as far as all these proofs are concerned. 

3 The Counterexample to Cox’s Theorem 
The goal of this section is to prove 

Theorem 3.1: There is a function Belo, a finite domain 
W, and functions S, F, and G satisfying Al, A2, and A3 
respectively such that 

Belo(V]U) E [0, l]forU # 8, 
S(x) = 1 - x (so that S is strictly decreasing and in- 
finitely diferentiable), 
G( x, y) = x + y (so that G is strictly increasing in each 
argument and is infinitely difSerentiable), 
F is infinitely di 

2fs 
erentiable, nondecreasing in each ar- 

gument in [0, l] , and strictly increasing in each argu- 
ment in (0, 112. Moreovel; F is commutative, F(x, 0) = 
F(0, x) = 0, and F(x, 1) = F(l, x) = x. 

Howevel; there is no one-to-one onto function g : [0, I] --+ 
[0, l] satisfying (1). 

Note that the hypotheses on Belo, S, G, and F are at least 
as strong as those made in all the other variants of Cox’s re- 
sult, while the assumptions on g are weaker than those made 
in the variants. For example, there is no requirement that g 
be continuous or increasing nor that g o Belo is a probabil- 
ity distribution (although Paris and Aczel both prove that, 

‘Actually, using the continuity of F, it suffices that the func- 
tional equation holds for a set of triples which is dense in P. 

Foundations 1315 



under their assumptions, g can be taken to satisfy all these 
requirements). This serves to make the counterexample 
quite a strong one. 

Proof: Consider a domain W with 12 points: WI, . . . . ~12. 
We associate with each point w E W a weight f(w), as 
follows. 

f(w) = 3 f(w4) = 5 x lo4 
f(W2) = 2 f(w5) = 6 x lo4 
f(w3) = 6 f(w6) = 8 x lo4 

f(W7) = 3 x lo* f(WiO) = 3 x 10 18 

f(w8) = 8 x lo8 f(wii) = 2 x 10 18 

f(w9) = 8 x lo* f(w12) = 14 x 10 18 

For a subset U of W, we define f(U) = zwEU f(w). 
Thus, we can define a probability distribution Pr on W by 
taking Pr( U) = f( U)/f( W). 

Let f’ be identical to f, except that f’(wio) = (3 - 6) x 
lo’* and f’(wii) = (2 + S) x 101*, where 6 is defined 
below. Again, we extend f’ to subsets of W by defining 
f’(U) = xwEU f’(w). Let W’ = {w0,~11,~12). If 

U # 0, define 

Belo(V]U) = 
f’(V n U)/f(U) if W’ C U 
f( V n U)/f( U) otherw:se. 

Belo is clearly very close to Pr. If U # 8, then it is easy to 
see that ]Belo(V]U) - Pr(V]U)] = If’(V n U) - f(V fi 
U)l/f(U) 5 6. We choose 6 > 0 so that 

if Pr(V]U) > Pr(V’]U’), then Belo(V]U) > Belo(V’]U’). 
(8) 

Since the range of Pr is finite, all sufficiently small S sat- 
isfy (8). 

The exact choice of weights above is not particularly im- 
portant. One thing that is important though is the following 
collection of equalities: 

Pr(wl I(wI, ~2)) = Pr(wlol(wlo, ~113) = 3/5 
pr((wl, w2j-l(% ~2, w33) = Pr(w4](w4, ~53) = 5/11 
pr((W4, wS)l{w4, w5, w6)) = 

pr((w7, w8))( W7,W8,W93> = 1 l/19 

Pr(w4I(w4, w5, w6)) = 

pr({wlo, w)@10, ~11, ~12)) = s/19 

pr(wl I(wl, w2, w3)) = Pr(w7l(w7, wS>> = 3/l 1. 

(9) 
It is easy to check that exactly the same equalities hold if 
we replace Pr by Belo. 

Although, as is shown below, the function F satisfying 
A2 can be taken to be infinitely differentiable and increasing 
in each argument, the equalities in (9) suffice to guarantee 
that it cannot be taken to be associative, that is, we do not 
in general have 

F(X) F(Y) 4) = F(F(% Y), z>- 

Indeed, there is no associative function F satisfying A2, 
even if we drop the requirements that F be differentiable or 
increasing. 

Lemma 3.2: For Belo as dejined above, there is no associa- 
tive function F satisfying A2. 

Proof: Suppose there were such a function F. From (9), 
we must have that 

F(5/11,11/19) 
= F(Bek&l( w4, w53), Be10(+‘4, w531(w4, w5, w63)) 
= Belo(w4](w4, ws, W6)) = s/19 

and that 

F(3/5,V 1) 
= F(Beb(wll(wl, w)), Beb({wl, w)I(w~, w, ~3))) 
= Belo(wi [(wi, ~2, ~33) = 3/l 1. 

It follows that 

F(3/5, F(5/11,1 l/19)) = F(3/5,5/19) 

and that 

F(F(3/5,5/11), 1 l/19) = F(3/11,1 l/19). 

Thus, if F were associative, we would have 

F(3/5,5/19) = F(3/11,11/19). 

On the other hand, from (9) again, we see that 

F(3/5, WJ) 
= F(Belo(wd(wlo, wd), Beb((wlo, wll>l-blo, ~1, ~12))) 
= B&(wlol{wo, wll, w)) = (3 - 6)/l% 

while 

F(3/11,1 l/19) 
= F(BelO(w7b7, w8>>, BelO((w7, w8)l(w7, w8, w9))) 

= Belo(w71(w7, ws, ~93) = 3/l% 

It follows that F cannot be associative. 

The next lemma shows that Belo cannot be isomorphic to 
a probability function. 

Lemma 3.3: For Belo as defined above, there is no one-to- 
one onto function g : [0, l] -+ [0, l] satisfying (I). 
Proof: Suppose there were such a function g. First note 
that g(Belo(U)) # 0 if U # 8. For if g(Bele(U)) = 0, then 
it follows from (I) that for all V C U, we have 

g(Belo(V)) = g(Bel~(V]U))xg(Bel~(U)) = g(Belo(V]U))xO = 0. 

Thus, g(Bele(V)) = g(Belo(U)) for all subsets V of U. 
Since the definition of Belo guarantees that Bele(V) # 
Bele(U) if V is a strict subset of U, this contradicts the 
assumption that g is one-to-one. Thus, g(Belo(U)) # 0 if 
U # 8. It now follows from (1) that if U # 8, then 

s(Belo(Vlu)) = g(B&(V n U))/g(B&(U)). (10) 

Now define F(x) y) = g-‘(g(x) x g(y)). Notice that, by 
applying the observation above repeatedly, if V fl U # 8, 
we get 

F(Belo(V’]V n U), Belo(V]U)) 
= g-‘((g(B&(V’lV n u>> x g(B&(VlU)) 
= g-‘(g(Belo(V’ n V n U))/@&(U))) 
= g-‘(g(Belo(V’ n VIU))) 
= Bele(V’ n V(U). 
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Thus, F satisfies A2. Moreover, notice that F is associative, 
since 

But this contradicts Lemma 3.2. 

Despite the fact that Bela is not isomorphic to a probability 
function, functions S, F, and G can be defined that satisfy 
Al, A2, and A3, respectively, and all the other requirements 
stated in Theorem 3.1. The argument for S and G is easy; 
all the work goes into proving that an appropriate F exists. 

Lemma 3.4 : There exists an infinitely diflerentiable, 
strictly decreasing function S : [0, l] -+ [0, l] such that 
BeZo(vlU) = S(BeZo(VlU)) for all sets U, V 5 W with 
27 # 0. In fact, we can take S(x) = 1 - x. 

Proof: This is immediate from the obs 
Bel@]U) = 1 - Belo(V]U) for U, V 5 W. 

Lemma 3.5 There exists an infinitely diflerentiablefunction 
G : [0, 112 + [0, 11, increasing in each argument, such 
that if U, V, V’ & W, V fl V’ = 8, and U # 8, then 
BeZo(V U V’IU) = G(BeEo(VIU), BeZo(V’, U)). In fact, 
we can take G(x, y) = x + y. 

Proof: This is immediate from the definition of Belo. 

Thus, all that remains is to show that an appropriate F 
exists. The key step is provided by the following lemma, 
which essentially shows that there is a well defined F that 
is increasing. 

Lemma 3.6: If U2 fl U1 # 8 and V2 fl iJ # 8, then 

if BeZo(V3jV2 n VI) 5 BeZo(U3JU2 n Ul) and 
Bek@#i) 5 Belo(U2lUl), then B&(V3 n v2lVi) < 
BeloW n U2lU1), 

(b) 

(4 

ifBelo(V3IJJin K) -c Belo(U3IU2n VI), Bel0(V#i) 5 
Belo(U2[U1), BeZo(U$J2 n VI) > 0, andBeZo(U2jU1) > 
0, then BeZo( V3 n V2 I VI ) < Be&-J U3 fl U2 I U1 ), 
ifBelo(fiIV2 17 K) L Belo(U3IU2n VI), Bel0(V$$) < 
Belo(U$~), BeZ@$J2 n U,) > 0, andBeZo(U:!IUl) > 
0, then BeZo(V3 n V$VI) < BeZo(U3 n U4U1), 

Proof: First observe that if Belo(VsIV2 n VI) < 
Belo(UsIU2 n VI) and Belo(V2IVt) 5 Belo(U2(Ut), then 
from (8), it follows that Pr( V3 IV-2 n VI) 5 Pr( U3 I U2 n U,) 
and Pr(V2lVi) 5 Pr(U2lUt). If we have either Pr(VsIV2 n 
Vi) -c Pr(U3(U2 f-7 VI) or Pr(V2(Vi) < Pr(U2(Ut), then 
we have either Pr( V3 n I4 IV1 ) < Pr( U3 n U2 I U, ) or 
Pr( U3 IV2 n VI) = 0 or Pr( U2 IV,) = 0. It follows that 
either Belo(V3 n V2lVl) < Belo(Us fl U21U1) (this uses (8) 
again) or that Belo(Vs il V2IVl) = Belo(Us rl U2jUl) = 0. 
In either case, the lemma holds. 

Thus, it remains to deal with the case that Pr(Vs IV2 n 
V’) = Pr(Us(U2 r\ Ut) and Pr(&(Vr) = Pr(U2(Ur), and 
hence Pr( V3 n &IV1 ) = Pr( U3 n U2 I VI). The details of this 
analysis are left to the full paper. 

Lemma 3.7: There exists a function F : [0, 112 + [0, l] 
satisfying all the assumptions of the theorem. 

Proof: Define a partial function F’ on [0, 112 whose domain 
consists of all pairs (x, y) such that for some subsets U, V, 
V’ of W, we have x = 
For such (x, y), 

B&(V’]VnU) andy = Bele(V]U). 
we define F’( x , y) = Bela(V’ fl V/U). A 

priori, it is possible that there exist sets U1, U2, Us, VI, V2, $5 
such that x = Belo(UsIU2 il U,) = Bela(VsIV2 n VI) and 
y = Belo(U2IUl) = B&(E$4), yet Belo(U3 n u216) # 
Belo(V3 fl V21V1). If this were the case, then F/(x, y) would 
not be well defined. However, Lemma 3.6 says that this 
cannot happen. Moreover, the lemma assures us that F’ is 
increasing on its domain, and strictly increasing as long as 
one of its arguments is not 0. Notice that if Belo(V]U) = 
x # 0 for some V, U, then (0, x), (x, 1) and (1, x) are 
in the domain of F’, and F/(x, 1) = F’( 1, x) = x, while 
F’(0, x) = 0. It is easy to see that there are no pairs (x, 0) 
in the domain of F’. Finally, there are no pairs (x, y) and 
(y, x) that are both in the domain of F’ unless one of x or y 
is 1. 

The domain of F’ is finite. It is straightforward to extend 
F’ to a commutative, infinitely differentiable, and increas- 
ing function F defined on all of [0, 112, which is strictly 
increasing on (0, 112, and satisfies F(x, 1) = F(l, x) = x 
and F(x,O) = F(0, x) = 0. (Note that to make F com- 
mutative, we first define it on pairs (x, y) such that x 2 y, 
and then if x < y, we define F((x, y) = F(y, x). Since F’ 
is commutative on its domain of definition, this approach 
does not run into problems.) Clearly F satisfies A2, since 
(by construction) F’ does, and A2 puts constraints only on 
the domain of F’. 

orem 3.1 now follows from Lemmas 3.3,3.4,3.5, and 

4 The Counterexample to Fine’s T 
Fine is interested in what he calls comparative conditional 
probability. Thus, rather than associating a real number 
with each “conditional object” VlU, he puts an ordering > 
on such objects. As usual, V IU > V’IU’ is taken to be an 
abbreviation for VlU t V’IU and not(V’]U’ t VIU). 

Fine is interested in when such an ordering is induced by 
a real-valued belief function with reasonable properties. He 
says that a real-valued function P on such objects agrees 
with k if P(VIU) 2 P(V’IU’) iff VIU k V’IU’. Fine then 
considers a number of axioms that > might satisfy. For our 
purposes, the most relevant are the ones Fine denotes QCC 1, 
QCC2, QCCS, and QCC7. 

QCCl just says that k is a linear order: 

QCCl. VJU 2 V’IU’ or V’IU k VIU. 

QCC2 says that h is transitive: 

QCCZ If VI I UI k V2 I U2 and V2 IV2 k V3 I U3, then 
VlUl ?z v3IU3. 

QCC5 is a technical condition involving notions of order 
topology. The relevant definitions are omitted here (see 
(Fine 1973) for details), since QCC5, as Fine observes, 
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holds vacuously in finite domains (the only ones of interest 
here). 

QCC5. The set (VlU> h as a countable basis in the order 
topology induced by t . 

Finally, QCC7 essentially says that > is increasing, in the 
sense of Lemma 3.6. 

QCC7. 

(a) If VjIV2 n VI > UsI& n UI and V2lV1 > U2jU1 then 
vi nvilvi k u3 n u21ul. 

(b) If &IV2 tl VI t U2IUr and V2IVt t U&U2 fl U1 then 
v3 n vilvi k u3 n u21ul. 

CC> If tip!2 n v + u3)u2 n ul, &I& k u21h and 

&IV1 5 0lW, then V3 n V21Vl s U3 n U2jU1. 

Fine then claims the following theorem: 
Fine’s Theorem: (Fine 1973, Chapter II, Theorem 8) Zf 
k satisfies QCCl, QCC2, QCCS, then there exists some 
agreeing function P. There exists a function F of two 
variables such that 

1. P(V n V’IU) = F(P(V’JV n U), P(VIU)),6 

2. F(x, Y> = F(Y, xc>, 
3. F(x, y) is increasing in x for y > P(@IW), 

4. F(x, F(Y, 4) = F(F(x, Y), 4, 

5. F(P(WIU), Y) = Y, 
6. F(P(@(U), y) = P(@IU). 

irk also satis$es QCC7. 

The only relevant clauses for our purposes are Clause 
(l), which is just A2, and Clause (4), which says that F is 
associative. As Lemma 3.2 shows, there is no associative 
function satisfying A2 for Belo. As I now show, this means 
that Fine’s theorem does not quite hold either. 

Before doing so, let me briefly touch on a subtle issue 
regarding the domain of t. In the counterexample of the 
previous section, Belo(V] U) is defined as long as U # 
8. Fine does not assume that the t relation is necessarily 
defined on all objects VI U such that U, V c W and U # 0. 
He assumes that there is an algebra F of subsets of W 
(that is, a set of subsets closed under finite intersections and 
complementation) and a subset F’ of F closed under finite 
intersections and not containing the empty set such that k 
is defined on conditional objects VlU such that V E F and 
U E F’. Since J=’ is closed under intersection and does not 
contain the empty set, F’ cannot contain disjoint sets. If W 
is finite, then the only way a collection F’ can meet Fine’s 
restriction is if there is some nonempty set UO such that all 
elements in F’ contain UO. This restriction is clearly too 
strong to the extent that comparative conditional probability 
is intended to generalize probability. If Pr is a probability 
function, then it certainly makes sense to compare Pr( V I U) 
and Pr( V’ I U’) even if U and U’ are disjoint sets. Fine 
[private communication, 19951 suggested that it might be 

6Fine assumes that P(V rl V’lU) = F(P(V/IU), P(V’jV rl 
U)). I have reordered the arguments here for consistency with 
Cox’s theorem, 
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better to constrain QCC7 so that we do not condition on 
events U that are equivalent to 8 (where U is equivalent to 
8 if 8 k U and U > 8). Since the only event equivalent to 
8 in the counterexample of the previous section is 8 itself, 
this means that the counterexample can be used without 
change. This is what is done in the proof below. In the full 
paper, I indicate how to modify the counterexample so that 
it satisfies Fine’s original restrictions. 

Theorem 4.1: There exists an ordering k satisfying QCCI, 
QCC2, QCCS, and QCC7, such that for every function 
P agreeing with h, there is no associative function F of 
two variables such that P(V n V’)lU) = F(P(V’lV n 
u>, VIW 
Proof: Let W and Belo be as in the counterexample in 
the previous section. Define t so that Belo agrees with 
k. Thus, VlU L: V’IU’ iff Belo(VlU) 2 Belo(V’]U’). 
Clearly t satisfies QCCl and QCC2. As was mentioned 
earlier, since W is finite, t vacuously satisfies QCC5. 
Lemma 3.6 shows that k satisfies parts (a) and (c) of 
QCC7. To show that k also satisfies part (b) of QCC7, 
we must prove that if Belo(V3(V2 n VI) 2 Belo(U2IUl) and 
Belo(V21Vt) 1 Belo(UsIU2 fl VI), then Belo(Vs fl V~VI) 2 
Belo(UsfW21Ul). Theproofofthisisalmost identical to that 
of Lemma 3.6; we simply exchange the roles of Pr(V2 [VI) 
and Pr( V3 (Vi n VI) in that proof. I leave the details to the 
reader. Lemma 3.2 shows that there is no associative func- 
tion F satisfying A2 for Belo. All that was used in the proof 
was the fact that Belo satisfied the inequalities of (9). But 
these equalities must hold for any function agreeing with 2. 
Thus, exactly the same proof shows that if P is any function 
agreeing with k, then there is no associative function F 
satisfying P(V n V’IU) = F(P(V’IV n U), P(VIU)). 

5 Discussion 
Let me summarize the status of various results in the light 
of the counterexample of this paper: 

Cox’s theorem as originally stated does not hold in finite 
domains. Moreover, even in infinite domains, the coun- 
terexample and the discussion in Section 2 suggest that 
more assumptions are required for its correctness. In par- 
ticular, the claim in his proof that F is associative does 
not follow. 

Although the counterexample given here is not a coun- 
terexample to Aczel’s theorem, his assumptions do not 
seem strong enough to guarantee that the function G is 
associative, as he claims it is. 

The variants of Cox’s theorem stated by Heckerman 
(1988), Horvitz, Heckerman, and Langlotz (1986), and 
Aleliunas (1988) all succumb to the counterexample. 
The claim that the function F must be associative in Fine’s 
theorem is incorrect. Fine has an analogous result (Fine 
1973, Chapter II, Theorem 4) for unconditional compar- 
ative probability involving a function G as in Aczel’s 
theorem. This function too is claimed to be associative, 
and again, this does not seem to follow (although my 
counterexample does not apply to that theorem). 



Of course, the interesting question now is what it would 
take to recover Cox’s theorem. Paris’s assumption A4 suf- 
fices. As we have observed, A4 forces the domain of Be1 to 
be infinite, as does the assumption that the range of Be1 is 
all of [0, 11. We can always extend a domain to an infinite- 
indeed, uncountable-domain by assuming that we have 
an infinite collection of independent fair coins, and that 
we can talk about outcomes of coin tosses as well as the 
original events in the domain. (This type of “extendibil- 
ity” assumption is fairly standard; for example, it is made 
by Savage (1954) in quite a different context.) In such an 
extended domain, it seems reasonable to also assume that 
Be1 varies uniformly between 0 (certain falsehood) and 1 
(certain truth). If we also assume A4 (or something like it), 
we can then recover Cox’s theorem. Notice, however, that 
this viewpoint disallows a notion of belief that takes on only 
finitely many or even countably many gradations. 

Suppose we really are interested in a particular finite do- 
main, and we do not want to extend it. What assumptions 
do we then need to get Cox’s theorem? The counterex- 
ample given here could be circumvented by requiring that 
F be associative on all tuples (rather than just on the tu- 
ples (x, y,z) that arise as x = Belo(Ud]Us rl U2 fl Ul), 
y = Belo(U3IU2 n VI), and z = Belo(U However, 
if we really are interested in a single domain, the motiva- 
tion for making requirements on the behavior of F on belief 
values that do not arise is not so clear. Moreover, it is far 
from clear that assuming that F is associative suffices to 
prove the theorem. For example, Cox’s proof makes use 
of various functional equations involving F and S, analo- 
gous to the equation (7) that appears in Section 2. These 
functional equations are easily seen to hold for certain tu- 
ples. However, as we saw in Section 2, the proof really 
requires that theq’ hold for all tuples. Just assuming that F 
is associative does not appear to suffice to guarantee that the 
functional equations involving S hold for all tuples. Futher 
assumptions appear necessary. 

One condition (suggested by Nir Friedman) that does 
seem to suffice (although I have not checked details) is that 
of assuming that essentially all beliefs are distinct. More 
precisely, we could assume 

0 if 8 c U c V, 8 c U’ c V’, and (U, V) # (U’, V’), 
then Bel(U]V) # Bel(U’]V’). 

Even if this condition suffices, note that it precludes, for 
example, a uniform probability distribution, and thus again 
seems unduly restrictive. 

So what does all this say regarding the use of probability? 
Not much. Although I have tried to argue here that Cox’s 
justification of probability is not quite as strong as previously 
believed, and the assumptions underlying the variants of it 
need clarification, I am not trying to suggest that probability 
should be abandoned. There are many other justifications 
for its use. 
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