
Efficient Planning by Gra

Josh his Ambite and Craig A. Knoblock
Information Sciences Institute and Department of Computer Science

University of Southern California
4676 Admiralty Way, Marina de1 Rey, CA 90292

{ambite, knoblock)@isi.edu

Planning involves the generation of a network of ac-
tions that achieves a desired goal given an initial state
of the world. There has been significant progress in the
analysis of planning algorithms, particularly in partial-
order and in hierarchical task network (HTN) planning
(Kambhampati 95; Erol et al. 94). In this abstract we
propose a more general framework in which planning
is seen as a graph rewriting process. This approach
subsumes previous work and offers new opportunities
for efficient planning.

As motivation, we will look at two domains: query
processing in a distributed environment and manu-
facturing operation planning. Distributed query pro-
cessing involves generating an efficient plan to sat-
isfy a user query. This plan is composed of data re-
trieval actions at diverse information sources and oper-
ations on this data (such as join, selection, etc). Some
systems use a general-purpose planner to solve this
problem (Knoblock 95). We have observed that, in
this domain, it is relatively easy to construct an ini-
tial plan, and then transform it using a hill-climbing
search to reduce its cost. The plan transformations
exploit the commutative and associative properties of
the (relational algebra) operators, and the fact that
when a group of operators can be executed together
at a remote information source it is generally more
efficient to do so. Some sample rules are: join-swap,
get(q1, dbl) W (get(q2, db2) W get(a3,&3)) e
get(q2, db2) W (get(ql,Qbl) W get(q3,&3)); and
remote-eval, get(R,db) W get(S,db) * get(R W S,db).
In centralized databases, some domain-specific plan-
ners exploited a similar idea (Graefe and Dewitt 87).

In manufacturing, the problem is to find an econom-
ical plan of machining operations that implement the
desired features of a design. In a feature-based ap-
proach (Nau et al. 95), it is possible to enumerate the
possible actions involved in building a piece by ana-
lyzing its CAD model. It is more difficult to find an
ordering of the operations and the setups that opti-
mize the machining cost. However, similar to query
planning, it is possible to incrementally transform a
(possibly inefficient) initial plan. Often, the order of
actions does not affect the design goal, only the qual-

1376 AAAI-96

ity of the plan, thus actions can commute. Also, it is
important to minimize the number of setups because
fixing a piece on the machine is rather time consuming.
Such grouping of machining operations on a setup is
analogous to evaluating a subquery at a remote infor-
mation source.

A (partial) plan is a labelled graph whose nodes are
actions and whose edges express constraints (ordering,
causal links, etc). In planning by graph rewriting we
allow the substitution of an arbitrary partial plan by
another partial plan. This subsumes the main trans-
formations present in partial-order planners (adding a
new node or linking to a previous one for goal estab-
lishment, adding ordering edges for threat resolution),
and in HTN planners (substituting a non-primitive ac-
tion by a partial plan). We have seen several planning
domains that benefit from expressive plan transforma-
tions (as the query evaluation rules above). We expect
that hill-climbing from a (possibly suboptimal but eas-
ily constructed) initial plan using such transformations
will be efficient for many domains, similarly to (Minton
et al. 92). Moreover, this more expressive planning
language should give users more control over the kind
of solutions they prefer (Kambhampati 95).

References
S. Kambhampati. 1995. A Comparative Analysis of
Partial-Order Planning and Task Reduction Plan-
ning. SIGART 6(1).
K. Erol, D. Nau, and J. Hendler. 1994. UMCP: A
Sound and Complete Planning Procedure for Hierar-
chical Task-Network Planning. AIPS’94.
C. A. Knoblock. 1995. Planning, Executing, Sensing,
and Replanning for Information Gathering. IJ CAI’95.
G. Graefe and D. J. Dewitt. 1987. The EXODUS
Optimizer Generator. SIGMOD’87.
D. S. Nau, S. K. Gupta, and W. C. Regli. 1995. AI
Planning versus Manufacturing-Operation Planning:
A Case Study. IJCAI’95.
S. Minton, M. D. Johnston, A. B. Philips & P.
Laird. 1992. Minimizing Conflicts: A Heuristic Re-
pair Method for Constraint-Satisfaction and Schedul-
ing Problems. Artificial Intelligence, 58(l-3).

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

