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Introduction: Bart Selman 

AI textbooks and papers often discuss the big ques- 
tions, such as “how to reason with uncertainty”, “how 
to reason efficiently”, or “how to improve performance 
through learning .” It is more difficult, however, to find 
descriptions of concrete problems or challenges that are 
still ambitious and interesting, yet not so open-ended. 

The goal of this panel is to formulate a set of such 
challenge problems for the field. Each panelist was 
asked to formulate one or more challenges. The em- 
phasis is on problems for which there is a good chance 
that they will be resolved within the next five to ten 
years. 

A good example of the potential benefit of a con- 
crete AI challenge problem is the recent success of Deep 
Blue. Deep Blue is the result of a research effort fo- 
cused on a single problem: develop a program to defeat 
the world chess champion. Although Deep Blue has 
not yet quite achieved this goal, it played a remark- 
ably strong game against Kasparov in the recent ACM 
Chess Challenge Match. 

A key lesson we learn from Deep Blue’s strength is 
that efficient brute-force search can be much more ef- 
fective than sophisticated, heuristically guided search. 
In fact, brute-force was so successful that it led Kas- 
parov to exclaim “I could feel - I could smell - a new 
kind of int.elligence across the table.” (Kasparov 1996) 

The experience with Deep Blue shows that a good 
challenge problem can focus research, lead to concrete 
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progress, and bring us important new insights. Many 
AI researchers may not like the particular lesson about 
the value of brute-force over more “intelligent” forms 
of search, but, nevertheless, it is a very tangible re- 
sult. In fact, the issue of general purpose ultra-fast 
search procedures versus heuristically guided domain- 
dependent methods is currently being revisited in the 
search and reasoning community. 

Finally, as a meta-issue, we will consider how to mea- 
sure progress in the field. Determining whether a par- 
ticular piece of work in AI actually brings us any closer 
to the ultimate goals of AI has proven to be quite dif- 
ficult. By introducing a set of well-defined challenge 
problems, we hope that this panel will help provide 
some benchmarks against which we can measure re- 
search progress. 

Eight Challenges for Artificial 
Intelligence: Rodney Brooks 

There are two very different sorts of challenges that I 
see for Artificial Intelligence - first, our systems are 
pathetic compared to biological systems, along many 
dimensions, and secondly, moderately good perfor- 
mance from some approaches has sociologically led to 
winner-take-all trends in research where other promis- 
ing lines of research have been snuffed out too soon. 

If we compare either software systems, or robotic 
systems to biological systems, we find that our cre- 
ations are incredibly fragile by comparison. Below I 
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pose some challenges that are aimed at narrowing this 
distance. The challenges themselves are general in na- 
ture - they do not solve particular problems, but the 
acts of meeting these challenges will force the creation 
of new general purpose techniques and tools which will 
allow us to solve more particular problems. 

Challenge 1. Biological systems can adapt to new 
environments - not perfectly, they die in some envi- 
ronments, but often they can adapt. Currently our 
programs are very brittle, and certainly a program 
compiled for one architecture cannot run on another 
architecture. Can we build a program which can in- 
stall itself and run itself on an unknown architecture? 
This sounds very difficult. How about a program which 
can probe an unknown architecture from a known ma- 
chine and reconfigure a version of itself to run on the 
unknown machine ? Still rather difficult, so perhaps 
we have to work up to this by making some “blocks 
worlds” artificial architectures where we can do this. 
This might lead to some considerations of how future 
architectures might be designed so that software is self- 
configurable, and then even perhaps self-optimizing. 

Challenge 2. Minsky (1967) was foundational in es- 
tablishing the theory of computation, but after Hart- 
manis (1971) there has been a fixation with asymp- 
totic complexity. In reality lots of problems we face 
in building real AI systems do not get out of hand in 
terms of the size of problems for individual modules - 
in particular with behavior-based systems most of the 
submodules need only deal with bounded size prob- 
lems. There are other ways theory could have gone. 
For instance one might try to come up with a theory 
of computation based on how much divergence there 
might be in programs given a one bit error in either 
the program or data representation. If theory were 
based on this fundamental concern we might start to 
understand how to make programs more robust. 

Challenge 3. Recent work with evolutionary sys- 
tem has produced some tantalizing spectacular results, 
e.g., Sims (1994). But it is hard to know how to take 
things from successes and apply them to new problems. 
We do not have the equivalent of the Perceptron book 
(Minsky and Papert 1969) for evolutionary systems.’ 
We need such a new book of mathematics so that we 
understand the strengths and weaknesses of this excit- 
ing new approach. 

Challenge 4. We have been living with the basic for- 
malizations made by McCulloch and Pitts (1943) for 
over fifty years now. Their formalization included that 

‘Note that these evolutionary systems are much more 
that straight genetic algorithms as there is both a variable 
length genotype and a morphogenesis phase that produces 
a distinctly different phenotype. 

the activity of the neuron is an “all-or-none” process, 
that a certain fixed number of synapses must be ex- 
cited within the period of latent addition in order to 
excite a neuron at any time, and this number is inde- 
pendent of the synapses’ previous activity and position 
on the neuron, that the only significant delay within 
the nervous system is synaptic delay, that the activity 
of any inhibitory synapse absolutely prevents excita- 
tion of the neuron at that time, and that the structure 
of the net does not change with time. With the addi- 
tion of changing synaptic weights by Hebb (1949) we 
pretty much have the modern computational model of 
neurons used by most researchers. With 50 years of ad- 
ditional neuroscience, we now know that there is much 
more to real neurons. Can newer models provide us 
with new computational tools, and will they lead to 
new insights to challenge the learning capabilities that 
we see in biological learning? 

Over time we become trapped in our shared vi- 
sions of appropriate ways to tackle problems, and 
even more trapped by our funding sources where we 
must constantly justify ourselves by making incremen- 
tal progress. Sometimes it is worthwhile stepping back 
and taking an entirely new (or perhaps very old) look 
at some problems and to think about solving them in 
new ways. This takes courage as we may be leading 
ourselves into different sorts of solutions that will for 
many years have poorer performance than existing so- 
lutions. With years of perseverance we may be able 
to overcome initial problems with the new approaches 
and eventually leapfrog to better performance. Or we 
may turn out to be totally wrong. That is where the 
courage comes in. 

Challenge 5. Despite some early misgivings (Sel- 
fridge 1956) back when chess playing programs had 
search trees only two deep (Newell et al. 1958), our 
modern chess programs completely rely on deep search 
trees and play chess not at all like humans. Can we 
build a program that plays chess in the way that a hu- 
man plays? If we could, then perhaps we could prove 
how good it was by getting it to play GO-tree search 
just cannot cut it with GO. 

Challenge 6. All of the competitive speech under- 
standing systems today use hidden Markov models. 
While trainable, these systems have some unfortunate 
properties. They have much higher error rates than 
we might desire, they require some restriction in do- 
main, and they are often inordinately sensitive to the 
choice of microphone. It seems doubtful that people 
use HMM’s internally (even if one doesn’t believe that 
generative grammars are the right approach either). 
Can we build a speech understanding system that is 
based on very different principles? 
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Challenge 7. We live in an environment where we 
make extensive use of non-speech sound cues. There 
has been very little work on noise understanding. Can 
we build interesting noise understanding systems? 

Challenge 8. Can we build a system by evolution 
that is better at a non-trivial task than anything that 
has been built by hand? 

Integrating Theory and Practice in - 
Planning: Thomas Dean 

I issue a challenge to theorists, experimentalists, and 
practitioners alike to raise the level of expectation for 
collaborative scientific research in planning. Niels Bohr 
was first and foremost a theoretical physicist. Ernest 
Rutherford was first and foremost an experimentalist. 
It can be argued that neither Bohr nor Rutherford 
would have made as significant contributions to nu- 
clear physics without an appreciation and understand- 
ing of one another’s results. By analogy, I believe that 
a deeper understanding of planning problems is pos- 
sible only through the concerted efforts of theorists, 
experimentalists, and practitioners. The current in- 
terplay between these groups (perhaps factions is the 
appropriate word) is minimal. 

The pendulum of popular opinion swings back and 
forth between theory and practice. At different times, 
experimentalist have had to pepper their papers with 
equations and theorists have had to build systems and 
run experiments in order to get published. With the 
exception of the rare person gifted as mathematician 
and hacker, the requirement of both theory and prac- 
tice in every result is a difficult one to satisfy; difficult 
and, I believe, unnecessary. This requirement implies 
that every publishable result must put forth a theoret- 
ical argument and then verify it both analytically and 
experimentally. The requirement tends to downplay 
the need for a community effort to weave together a 
rich tapestry of ideas and results. 

A scientific field can nurture those who lean heav- 
ily toward theory or practice as long as the individ- 
uals direct their research to contribute to problems 
of common interest. Of course, the field must iden- 
tify the problems that it considers worthy of empha- 
sis and marshal its forces accordingly. I suggest plan- 
ning as such a problem and the study of propositional 
STRIPS planning a good starting point. By analogy to 
physics in the 1930’s, I recommend continued study of 
the STRIPS planning (the hydrogen atom of planning) 
and its stochastic counterparts (Markov decision prob- 
lems) in parallel with investigations into a wide range 
of more expressive languages for specifying planning 
problems (the whole of the periodic table). 

In terms of concrete proposals, I mention approaches 

from theoretical computer science that provide alterna- 
tives to the standard measures of performance, specif- 
ically asymptotic worst-case analysis. As an alterna- 
tive to worst-case analysis relying on all-powerful, all- 
knowing adversaries, I discuss the average-case per- 
formance measures and the properties of distribu- 
tions governing the generation of problem instances. 
Regarding asymptotic arguments, I consider sharp- 
threshold functions, the relevance of phase-transition 
phenomena, and the statistical properties of graphs 
of small order. The resulting perspective empha- 
sizes particular problem instances and specific algo- 
rithms rather than problem classes and complexity re- 
sults that pertain to all algorithms of a given order 
of growth. I also point out the embarrassing lack of 
‘real’ planning problems, posit the reason for such a 
deficit, and suggest how recent progress in learning the- 
ory might provide a rich source of planning problems.2 

Decisions, Uncertainty and Intelligence: 
Eric Horvitz 

To be successful in realistic environments, reason- 
ing systems must identify and implement effective ac- 
tions in the face of inescapable incompleteness in their 
knowledge about the world. AI investigators have long 
realized the crucial role that methods for handling in- 
completeness and uncertainty must play in intelligence. 
Although we have made significant gains in learning 
and decision making under uncertainty, difficult chal- 
lenges remain to be tackled. 

Challenge: Creating Situated Autonomous Decision 
Systems 

A key challenge for AI investigators is the develop- 
ment of comprehensive autonomous decision-making 
systems that are situated in dynamic environments over 
extended periods of time, and that are entrusted with 
handling varied, complex tasks. Such robust decision 
systems need the ability to process streams of events 
over time, and to continue, over their lifetimes, to pur- 
sue actions with the greatest expected utility. 

Mounting a response to this broad challenge imme- 
diately highlights several difficult subproblems, each of 
which may be viewed as a critical challenge in itself. 
Pursuing solutions to these subproblems will bring us 
closer to being able to field a spectrum of application- 
specific challenges such as developing robotic systems 
that are given the run of our homes, tractable medi- 
cal decision making associates that span broad areas 
of medicine, automated apprentices for helping people 
with scientific exploration, ideal resource management 

2Additional details can be found ’ 
ftp://www.cs.brown.edu/u/tld/postscript/DeanetalAAA~ 
96.ps. 
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in multimedia systems, and intelligent user interfaces 
that employ rich models of user intentions and can en- 
gage in effective dialogue with people. 

To address the broad challenge, we need to con- 
sider key phases of automated decision making, includ- 
ing the steps of perceiving states of the world, fram- 
ing decisions, performing inference to compute beliefs 
about the world, making observations, and, most im- 
portantly, identifying a best set of actions. Under lim- 
ited resources, we also need to carefully guide the allo- 
cation of resources to the different phases of analysis, 
and to extend decision making to the realm of monitor- 
ing and control of the entire decision-making process. 
I will dive into several problems associated with these 
components of decision making. 

Subproblem: Automated Framing of Decision Prob- 
lems 

Faced with a challenge, a decision-making system 
must rely on some rules or, more generally, a model 
that expresses relationships among observations, states 
of the world, and system actions. Several methods have 
been studied for dynamically building representations 
of the world that are custom-tailored to perceived chal- 
lenges. Framing a decision problem refers to identify- 
ing a set of relevant distinctions and relationships, at 
the appropriate level of detail, and weaving together 
a decision model. Framing a decision problem has re- 
sisted formalization. Nevertheless, strides have been 
made Lll”U~L b”LIU”L U”Vl”IL techniques, typically re- 
lying on the use of logical or decision-theoretic proce- 
dures to piece together or prune away distinctions, as a 
function of the state of the world, yielding manageable 
focused models. We have a long way to go in our under- 
standing of principles for tractably determining what 
distinctions and dependencies will be relevant given a 
situation. 

Subproblem: Handling Time, Synchronicity, and 
a- 

Streams of l3vents 
Autonomous systems must make decisions in an 

evolving environment that may change dramatically 
over time, partly in response to actions that a system 
has or will take. Most research on action under uncer- 
tainty has focused on models and inference procedures 
that are fundamentally atemporal, or that encode tem- 
poral distinctions as static variables. We must endow 
systems with the ability to represent and reason about 
the time-dependent dynamics of belief and action, in- 
cluding such critical notions as the persistence and dy- 
namics of world states. We also need to develop better 
means of synchronizing an agent’s perceptions, infer- 
ence, and actions with important events in the world. 

Subproblem: Modeling Preferences and Utility 
The axioms of utility give us the fundamental princi- 

ple of maximum expected utility: an agent should take 
actions that maximizes its expected (or average) mea- 
sure of reward. Although it is easy to state the prin- 
ciple, we are forced in practice to wrestle with sev- 
eral difficult problems. Where does information about 
the utility of states come from? Whose utility is be- 
ing maximized? How can we derive utilities associated 
with solving subproblems from assertions about high- 
level goals (e.g., “survive for as long as possible!“) or 
from utilities on goal states. ? What is the most reason- 
able utility model for evaluating a finite sequence of 
actions an agent might take over time (e.g., should we 
assume an infinite number of future actions and dis- 
count value of future rewards, or assume a finite set 
of steps and compute average reward?, etc.). Different 
assumptions about the specific structure of the utility 
model lead to different notions of the “best” behaviors 
and to different computational efficiencies with evalu- 
ating sequences of plans. 

Subproblem: Mastery of Attention and Architecture 

Perceiving, reasoning, and acting all require costly 
resources. Controlling the allocation of computational 
resources can be a critical issue in maximizing the value 
of a situated system’s behavior. What aspects of a 
problem and problem-solving strategy should a system 
attend to and when? We need to develop richer mod- 
els of attention. There is promise in continuing work 
that turns the analytic machinery of decision-theoretic 
inference onto problem solving itself, and using such 
measures as the expected value of computation (EVC) 
to make design-time and run-time decisions about the 
ideal quantities of computation and memory to allo- 
cate to alternative phases of reasoning - including to 
the control processes themselves. More generally, there 
is great opportunity in applying these methods in off- 
line and on-line settings to optimize the overall nature 
and configuration of a system’s architecture, including 
decisions about the compilation of results. 

Subproblem: Learning about Self and Environment 

Continual learning about the environment and about 
the efficacy of problem solving is critical for systems 
situated in complex, dynamic environments, especially 
when systems may wander into one of several special- 
ized environmental niches. We need to better under- 
stand how we can endow our systems with awareness of 
having adequate or inadequate knowledge about spe- 
cific types of problems so that they can allocate ap- 
propriate resources for exploration and active learning. 
There has been research on methods for computing 
the confidence in results given a model and problem 
instance. This work highlights opportunities for de- 
veloping methods that an agent could use to probe 
for critical gaps in its knowledge about the world. 
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Continuing this research will be valuable for building 
decision-making systems that can perform active, di- 
rected learning. 

Subproblem: Living Life Fully-Harnessing Every 
Second 

To date, most of our reasoning systems have no 
choice but to idle away the precious time between their 
active problem-solving sessions. Systems immersed in 
complex environments should always have something 
to do with their time. We need to develop techniques 
that allow an agent to continuously partition its time 
not only among several phases of a pressing analysis 
but also among a variety of tasks that will help the 
agent to maximize the expected utility of its behavior 
over its entire lifetime. Tasks that can benefit from on- 
going attention include planning for future challenges, 
probing and refining a utility model, prefetching in- 
formation that is likely to be important, compilation 
of portions of expected forthcoming analyses, experi- 
menting (playing?) with its reasoning and motion con- 
trol systems, and learning about critical aspects of the 
external world. 

Think Big - AI Needs More Than 
Incremental Progress: Tom Mitchell 

1. Let’s build programs that turn the WWWeb into 
the world’s largest knowledge-base. Doug Lenat had a 
good idea that we should have a large AI knowledge 
base covering much of human knowledge. One problem 
with building it is that it might take millions of people. 
And then we’d have to maintain it afterwards. The web 
is built and growing already, and it’s online, and people 
are already maintaining it. Unfortunately, it’s in text 
and images and sounds, not logic. So the challenge is 
to build programs that can “read” the web and turn it 
into, say, a frame-based symbolic representation that 
mirrors the content of the web. It’s hard, but there 
is no evidence that it’s impossible. And, even partial 
solutions will be of incredible value. 

2. Apply Machine Learning- to learn to understand 
Natural Language. Natural language has always been 
considered to be too difficult to do for real. But things 
have changed over the past three years in an interesting 
way - for the first time in history we have hundreds of 
millions of supervised training examples indicating the 
meaning of sentences and phrases: those hyperlinks in 
all those web pages. Now agreed, they’re not quite the 
kind of supervised training data we’d ask for if we were 
to choose training data to learn natural language. But 
when it comes to training data you take what you can 
get, especially if it numbers in the millions (when there 
are less than 100,000 words to begin with). So each hy- 
perlink like my recent publications has a meaning 

that is revealed by the web page you get if you click on 
it. How can we learn something useful about natural 
language understanding from this kind of data? (We 
probably need to use more than just this kind of data 
to learn language, but once we have some basic ontol- 
ogy defined, this kind of data should be of great use in 
learning the details.) 

3. Let’s build agents that exhibit life-long machine 
learning, rather than machine learning algorithms that 
learn one thing and then get rebooted. Consider people 
and consider current ML approaches such as decision 
tree or neural network learning. People mature, they 
learn things, then use these things they know to make 
it easier to learn new things. They use the things they 
know to choose what to learn next. ML has made good 
progress on approximating isolated functions from ex- 
amples of their input/output. But this is just a subrou- 
tine for learning, and it’s more of less a solved problem 
at this point. The next question is how can we build 
agents that exhibit long-term learning that is cumula- 
tive in a way more like people learn. 

Toward Flexible and Robust Robots: 
Nils J. Nilsson 

I start with the premise that it would be desirable 
to have mobile, AI-style robots that have continu- 
ous existence - ones that endure and perform useful 
work for long periods of time rather than ones that 
merely hold together long enough for a quick demo 
and video-taping session. Of course, some limited- 
capability robots - such as those currently used in 
automobile assembly and hospital-item delivery - do 
stay on the job for long periods of time. But all of 
these robots are far from being as robust and flexible 
as we want robots to be. 

My challenge problem is to produce a robot facto- 
turn and errand-runner for a typical office building - 
an office building that is not specially equipped to ac- 
commodate robots. The kinds of tasks that such a 
robot will be able to perform will depend, of course, 
on its effecters and sensors as well as on its software. 
There are plenty of important challenge problems con- 
cerned with sensors and effecters, but I leave it to oth- 
ers to pose those. Instead, my challenge is to AI people 
to develop the software for a robot with more-or-less 
state-of-the art range-finding and vision sensors and 
locomotion and manipulation effecters. Let’s assume 
that our robot can travel anywhere in the building - 
down hallways, into open offices, and up and down el- 
evators (but perhaps not escalators). Assume that it 
can pick up, carry, and put down small parcels, such as 
books and packages. For communication with humans, 
suppose it has a speech synthesizer and word or phrase 
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recognizer and a small keyboard/display console. Any 
such set of sensors and effecters would be sufficient for 
an extensive list of tasks if only we had the software 
to perform them. 

Here is the specific challenge: The robot must be 
able to perform (or learn to perform with instruc- 
tion and training - but without explicit post-factory 
computer programming) any tusk that a human might 
“reasonably” expect it to be able to perform given its 
effecter/sensor suite. Of course, some tasks will be im- 
possible - it cannot climb ladders, and it doesn’t do 
windows. And, I don’t mean the challenge to be one of 
developing a “Cyc-like” commonsense knowledge base 
and reasoning system. Our factotum will be allowed 
some lapses in commonsense so long as it can learn 
from its mistakes and benefit from instruction. It is 
not my purpose to set high standards for speech un- 
derstanding and generation. The human task-givers 
should be tolerant of and adapt to the current limited 
abilities of systems to process natural language. 

The second part of the challenge is that the robot 
must stay on-the-job and functioning for a year with- 
out being sent back to the factory for re-programming. 

What will be required to meet this challenge? First, 
of course, a major project involving the application 
and extension of several robotic and AI technologies 
and architectures for integrating them. I do not think 
that it will be feasible for the robot’s builders to send it 
to its office building with a suite of programs that an- 
ticipate allof the tasks that could be given. I think the 
robot will need to be able to plan and to learn how to 
perform some tasks that the building occupants (who 
know only about its sensors and effecters) might ex- 
pect it to be able to perform but that its programmers 
did not happen to anticipate. To plan and to learn 
efficiently, I think it will need to be able to construct 
for itself hierarchies of useful action routines and the 
appropriate associated perceptual processing routines 
for guiding these actions. Perhaps something like the 
“twin-tower” architecture of James Albus (1991) would 
be appropriate for overall control. But the towers will 
have to grow with instruction and experience. The 
computational models of developmental learning pro- 
posed by Gary Drescher (1991) seem to me to be a 
good place to start for the tower-building aspect of the 
problem. 

Work on this challenge problem would be good for 
AI. It would encourage progress on extending and in- 
tegrating the many disparate components of intelligent 
systems: reacting, planning, learning, perception, and 
reasoning. It might also connect the bottom-up and 
top-down AI approaches - to the benefit of both. (It 
could also produce a useful factotum.) Good luck! 
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