
Computing Default Logic Extensions: An lementation

A.P. Courtney and N.Y. Foo G. Antoniou

Basser Department of Computer Science
University of Sydney, NSW 2006, Australia

allenc 1 norman@cs.usyd.edu.au

Computing & Information Technology
Griffith University, QLD 4111, Australia

ga@cit .gu.edu.au

Default logic [3] is a useful formalism for reasoning
with incomplete information, its intuitive characteris-
tics making it particularly suited for applications. Ex-
ten is a system currently capable of computing first-
order Reiter, Justified and Constrained default exten-
sions. It is part of a project to create a full default logic
workbench, with future work involving query evalua-
tion, further support for default variants and integra-
tion with belief revision. As such, it has been imple-
mented in an object-oriented manner, and is designed
to facilitate experimentation. The interface is based
around a small language, giving the user flexibility in
editing default theories and changing various parame-
ters (such as compute next n extensions or carry out
‘success’ checks every m steps).

process - if all are blocked we can conclude that a new
extension has been found. This means that Compute-
Ext will not produce multiple copies of the same ex-
tension.

Theorem 1. Let OTT = n-1 0 ~2 be a successful path
of the process tree, closed under the defaults currently
available (Drest). Further suppose that no default was
added to Dout during the construction of ~2. Then no
new extensions can be found by expanding the process
tree under n-1.

In many cases this will substantially reduce t,he
search tree size. The method has a local effect to the
search tree, ie. beneath ~1. In contrast, a more general
method with a global effect is as follows.

Default reasoning is known to be computationally
hard. One efficiency increasing technique used in Ex-
ten is stratification [l] which, if applicable, allows the
computation of extensions in a modular way. Exten
uses a forward-chaining approach and applies addi-
tional pruning techniques, some of which are outlined
below.

Theorem 2. Let r be a maximally successful path of
the process tree T = (W,D). Let M be the set of defaults
in D (including those in Dout) that are blocked or failed
along this path. Then every new extension computed
after n- must contain at least one default from IV. M is
called a goal.

PROCEDURE Compute-Ext(II, Drest, Dout)
NotClosed := false;
M := { 6 E Drest 1 pre(d) E In(II) } = { 61,. . . ,6, };
FOR i := 1 TO n DO

Drest := Drest - { & };
IF &!I E just(&) are consistent with In(II) THEN

Compute-Ext(II o &, Drest, Dout);
NotClosed := true;

Dout := Dout u { Si };

Instead of trying every available default at a given
node, theorem 2 shows us that if a goal is applicable
we only need to expand those subtrees starting with
defaults in M. Different goals may be used at nodes
along a path, with Exten using a heuristic prefering
shorter goals.

IF NotClosed = false THEN
IF ‘~‘6 E Dout are blocked by In@) THEN

ext := ext U { In(II) };

(failure checking not shown, In(II) refers to the knowl-
edge state where II is the current default chain)

A final comment is that all pruning methods de-
scribed are general purpose in the sense that they apply
to arbitrary default theories. We have already found
they integrate well with stratification, and it seems
plausible that other techniques could be added to offer
further reductions in specific cases (Exten already in-
corporates some optimixations for theories with normal
defaults). Proofs for the given theorems and algorithm
can be found in [2].

When a default & has its prerequisite met at a node
in the process tree (the map of default application
chains used), all extensions containing 6i can be found
underneath this node. Thus & can be safely removed
from the set of available defaults Drest, resulting in
smaller subtrees for remaining extensions and effective
use of common tree branches. The justifications of de-
faults in Dout are checked when testing for closure of a

References
[l] Cholewinski, P. Stratified Default Theories. Proc.
Computer Science Logic 1994, Springer LNCS 993
[2] Courtney, A.P. Towards a Default Logic Work-
bench: Computing Extensions. Hons Thesis, Basser
Dep. of Computer Science, University of Sydney, 1995.
[3] Reiter, R. A Logic for Default Reasoning. Artificial
Intelligence 13(1980): 81-132

Student Abstracts 1381

From: AAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

