
The Database Approach to Knowledge Representation 

Jeffrey D. Ullman 

Department of Computer Science 
Stanford University 
Stanford CA 94305 

ullman&s.stanford.edu 
http://db.stanford.edu/“ullman 

Abstract 

The database theory community, centered around the 
PODS (Principles of Database Systems) conference has 
had a long-term interest in logic as a way to rep- 
resent “data, ” “information,” and “knowledge” (take 
your pick on the term - it boils down to facts or atoms 
and rules, usually Horn clauses). The approach of this 
community has been “slow and steady,” preferring to 
build up carefully from simple special cases to more 
general ideas, always paying attention to how efficiently 
we can process queries and perform other operations on 
the facts and rules. A powerful theory has developed, 
and it is beginning to have some impact on applications, 
especially information-integration engines. 

Datalog 

The term Databug has been coined to refer to Prolog-like 
rules without function symbols, treated as a logic pro- 
gram. Unlike Prolog, however, the conventional least- 
fixed-point semantics of the rules is used whenever pos- 
sible. 

Example 1: The rules for ancestors can be written as 
the following Datalog program. 

anc(X,Y> :- par(X,Y) 
anc(X,Y> :- aJdx,z>, anc(Z,Y> 

That is, Y is an ancestor of X if Y is a parent of X or if 
there is some 2 that is an ancestor of X and a descen- 
dant of Y. Because of the least-fixed-point semantics, 
there is no question of this program entering a loop, as 
the corresponding Prolog program would. 0 

Generally, we divide predicates into two classes. 
EDB (extensional database) predicates are stored as re- 
lations, while IDB (intensional database) predicates are 
defined by the heads (left sides) of rules only. Either 
EDB or IDB predicates can appear in subgoals of the 
bodies (right sides) of rules. 

Sometimes, Datalog is extended to allow negated 
subgoals. That extension causes the least-fixed-point 
semantics to become problematic when the rules are re- 

I346 A.&U-96 

cursive, and several approaches such as stratified nega- 
tion and well-founded semantics have been developed 
to define suitable meanings for such Datalog programs. 
A survey of this subject, analogous to “nonmonotonic 
reasoning,” can be found in Ullman [1994], and we shall 
not address this set of issues further here. 

Example 2: A Datalog rule for ancestors that were 
not parents could be expressed as 

oldAnc(X,Y) :- anc(X,Y), NOT par(X,Y) 
0 

Conjunctive Queries 

A single Datalog rule in which an IDB predicate is de- 
fined in terms of one or more IDB and EDB predicates 
other than itself is called a conjunctive query (CQ). For 
instance, the rule of Example 2 is a CQ. 

Containment and Equivalence 

We say one CQ or Datalog program is contained in an- 
other if whatever the values of the EDB predicates (the 
“database”) is, the set of facts provable from the first 
is a subset of those provable from the second. CQ’s or 
Datalog programs are equivalent if the sets of provable 
facts are always the same for any database, i.e., the 
containment goes both ways. 

Example 3: Consider 

:I: ;$ :- arc(X,Y), arc(Y,X) 
. 

20 -- arc(X,X) . 

We say that Q2 & Qr. Intuitively, &I defines the set of 
nodes of a directed graph that are on any cycle of two 
nodes or loop of one node, while Q2 defines only the set 
of nodes that have loops. It is also easy to check that 
Qr is not contained in Q2; that is, there are graphs with 
cycles of two nodes but no loops. Thus, Qi # Q2. Cl 

Chandra and Merlin [1977] first studied conjunc- 
tive queries and showed that there is a simple test for 
containment, and thus for equivalence. The question of 
whether one CQ is contained in another is NP-complete, 

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



but all the complexity is caused by “repeated predi- 
cates,” that is, predicates appearing three or more times 

fcor(X) :- par(a,A), par(A,B), 
par(C,B), par(D,C), Par&D) 

in the body. In the very common case that no predicate 
appears more than twice in any one query, containment 
can be tested in linear time (Saraiya [1991]). Moreover, 
CQ’s tend to be short, so in practice containment test- 
ing is not likely to be too inefficient. 

Also, in exponential time at most we can test 
whether a CQ is contained in a Datalog program (Ra- 
makrishnan et al. [1989]). The opposite containment, of 
a Datalog program in a CQ is harder, but still decidable 
(Chaudhuri and Vardi [1992]). 

When we extend rules by allowing negated sub- 
goals and/or by allowing arithmetic comparisons in the 
subgoals, things rapidly become undecidable. However, 
if we restrict ourselves to CQ’s, not Datalog programs, 
then the problem is exponential at worst. Levy and Sa- 
giv [1993] g ive a containment test for CQ’s with nega- 
tion, while the most efficient known algorithm for CQ’s 
with arithmetic comparisons (but no negation) is found 
in Zhang and Ozsoyoglu [1993]. 

Application to Information Integration 

A system for integrating heterogeneous information 
sources can be described logically by vievls that tell us 
what queries the various sources can answer. These 
views might be CQ’s or Datalog programs, for exam- 
ple. The “database” of EDB predicates over which these 
views are defined is not a concrete database but rather 
a collection of “global” predicates whose actual values 
are determined by the sources, via the views. 

Given a query Q, typically a CQ, one can ask 
whether it is possible to answer Q by using the vari- 
ous views in some combination. For example, Informu- 
tion Manifold at Bell Labs (Levy, Rajaraman, and Or- 
dille [1996]) searches for all combinations of views that 
answer a query, while Tsimmis at Stanford (Garcia et 
al. [1995]) t ries to find one such solution. 

Example 4: The following example is contrived but 
will illustrate the ideas. Suppose we have a global par- 
ent relation par(X, Y), meaning that Y is a parent of 
X. Suppose also that one source is capable only of pro- 
viding a grandparent view. That is, it gives us the view: 

gpoLn :- par(X,Z), par(Z,Y) 

A second source gives us a great-grandparent view: 

ggp(x,V :- par(X,A), par(A,B), par(BJ) 

Our query Q is “find the first cousins once removed 
of individual a. That is, we must go up two generations 
from a, then down three generations. Formally, in terms 
of the global “database”: 

We can answer Q in terms of the given views by: 

fcor(X) :- gp(a,B), ggp(X,B) 
cl 

Solving Queries in Terms of Views 

The fundamental work on how to find an expression 
for a given query in terms of views is Levy, Mendelzon, 
Sagiv, and Srivastava [1994]. This paper handles the 
case where both the views and the query are CQ’s. 

Rajaraman, Sagiv, and Ullman [1994] extends the 
latter to the case where the views have “binding pat- 
t ems” ; that is, the source can only answer a query in 
which one or more arguments are bound. An example 
of this situation is a bibliographic source that can find 
a book given an author or an author given a book, but 
cannot answer the query “tell be about all books and 
their authors.” In Example 4, there is a solution only if 
the source of view gp can handle a query with the first 
argument bound, and the source of ggp can handle a 
query with the second argument bound. 

There has also been some progress allowing the 
views to be described by Datalog programs rather than 
CQ’s. Specifically, each Datalog program can be ex- 
panded into a (possibly infinite) set of CQ’s, and we 
may suppose that a source will answer any one of these 
CQ’s. That model covers the case where the source is 
an SQL database, for instance. 

In Papakonstantinou et al. [1995], the test for con- 
tainment of a CQ in a Datalog program is exploited to 
find an expansion of the Datalog program that contains 
a given query. Levy, Rajaraman, and Ullman [1996] 
show how to decide equivalence of a query to some ex- 
pression built from (a finite subset of) the infinite set 
of views that are the expansions of a Datalog program. 
This result extends Levy, Mendelzon et al. [1995] to the 
situation where sources support infinite sets of views 
that are described by a Datalog program. 

Acknowledgements 

This work was supported by NSF grant IRI-92-23405, 
AR0 grant DAAH04-95-1-0192, and USAF contract 
F33615-93-1-1339. 

References 

Chandra, A. K. and P. M. Merlin [1977]. “Opti- 
mal implementation of conjunctive queries in relational 
databases,” Proc. Ninth Annual ACM Symposium on 
the Theory of Computing, pp. 77-90. 

Invited Talks 1347 



Chaudhuri, S. and M. Y. Vardi [1992]. “On the equiva- 
lence of datalog programs,” Proc. Eleventh ACM Sym- 
posium on Principles of Database Systems, pp. 55-66. 

Garcia-MoIina, H., Y. Papakonstantinou, D. Quass, A. 
Rajaraman, Y. Sagiv, J. UUman, and J. Widom [1995]. 
“The TSIMMIS approach to mediation: data models 
and languages,” Second Workshop on Next-Generation 
Information Technologies and Systems, Naharia, Israel, 
June, 1995. 

Levy, A., A. Mendelzon, Y. Sagiv, and D. Srivastava 
[1995]. “Answering queries using views,” Proc. Four- 
teenth ACM Symposium on Principles of Database Sys- 
tems, pp. 113-124. 

Levy, A. Y., A. Rajaraman, and J. J. OrdiIIe [1996]. 
“Querying heterogeneous information sources us- 
ing source descriptions,” ATT Technical Memorandum, 
submitted for publication. 

Levy, A. Y., A. Rajaraman, and J. D. UIIman [1996]. 
“Answering queries using limited external processors,” 
to appear in PODS 1996. 

Levy, A. Y. and Y. Sagiv [1993]. “Queries indepen- 
dent of update,” Proc. International Conference on Very 
Large Data Bases, pp. 171-181. 

Papakonstantinou, Y., A. Gupta, H. Garcia-MoIina, 
and J. D. UIIman [1995]. “A query translation scheme 
for rapid implementation of wrappers,” Fourth DOOD, 
Singapore, Dec., 1995. 

Rajaraman, A., Y. Sagiv, and J. D. UIIman [1995]. 
“Query optimization using templates with binding pat- 
terns,” Proc. Fourteenth ACM Symposium on Princi- 
ples of Database Systems, pp. 105-112. 

Ramakrishnan, R., Y. Sagiv, J. D. UlIman, and M. Y. 
Vardi [1989]. “P roof tree transformation theorems and 
their applications,” Proc. Eighth ACM Symposium on 
Principles of Database Systems, pp. 172-181. 

Saraiya, Y. [1991]. “Subtree elimination algorithms in 
deductive databases,” Doctoral Thesis, Dept. of CS, 
Stanford Univ., Jan., 1991. 

UIIman, J. D. [1994]. “Assigning an appropriate mean- 
ing to database logic with negation,” in Computers as 
Our Better Partners (H. Yamada, Y. Kambayashi, and 
S. Ohta, eds.), pp. 216-225, World Scientific Press. 

Zhang, X. and M. Z. Ozsoyoglu [1993]. “On efficient 
reasoning with implication constraints,” Proc. Third 
DOOD Conference, pp. 236-252. 

1348 A&U-96 


