
Refinement lanning: Status an

Subbarao Kambhampati*
Department of Computer Science and Engineering

Arizona State University, Tempe, AZ 85287, rao@asu.edu

Abstract

Most current-day AI planning systems operate by iter-
atively refining a partial plan until it meets the goal
requirements. In the past five years, significant progress
has been made in our understanding of the spectrum and
capabilities of such refinement planners. In this talk, I
will summarize this understanding in terms of a unified
framework for refinement planning and discuss several
current research directions.

Introduction
Developing automated methods for generating and reasoning
about plans and schedules, whether in aid of autonomous
or human agents, has been part and parcel of AI research
from the beginning. The need for planning arises naturally
when an agent is interested in controlling the evolution of
its environment. Algorithmically, a planning problem has as
input a set of possible courses of actions, a predictive model
for the underlying dynamics, and a performance measure
for evaluating the courses of action. The output or solution
is one or more courses of action that satisfy the specified
requirements for performance. A planning problem thus
involves deciding “what” actions to do, and “when” to do
them. The “when” part of the problem has traditionally been
called the “scheduling’ ’ problem [20].

The simplest case of the planning problem, where the
environment is static and deterministic, and the planner has
complete information about the current state of the world, has
come to be known as the classical planning problem. My
talk is concerned with algorithms for synthesizing plans in
classical planning. Generating plans for classical planners has
received significant attention over the past twenty years. Most
of the plan generation algorithms that have been developed
are informally called “refinement planners”, in that they
iteratively refine a partial plan until it meets the specified
goals. In this talk, I will attempt to provide a coherent semantic

*This research is supported in part by NSF research initiation
award (RIA) IRI-9210997, NSF young investigator award (NYI)
IRI-9457634 and ARPA/Rome Laboratory planning initiative grants
F30602-93-C-0039 and F30602-95-C-0247. Special thanks to Bi-
plav Srivastava, Gopi Bulusu, Suresh Katukam, and Laurie Ihrig
for the many hours of discussions, David McAllester for his patient
correspondence regarding SNLP and refinement search, and Dan
Weld for his encouragement. Portions of this paper are borrowed
from a recent overview of planning approaches, which I co-authored
with Tom Dean.

picture of refinement planning, and describe the various
existing approaches in terms of this framework. I will also
consider the tradeoffs inherent in refinement planning, and
possible directions for developing more efficient refinement
planners.

Preliminaries of Modeling Change: Before proceeding
further, let me briefly review how classical planning problems
are modeled. In most classical planning approaches, a state
is described in terms of a set of boolean state variables.
Suppose that we have three boolean state variables: P, Q,
and R. We represent the particular state s in which P and
Q are true and R is false by the state-variable assignment,
s = (P = true, Q = true, R = false}, or, somewhat more
compactly, by s = (P, Q, lR}.

An action is represented as a state-space operator Q de-
fined in terms of preconditions (Pre(ar)) and postconditions
(also called effects) (Post(a)). If an operator (action) is
applied (executed) in a state in which the preconditions are
satisfied, then the variables mentioned in the postconditions
are assigned their respective values in the resulting state. If
the preconditions are not satisfied, then there is no change in
state.

Several syntactic extensions can be added on top of this
basic operator representation, facilitating conditional effects
and effects quantified over finite universes. Pednault 1171
shows that this action representation is semantically equiva-
lent to the largest subset of situation calculus for which we
can get by without writing frame axioms explicitly.

Goals are represented as state-variable assignments that
assign values to subsets of the set of all state variables. By
assigning values to one or more state variables, we designate
a set of states as the goal. We say that a state s satisfies a goal
(13, notated s k 4, just in case the assignment C# is a subset of
the assignment s. Given an initial state SO, a goal C$J, and a
library of operators, the objective of the planning problem is
to find a sequence of state-space operators (at, . . . , cm) such
that f(so, (~1,. . . , an>> j= 4.

Semantic picture of
Refinement planners 181 attempt to solve a planning problem
by navigating the space of sets of potential solutions (action
sequences). The potential solution sets are represented and
manipulated in the form of “partial plans.” Syntactically, a
partial plan T can be seen as a set of constraints (see below).
Semantically, a partial plan is a shorthand notation for the set

Invited Talks 1331

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

of action sequences that are consistent with its constraints.
The set of such action sequences is called the set of candidates
(or candidate set) of the partial plan.

We define a generic refinement planning procedure,
Refine(n), as follows 181.

1. If an action sequence (cY~, 02, . . . , a,) is a candidate of
7r and also solves the planning problem, terminate and
return the action sequence.

2. If the constraints in zr are inconsistent, then eliminate 7r
from future consideration.

3. Select a refinement strategy, and apply the strategy to
x and add the resulting refinements to the set of plans
under consideration.

4. Nondeterministically select a plan ?r’ from those under
consideration and call Refine(n’).

The first step of the search process is the “solution con-
struction” process, where the planner attempts to extract a
solution from the current partial plan’s candidate set. We shall
see later that the solution constructor function checks only on
the minimal candidates of the plan, since the candidate set
of a partial plan can be infinitely large [8l. The second step
is closely related to the first, and attempts to prune the plan
from further refinement if it can be shown not to contain any
solutions. The last two steps involve applying a refinement
operator to the partial plan to generate new partial plans,
and recursing on one of those refinements. Refinements can
be understood as operations that split the candidate set of
the partial plan to which they are applied. Specifically, a
refinement strategy converts a partial plan x into a set of new
plans {YQ, . . . , 7rn) such that the candidate set of each 7ri is a
subset of the candidate set of X. A refinement operator is said
to be complete if every solution belonging to the candidate
set of the plan will be in the candidate sets of at least on of
the plans generated by the refinement operator. A refinement
operator is said to be systematic if the candidate sets of the
refinements are disjoint. It is easy to see that the selection
of refinement strategy does not have to backtracked over, as
long as the refinement operators are complete.

The specifics of a refinement planning algorithm will
differ depending on the representation of the partial plans
used (i.e., what specific constraints are employed) and the
type of refinements employed on that representation. We
already pointed out that syntactically, a partial plan is a set
of constraints. The semantic status of a plan constraint is
clarified by specifying when a given action sequence is said
to satisfy the constraint. Within these broad guidelines, a
large variety of syntactic representations can be developed.
Once a representation for a partial plan is given, a refinement
operator can be specified in terms of the types of constraints
that it adds to a partial plan. If the constraint sets added by
refinements are mutually exclusive and exhaustive, then the
refinement operators will be systematic and complete.

Representing Partial Plans
To focus our discussion, we will start by looking at a specific
partial plan representation that is useful for modeling most
existing planners (later, we will consider alternative repre-
sentations that are promising). In this representation, partial
plan consists of a set of steps, a set of ordering constraints
that restrict the order in which steps are to be executed, and a
set of auxiliary constraints that restrict the value of state vari-
ables over particular intervals of time. Each step is associated

1332 AAAI-96

Figure 1: This figure depicts the partial plan reg. The
postconditions (effects) of the steps are shown above the
steps, while the preconditions are shown below the steps
in parentheses. The ordering constraints between steps are
shown by arrows. The interval preservation constraints are
shown by arcs, while the contiguity constraints are shown by
dotted lines.

\
GrO”“d Llncwizatlc.” ”

I Ground fmmnmtons rhor ~oasfv oudmrv rmmm,n,,

\
Safe Ground Llocmtullon 1

:
sate @,mmd Lhemiution m

:
i Comspondr ID ,hc qmwtd oprmror sequence : . Syntactic View

-------------_.---.----------------.
.

i
:
i

Semantic View

I \
I \

\ / \
Union of these sets is the caddate set of the partial plan

Figure 2: A schematic illustration of the relation between a
partial plan and its candidate set. T

with a state-space operator. To distinguish between multiple
instances of the same operator appearing in a plan, we assign
to each step a unique integer i and represent the ith step as
the pair (i, CY;) where Q; is the operator associated with the ith
step. Figure 1 shows a partial plan reg consisting of seven
steps. The plan reg is represented as follows.

(((0, ao), (1, al), (2, d, (3, ~3)r (4, ~41, (5, w)r (00, G},

((0 7 I),(1 4 a,(1 4 4),(2 4 3),(3 4 3,(4 + 5),(5 2 W},

((1 2 21, (3 fz 4))
An ordering constraint of the form (i 4 j) indicates that

Step i precedes Step j. An ordering constraint of the form

(i 2 j) indicates that Step i is contiguous with Step j, that is
Step i precedes Step j and no other steps intervene. The steps
are partially ordered in that Step 2 can occur either before or

P
after Step 4. An auxiliary constraint of the form (i 1 j) is
called an interval preservation constraint and indicates that
P is to be preserved in the range between Steps i and j
(and therefore no operator with postcondition -IP should
occur between Steps i and j). In particular, according to the

constraint (3 f oo), Step 4 should not occur between Steps 3
and 00.

Figure 2 shows the schematic relations between a partial
plan in such a representation and its candidate set, and we

will illustrate it with respect to the example plan in Fig-
ure 1. Each partial plan corresponds to a set of topological
sorts (e.g. (1,2,3,4,5) and (I, 2,4,3,5)). The subset of
these that satisfy the auxiliary constraints of the plan (e.g.
(1,2,4,3,5)) are said to be the safe-ground linearizations of
the plan. Each safe ground linearization of the plan corre-
sponds to an action sequence which is a minimal candidate of
the partial plan (e.g. ((~1, ~2, CY~, 03, cys)). An infinite number
of additional candidates can be derived from each minimal

z :stablishment

candidate of the plan by augmenting (padding) it with addi-
tional actions without violating the auxiliary constraints (e.g.
(at, 02, a2, cy4, a3, 05)). Thus, the candidate set of a partial
plan is infinite, but the set of its minimal candidates is finite.
The solution constructor functions search the minimal candi-
dates of the plan to see if any of them are solutions to the
planning problem. Refinement process can be understood as

~~~~ 

I 
demooon promouon confrontahon 

incrementally increasing the size of these minimal candidates 
so that action sequences of increasing lengths are examined to 
see if they are solutions to the problem. The search starts with 

Figure 3: Example of plan-space refinement 

the null plan (((0, QO), (00, CL,&, ((0 + ~43, ()>, where a0 
is a dummy operator with no preconditions and postconditions 
corresponding to the initial state, and Q, is a dummy operator 

made contiguous to the current head step and becomes the 

with no postconditions and preconditions corresponding the 
new head step. 

goal. 
As an example, one way of refining the plan Keg in Figure 1 

using progression refinement would be to apply an instance 

Refining Partial Plans 
of the operator ~2 (either the instance that is currently in the 
plan (2, ~2) or a new instance) to the head state (recall that 

There are several possible ways of refining partial plans, 
corresponding intuitively to different ways of splitting the set 
of potential solutions represented by the plan. In the follow- 
ing sections, I outline several popular refinement strategies 
employed in the planning literature. 

State-Space Refinements 

it is (P, Q)). This is accomplished by putting a contiguity 
constraint between (2, ~2) and the current head step ( 1, Q 1) 
(thereby making the former the new head step). 

In realistic problems, many operators may be applicable 
in the head state and very few of them may be relevant to 
the top level goals. To improve efficiency, some planners 
use means-ends analysis to focus on relevant operators. The 

The most straightforward way of refining partial plans in- general idea is the following: Suppose we have an operator CY 
valves using progression to convert the initial state into a whose postconditions match a goal of the problem. Clearly, 
state satisfying the goal conditions, or using regression to Q is a relevant operator. If the preconditions of a, are satisfied 
convert a set of goal conditions into a set of conditions that in the head state of the current partial plan, we can apply it 
are satisfied in the initial state. From the point of view of par- directly. Suppose they are not all satisfied. In such a case, 
tial plans, this corresponds to growing prefix or the suffix of we can consider the preconditions of a, as subgoals, look 
the plan. The refinements are called state-space refinements for an operator Q’ whose postconditions match one of these 
since given either the prefix or the suffix of a plan, we can subgoals, and check if it is applicable to the head state. This 
uniquely determine the nature of the world state following the type of recursive analysis can be continued to find the set of 
prefix and preceding the suffix. relevant operators, and focus progression refinement [ 141. 

The set of steps (~t,c72, . . . , a;~) with contiguity con- We can also define a refinement strategy based on regres- 

straints ((a0 2 crt), (ai 2 02), . . . , (a,-~ 2 a,)) is called 
the header of the plan X. The last element of the 
header, a,, , is called the heud step. The state defined by 
f(so, (a,, , . . . , cyo,)), where Q,; is the operator associated 
with cri is called the head state. In a similar manner, we can 
define the tail, tail step, and tail state. As an example, the 
partial plan neg shown in Figure 1 has the Steps 0 and 1 in 
its header, with Step 1 being the head step. The head state 
(which is the state resulting from applying 01 to the initial 
state) is (P, Q). S imilarly, the tail consists of Steps 5 and 00, 
with Step 5 being the tail step. The tail state (which is the 
result of regressing the goal conditions through the operator 
~5) is (R, U). 

Progression (or forward state-space) refinement involves 
advancing the head state by adding a step cr, such that the 
preconditions of Q, are satisfied in the current head state, to 
the header of the plan. The step Q may be newly added to 
the plan or currently present in the plan. In either case, it is 

sion, which involves regressing the tail state of a plan through 
an operator. For example, the operator (~3 is applicable (in the 
backward direction) through this tail state (which is (R, U)), 
while the operator ~4 is not (since its postconditions are in- 
consistent with the tail state). Thus, one way of refining reg 
using regression refinement would be to apply an instance 
of the operator ~3 (either the existing instance in Step 3 or 
a new one) to the tail state in the backward direction. This 
is accomplished by putting a contiguity constraint between 
(3,03) and the current tail step. 

In both progression and regression, solution constructor 
function can be simplified as follows: check to see if head 
state is a super set of the tail state, and if so, return the header 
concatenated with tail. 

Plan-Space Refinements 
State-space refinements have to guess correct answers to two 
questions up front: (a) whether a specific action is relevant to 

Invited Talks 1333 



the goals of the planning problem and (b) where exactly in 
the final plan does the action take place. Often, it is easier 
to see whether or not a given action is relevant to a plan, 
but much harder to guess the precise position at which a 
step must occur in the final plan. The latter question more 
naturally falls in the purview of “scheduling” and cannot 
be answered well until all of the steps have been added. To 
avoid this premature forced commitment, we would like to 
introduce the new action into the plan, without committing 
to its position in the final solution. This is the intuition 
behind plan-space refinements. The refinement is named 
“plan-space” because when we allow an action to be part 
of a plan without constraining it to be either in the prefix or 
the suffix, the partial plan does not represent a unique world 
state. Thus, the search cannot be recast in terms of the space 
of world states. 

The main idea in plan-space refinement is to shift the 
attention from advancing or regressing the world state to 
establishing goals in the partial plan. A precondition P of a 
step (i, cyi) in a plan is said to be established if there is some 
step (j, CY~) in the plan that precedes i and causes P to be 
true, and no step that can possibly intervene between j and 
i has postconditions that are inconsistent with P. It is easy 
to see that if every precondition of every step in the plan is 
established, then that plan will be a solution plan. Plan-space 
refinement involves picking a precondition P of a step (i, CY~) 
in the partial plan, and adding enough additional step, or- 
dering, and auxiliary constraints to ensure the establishment 
of P. One problem with this precondition-by-precondition 
establishment approach is that the steps added in establish- 
ing a precondition might unwittingly violate a previously 
established precondition. Although this does not affect the 
completeness of the refinement search, it can lead to wasted 
planning effort, and necessitate repeated establishments of 
the same precondition within the same search branch. Many 
variants of plan-space refinements avoid this inefficiency by 
protecting their establishments using IPCs. When the plan- 
ner uses plan-space refinements exclusively, its refinement 
process can terminate as soon as any of the safe ground 
linearization of the plan correspond to solutions. 

Let me illustrate the main ideas in precondition establish- 
ment through an example. Consider the partial plan at the 
top in Figure 3. Step 2 in this plan requires a precondition 
Q. To establish this precondition, we need a step which has 
Q as its postcondition. None of the existing steps have such 
a postcondition. Suppose an operator ~3 in the library has 
a postcondition R + Q. We introduce an instance of a3 as 
Step 3 into the plan. Step 3 is ordered to come before Step 2 
(and after Step 0). Since CX~ makes Q true only when R is true 
before it, to make sure that Q will be true following Step 3, 
we need to ensure that R is true before it. This can be done 
by posting R as a precondition of Step 3. Since R is not a 
normal precondition of (~3, and is being posted only to guar- 
antee one of its conditional effects, it is called a secondan, 
precondition [171. Finally, we can protect the establishment 

Q 
of precondition Q by adding the constraint 3 - 2. If we also 
want to ensure that 3 remains the sole establisher of Q in the 

final solution, we can add another auxiliary constraint 3 ? 2. 
In [131, McAllester shows that adding these two auxiliary 
constraints ensures systematicity of plan-space refinement. 
Tractability Refinements: Since the position of the steps 

1334 AAAI-96 

Figure 4: Step 2 in the partial plan shown on the left is 
reduced to obtain a new partial plan shown on the right. In 
the new plan, Step 2 is replaced with the (renamed) steps and 
constraints specified in the reduction shown in the center box. 

in the plan is not uniquely determined after a plan space 
refinement, there is uncertainty regarding (a) the state of the 
world preceding or following a step, (b) the relative order of 
steps in the plan and (c) the truth of IPC constraints in the 
plan. A variety of refinement strategies exist that attempt to 
make the reasoning with partial plans tractable by pushing the 
complexity into the search space. These refinements, called 
tractability refinements, fall into three broad classes: pre- 
positioning, pre-ordering and pre-satisfaction refinements. 
The first pick a pair of steps CYI and ~2 in the plan and 

generate two refinements one in which ~1 2 cr2, and the 

other in which CYI 7(: or2. The pre-ordering refinements 
do the same thing except they enforce ordering rather than 
contiguity constraints between the chosen steps. Finally, the 
pre-satisfaction refinements pick an IPC in the plan, and 
enforce constraints such that every ground linearization of the 
plan satisfies the IPC (see below). 

We can illustrate the pre-satisfaction refinements through 
the example in Figure 3, after we have introduced Step 3 and 
ensured that it produces Q as a postcondition, we need to make 
sure that Q is not violated by any steps possibly intervening 
between Steps 3 and 2. In our example, Step 1, which can 
possibly intervene between Steps 3 and 2, has a postcondition 
P * l&, that is potentially inconsistent with Q. To avert 
this inconsistency, we can either order Step 1 to come before 
Step 3 (demotion), or order Step 1 to come after Step 2 
(promotion), or ensure that the offending conditional effect 
will not occur. This last option, called confrontation, can be 
carried out by posting 1 P as a (secondary) precondition of 
Step 1. 

Depending on whether protection strategies are used, and 
what tractability refinements are used, we can get a very large 
spectrum of plan-space refinements [81. The effectiveness of 
plan space refinement in controlling the search is determined 
by a variety of factors, including (a) the order in which the 
various preconditions are selected for establishment (b) the 
manner in which tractability refinements are applied during 
search. See [81 for a discussion of some of the trade-offs. 

Task-Reduction Refinements 
In both the state-space and plan-space refinements, the only 
knowledge that is assumed to be available about the planning 
task is in terms of primitive actions (that can be executed 
by the underlying hardware), and their preconditions and 
postconditions. Often, one has more structured planning 
knowledge available in a domain. For example, in a travel 
planning domain, we might have the knowledge that one 
can reach a destination by either “taking a flight” or by 



“taking a train”. We may also know that “taking a flight” 
in turn involves making a reservation, buying a ticket, taking 
a cab to the airport, getting on the plane etc. In such a 
situation, we can consider “taking a flight” as an abstract 
task (which cannot be directly executed by the hardware). 
This abstract task can then be reduced to a plan fragment 
consisting of other abstract or primitive tasks (in this case 
“making a reservation”, “buying a ticket”, “going to the 
airport’ ’ , “getting on the plane”). This way, if there are some 
high-level problems with the “taking flight” action and other 
goals, (e.g. there is not going to be enough money to take a 
flight as well paying the rent), we can resolve them before we 
work on low level details such as getting to the airport. The 
resolution is can be carried out by the generalized versions of 
tractability refinements used in plan-space refinement. 

This idea forms the basis for task reduction refinement. 
Specifically, we assume that in addition to the knowledge 
about prin&ive actions, we also have some abstract actions, 
and a set of schemas (plan fragments) that can replace any 
given abstract action. Task reduction refinement takes a 
partial plan x containing abstract and primitive tasks, picks an 
abstract task CT, and for each reduction schema (plan fragment) 
that can be used to reduce CT, a refinement of R is generated 
with o replaced by the reduction schema (plan fragment). As 
an example, consider the partial plan on the left in Figure 4. 
Suppose the operator CY~ is an abstract operator. The central 
box in Figure 4 shows a reduction schema for Step 2, and 
the partial plan shown on the right of the figure shows the 
result of refining the original plan with this reduction schema. 
At this point any interactions between the newly introduced 
plan fragment and the previously existing plan steps can 
be resolved using techniques such as promotion, demotion 
and confrontation discussed in the context of plan-space 
refinement. This type of reduction is carried out until all the 
tasks are primitive. 

Notice that the partial plans used in task reduction planning 
contain one additional type of constraint -- the non-primitive 
tasks. Informally, when a plan contains a non-primitive 
task t, then every candidate of the plan must have the 
actions comprising at least one concretization of t (where a 
concretization of a non-primitive task is the set of primitive 
partial plans that can be generated by reducing it using task 
reduction schemas). 

Tradeoffs in Refinement Planning 
Now that we looked at a variety of approaches to refine- 
ment planning, it is worth looking at the broad tradeoffs in 
refinement planning. There are two classes of tradeoffs -- 
the first arising from algorithmic modifications to the generic 
refinement search, and the second arising from the match 
between refinements and the characteristics of the planning 
domain. 

An example of the first class of tradeoffs is that between the 
cost of solution constructor vs. size of the search space. We 
can reduce the search space size by considering partial plans 
that can compactly represent a larger number of minimal 
candidates. From a planning view point, this leads to least 
commitment on the part of the planners. However, as the 
number of candidates represented by a partial plan grow, the 
cost of the picking a solution from the partial plan increases. 

This tradeoff is well represented in the refinements that we 
have looked at. Plans produced by state-space refinements 

will have single minimal candidates, while those produced by 
plan space refinements can have multiple minimal candidates 
(corresponding roughly to the many topological sorts of the 
plan). Finally, partial plans produced using task reduction 
refinements may have even larger number of minimal candi- 
dates since the presence of a non-primitive tasks essentially 
allows any action sequence that contains any concretization 
of the non-primitive task as a minimal candidate. 

There are also certain tradeoffs that arise from the match 
between the plan representations and refinements used, and 
the characteristics of the planning domain and problem. For 
example, it is known that the plan-space refinements can 
be more efficient compared to state-space refinements in 
domains where the ordering of steps cannot be guessed 
with reasonable accuracy a priori El; 161. The plan-space 
refinements also allow separation of action selection and 
establishment phases from the “scheduling” phase of the 
planning, thus facilitating easier adaptation of the plan to 
more situations [71, and to more closely integrate the planning 
and scheduling phases [41. On the other hand, state-space 
refinements provide a good sense of the state of the world 
corresponding to the partial plan, and can thus be useful 
to agents who need to do non-trivial reasoning about the 
world state to focus their planning and execution efforts [2; 
141. Finally, task-reduction refinements facilitate user control 
of planner’s access to the primitive actions, and are thus 
the method of choice in any domain where the user has 
preferences among the solution plans [9l. 

Prospectus 
Although early refinement planning systems tended to sub- 
scribe exclusively to a single refinement strategy, our unifying 
treatment of refinement planning demonstrates that it is possi- 
ble to use multiple refinement strategies. As an example, the 
partial plan reg shown in Figure 1 can be refined with pro- 
gression refinement (e.g., by putting a contiguity constraint 
between Step 1 and Step 2), with regression refinement (e.g., 
by putting a contiguity constraint between Step 3 and Step 5), 
or plan-space refinement (e.g., by establishing the precondi- 
tion S of Step 3 with the help of the effect Step 2). Finally, 
if the operator ~4 is a non-primitive operator, we can also 
use task reduction refinement to replace ~24 with its reduction 
schema. There is some evidence that planners using multiple 
refinement strategies intelligently can outperform those using 
single refinement strategies [lo]. However, the question as 
to which refinement strategy should be preferred when is still 
largely open. 

We can be even more ambitious however. Most existing 
refinement planners have trouble scaling up to larger prob- 
lems, because of the very large search spaces they generate. 
While application of machine learning techniques to planning 
[15] hold a significant promise, we can also do better by 
improving the planning algorithms. One way of controlling 
the search space blow-up is to introduce appropriate forms 
of disjunction into the partial plan representation. By doing 
this, we can allow a single partial plan to stand for a larger 
number of minimal candidates. The conventional wisdom 
in refinement planning has been to keep the solution con- 
struction function tractable by pushing the complexity into 
the search space [8l. Some recent work by Blum and Furst 
131 shows that partial plan representations that push all the 
complexity into the solution construction function may actu- 

Invited Talks 1335 



Figure 5: To the left is the search space generated by a 
refinement planner using progression refinement. To the 
right is the partial plan representation, called plan graph, used 
in Graphplan 131. Each candidate plan of the plan graph 
must have some subset of the actions in jth level comin 
immediately before some subset of actions in the i + 1 t B 

level (for all i). The minimal candidates corresponding to 
all plans generated by the progression planner are compactly 
represented by a single partial plan (plan graph) in Graphplan. 

ally perform much better in practice. They describe a system 
called Graphplan in which the partial plan representation, 
called plan graph, corresponds to a disjunctive representation 
of the search space of a progression planner (see Figure 5) 
[l 11. The Graphplan refinement process (i.e., the process of 
growing the plan-graph) does not introduce any branching 
into the search space.-Thus, all the complexity is transferred 
to the solution construction process which has to search the 
plan graph structure for minimal candidates that are solutions. 
Empirical results demonstrate this apparently extreme solu- 
tion to the refinement and solution construction tradeoff in 
fact leads to significant improvements in performance. 

The success of Graphplan shows that there is a lot to be 
gained by considering other disjunctive partial plan represen- 
tations. An important issue in handling disjunctive partial 
plans is how to avoid losing all the search space savings in 
increased plan handling costs. One of the tricks in increasing 
least commitment without worsening the overall performance 
significantly seems to be to use constraint propagation tech- 
niques to enforce local consistency among the partial plan 
constraints. In CSP problems [181, refinement is used hand-in- 
hand with local consistency enforcement through constraint 
propagation to improve search performance. Although most 
refinement planning systems ignored the use of constraint 
propagation in planning, the situation is changing slowly. In 
addition to Graphplan [31, which uses the constraint propaga- 
tion process in both the partial plan construction, and solution 
construction phase, there are also systems such as Descartes 
161, which attempt to incorporate constraint propagation tech- 
niques directly into existing refinement planners. Solution 
construction process can also be represented as an instance 
of propositional satisfiability problem, and there is some re- 
cent evidence E 121 that nonsystematic search techniques such 
as GSAT can give very good performance on such SAT 
instances. 

Summary 

ning. The framework explicates the tradeoffs offered by plan 
representation and refinement strategies. I have concluded 
by outlining several directions in which refinement planning 
algorithms can be made more efficient. These involve using 
disjunctive partial plan representations, and the using of CSP 
techniques for handling partial plans. 

[II 

121 

[31 

[41 

[51 

I61 

171 

[81 

[91 

1101 

Ill3 

[121 

I131 

[141 

iI51 

[161 

I171 

[181 

I191 

[201 

References 
A. Barrett and D. Weld. Partial Order Planning: Evaluating 
Possible Efficiency Gains. Artificial Intelligence, Vol. 67, No. 
1, 1994. 

F. Bachus and F. Kabanza. Using Temporal Logic to Control 
Search in a forward chaining planner. In Proc European 
Planning Workshop, 1995. 

A. Blum and M. Furst. Fast planning throug planning graph 
analysis. In Proc. IJCAI-95, 1995. 

K. Cut-tie and A. Tate. O-Plan: The open planning architecture. 
Artificial intelligence, 5 1(1):49--86, 199 1. 

R. Fikes and N. Nilsson. Strips: A new approach to the 
application of theorem proving to problem solving. Artificial 
Intelligence, 2: 189--208, 197 1. 

D. Joslin and M. Pollack. Passive and active decision post- 
ponement in plan generation. In Proc. 3rd European Workshop 
on Planning, 1995. 

L. Ihrig and S. Kambhampati. Derivational replay for partial 
order planning. In Proc. AAAI-94. 

S. Kambhampati, C. Knoblock, and Q. Yang. Refinement 
search as a unifying framework for evaluating design tradeoffs 
in partial order planning. Artificial Intelligence, 76( l-2), 1995. 

S. Kambhampati. A comparative analysis of partial-order 
planning and task-reduction planning. ACM SIGART Bulletin. 
6(l), 1995. 

S. Kambhampati and B. Srivastava. Universal Classical Plan- 
ner: An algorithm for unifying state space and plan space 
approaches. In Proc European Planning Workshop, 1995. 

S. Kambhampati. Planning Methods in AI (Notes 
from ASU Planning Seminar). ASU CSE TR 96-004. 
http://rakaposhi.eas.asu.edu:8001/vochan.html 

H. Kautz and B. Selman. Pushing the Envelope: Planning, 
Propositional Logic, and Stochastic Search In Proc. AAAI-96. 

D. McAllester and D. Rosenblitt. Systematic Nonlinear Plan- 
ning. In Proc. 9th AAAI, 1991. 

D. McDermott. A heuristic estimator for means-ends analysis 
in planning. In Proc. AIPS-96, 1996. 

Steve Minton, editor. Machine Learning Methodsfor Planning 
and Scheduling. Morgan Kaufmann, 1992. 
S. Minton, J. Bresina and M. Drummond. Total Order and 
Partial Order Planning: a comparative analysis. Journal of 
Artificial Intelligence Research 2 (1994) 227-262. 

E.P.D. Pednault. Synthesizing plans that contain actions 
with context-dependent effects. Computational Intelligence, 
4(4):356--372, 1988. 

E. Tsang. Foundations of Constraint Satisfaction. Academic 
Press, San Diego, California, 1993. 

D.E. Wilkins. Practical Planning: Extending the Classical A I 
Planning Paradigm. Morgan Kaufmann, 1988. 

M. Zweben and M.S. Fox, editors. Intelligent Scheduling. 
Morgan Kaufmann, San Francisco, California, 1994. 

In this talk, 
algorithms 

I described the current state of refinement planning 
using a unified framework for refinement plan- 

1336 AAAI-96 


