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Bayes’ theorem tells us how to optimally predict the 
class of a previously unseen example, given a training 
sample. The chosen class should be the one which max- 
imizes P(CilE) = P(Ci) P(EICi) /P(E), where Ci is 
the ith class, E is the test example, P(YIX) denotes 
the conditional probability of Y given X, and proba- 
bilities are estimated from the training sample. Let an 
example be a vector of a attributes. If the attributes 
are independent given the class, P(EICi) can be decom- 
posed into the product P(vlICi) . . . P(va(Ci), where v.j 
is the value of the jth attribute in the example E. 
Therefore we should predict the class that maximizes: 

P(CilE) = 

This procedure is often called the naive Bayesian 
class$er. Here we will prefer the term simple, and 
abbreviate to SBC. The SBC is commonly thought to 
be optimal, in the sense of achieving the best possible 
accuracy, only when the “independence assumption” 
above holds, and perhaps close to optimal when the 
attributes are only slightly dependent. However, this 
very restrictive condition seems to be contradicted by 
the SBC’s surprisingly good performance in a wide vim 
riety of domains, including many where there are clear 
dependencies between the attributes. In a study on 28 
datasets from the UC1 repository, we found the SBC 
to be more accurate than C4.5 in 16 domains, and sim- 
ilarly for CN2 and PEBLS. Other authors have made 
similar observations, but no interpretation has been 
proposed so far. Here we shed some light on the mat- 
ter by showing that the SBC is in fact optimal even 
when the independence assumption is grossly violated, 
and thus applicable to a far broader range of domains 
than previously thought. 

The key to this result lies in the distinction between 
classification and probability estimation. Equation 1 
yields a correct estimate of the class probabilities only 
when the independence assumption holds; but for pur- 
poses of classification, the class probability estimates 
can diverge widely from the true values, as long as 
the maximum estimate still corresponds to the max- 
imum true probability. For example, suppose there 
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are two classes + and -, and let P(+IE) = 0.51 and 
P(-IE) = 0.49 be the true class probabilities given 
example E. The optimal decision is then to assign E 
to class +. Suppose also that Equation 1 gives the 
estimates p(+IE) = 0.99 and a(-]E) = 0.01. The in- 
dependence assumption is violated by a wide margin, 
and yet the SBC still makes the optimal decision. 

Consider the general two-class case. Let the classes 
be + and -, p =“P(+lE), T = s ny=, P(vj)+), and 

s = $& ny=, P(zQ(-). The SBC is optimal iff: 

(P2$Ar>s)V(p<+Ar<s) (2) 

The space U of values of (p, r, s) that correspond to 
valid probability combinations is a subspace of the unit 
cube [0, 113, and its projection on all planes p = k is 
the same. It is easily shown that Condition 2 holds 
in exactly half the total volume of U. In contrast, 
by the independence assumption the SBC would be 
optimal only on the line where the planes r = p and 
S = 1 -p intersect. Thus the previously assumed region 
of optimality of the SBC is a second-order infinitesimal 
fraction of the actual one. 

The SBC will be the optimal classifier in the entire 
example space iff Condition 2 holds for every possi- 
ble combination of attribute values. For this reason, 
the fraction of all possible concepts on a attributes for 
which the SBC is optimal everywhere decreases expo- 
nentially with a, starting at 100% for a = 1. However, 
a similar statement is true for other learners, given a 
fixed training set size. 

Testing Condition 2 directly for all combinations of 
values will generally be infeasible; see (Domingos & 
Pazzani 1996) for a number of more easily tested con- 
ditions. In summary, the work reported here demon- 
strates that the SBC has a far greater range of appli- 
cability than previously thought, and suggests that its 
use should be considered more often. 
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