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Autonomous agents functioning in complex and 
rapidly changing environments can improve their task 
performance if they update and correct their world 
model over the life of the agent. Existing research on 
this problem can be divided into two classes. First, 
reinforcement learners that use weak inductive meth- 
ods to directly modify an agent’s procedural execution 
knowledge. These systems are robust in dynamic and 
complex environments but generally do not support 
planning or the pursuit of multiple goals and learn 
slowly as a result of their weak methods. In con- 
trast, the second category, theory revision systems, 
learn declarative planning knowledge through stronger 
methods that use explicit reasoning to identify and cor- 
rect errors in the agent’s domain knowledge. However, 
these methods are generally only applicable to agents 
with instantaneous actions in fully sensed domains. 

This research explores learning procedural planning 
knowledge through deliberate reasoning about the cor- 
rectness of an agent’s knowledge. As the system, IM- 
PROV, uses a procedural knowledge representation it 
can efficiently be extended to complex actions that 
have duration and multiple conditional effects, taking 
it beyond the scope of traditional theory revision sys- 
tems. Additionally, the deliberate reasoning about cor- 
rectness leads to stronger, more directed learning, than 
is possible in reinforcement learners. 

An IMPROV agent’s planning knowledge is repre- 
sented by production rules that encode preconditions 
and actions of operators. Plans are also procedurally 
represented as rule sets that efficiently guide the agent 
in making local decisions during execution. Learn- 
ing occurs during plan execution whenever the agent’s 
knowledge is insufficient to determine the next action 
to take. This is a weaker method than traditional plan 
monitoring, where incorrect predictions trigger the cor- 
rection method, as prediction-based methods perform 
poorly in stochastic environments. 

IMPROV’s method for correcting domain knowledge 
is primarily based around correcting operator precon- 

ditions. This is done by generating and executing alter- 
native plans in decreasing order of expected likelihood 
of reaching the current goal. Once a successful plan 
has been discovered, IMPROV uses an inductive learn- 
ing module to correct the preconditions of the opera- 
tors used in the set of k plans (successes and failures). 
Each operator and whether it lead to success or fail- 
ure is used as a training instance. This k-incremental 
learning is based on the last k instances and results 
in incremental performance which is required in do- 
mains that are time-critical. K-incremental learning is 
stronger than traditional reinforcement learning as the 
differences between successful plans and failed plans 
lead to better credit assignment in determining which 
operator(s) were incorrect in the failed plans and how 
the operator’s planning knowledge was wrong. 

Actions are corrected by recursively re-using the 
precondition correction method. The agent’s domain 
knowledge is encoded as a hierarchy of operators of pro- 
gressively smaller grain size. The most primitive op- 
erators manipulate only a single symbol, guaranteeing 
they have correct actions. Incorrect actions at higher 
levels are corrected by changing the preconditions of 
the sub-operators which implement them. For exam- 
ple, the effects of a brake operator are encoded as more 
primitive operators which modify the car’s speed, tire 
condition etc. IMPROV’s correction method is recur- 
sively employed to change the preconditions of these 
sub-operators and thereby correct the planning knowl- 
edge associated with the brake operator’s actions. This 
method allows IMPROV to learn complex actions with 
durations and conditional effects. 

The system has been tested on a robotic simula- 
tion and in driving a simulated car. We have demon- 
strated that k-incremental learning outperforms sin- 
gle instance incremental learning and that a procedu- 
ral representation supports correcting complex non- 
instantaneous actions. We have also shown noise- 
tolerance, tolerance to a large evolving target domain 
theory and learning in time-constrained environments. 
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