
A Situated Vacuuming Robot 

D. Bruemmer, R. Dickson, J. Dilatush, D. Lewis, H. Mateyak 
M. Mirarchi, M. Morton, J. Tracy, A. Vorobiev, and L. Meeden 

Computer Science Program, Swarthmore College 
Swarthmore, PA 19081 

meeden@cs.swarthmore.edu 

We undertook this project as an opportunity to ex- 
plore design ideals of the embodied approach. At our 
disposal was a Pioneer robot and its Saphira soft- 
ware (ActivMedia 1996). Similar to subsumption ar- 
chitecture (Brooks 1986), the Saphira software tackles 
the dilemma of how to implement layered control de- 
sign within a system which is inherently centralized. 
Brooks saw each layer as a simple and almost inde- 
pendent computational entity and, likewise, Saphira 
allows us to create a hierarchy of behaviors that each 
have the capacity to function simultaneously and yet 
asynchronously. Just as Brooks proposed a means by 
which one level can subsume a lower level by inhibiting 
its output, so behaviors can each be assigned a priority. 

The main strength of Saphira’s behavioral approach 
is not its ability to subsume or inhibit, but rather its 
capacity to blend behaviors. Non-conflicting behaviors 
run simultaneously and independently. If behaviors do 
conflict, their output can be combined in a number of 
ways. For example, if TurnSUDegrees has highest prior- 
ity and gives commands on the turn channel and Con- 
stant_VeZocity is of lower priority and gives commands 
on the speed channel, then both behaviors will run 
completely independently. However, if TurnSODegrees 
gives commands on the speed channel, those com- 
mands override the activity of Constant_ Velocity. If in- 
stead, both Constant-Velocity and TurnSODegrees have 
equal priorities then their activities will be blended, al- 
lowing smooth transitions between them. 

Vacuuming Strategies 

We are considering three different approaches to 
achieving full coverage for a given room.. One approach 
utilizes genetic programming to generate an algorithm 
that effectively vacuums the room, while the other two 
focus on designing behaviors for the robot to traverse 
the floor in a pre-specified pattern (the North/South 
and Concentric Squares methods). We plan on com- 
paring all three approaches in a variety of room envi- 
ronments to measure their relative utilities. 

Copyright 01997, American Association for Artificial In- 
telligence (www.aaai.org). All rights reserved. 

North/South. The robot begins in the southwest 
corner of the room, facing north. The robot then traces 
a path of north-south lines through the room, while 
avoiding large obstacles (see Figure 1). When the robot 
is in its North behavior, it simply travels north in a 
straight line until it either senses an obstacle directly 
in front of it or senses that it has just passed an object 
immediately on its left. If it senses an obstacle directly 
in front of it, the robot moves east one robot’s width, 
turns to face south, and enters its South behavior. Dur- 
ing North, if the robot senses that it has just passed 
an object immediately on its left, the robot switches to 
a TraverseObstacle behavior in which it turns to face 
east and follows the top edge of the object on its left. 
When the robot senses that this edge has dropped off, 
it turns to face north and returns to the North behav- 
ior, vacuuming the area of the room that lies north of 
the piece of furniture. During South, the robot moves 
due south until it senses an obstacle in front of it, in 
which case it moves east one robot’s width, faces north, 
and changes to the North behavior. In designing this 
algorithm, we attempted to rely as little as possible 
on computing the robot’s estimated position within a 
map. Instead, we used only the robot’s sensor readings 
as criteria for determining the robot’s path. 

Figure 1: Illustrations of the North/South (left) and 
Concentric Square (right) approaches. 

Concentric Squares. The first step of this method 
is to represent the structure of a room in the internal 
coordinate system of the Saphira interface. The next 
step is to locate a series of goals in the coordinate sys- 

MOBILE ROBOT COMPETITION 783 

From: AAAI-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



tern. The goals should be positioned so that, if the 
robot were to move in a straight line from each goal to 
the next goal in the series, it would cover all the space 
in the room (see Figure 1, note that the goals are de- 
picted as small squares). There are four behaviors that 
characterize the robot’s action as it moves through the 
series of goals: Avoid turns the robot away from ob- 
jects before it hits them, Straight turns the robot back 
to the straight line between its last goal and its next 
goal, Seek turns the robot toward its current goal and 
replaces the current goal with the next goal when the 
current goal is achieved, and Wander is the default 
behavior. 

The combination of these behaviors leads to the fol- 
lowing action sequence in the case of an obstacle: first, 
the robot slows and turns to avoid collision; next, it 
wanders until it is free of the obstacle; finally, it re- 
sumes the course it was following before it encountered 
the obstacle. This sequence of behaviors has the advan- 
tage that the space on the opposite side of an obstacle 
is not neglected once the obstacle has been avoided. 
The approach as a whole, however, is risky because of 
the inaccuracy of the robot’s dead reckoning system. 

Genetic Programming. In GP (Koza 1994), the 
idea is to first generate a collection of random pro- 
grams, building from a pool of relatively simple func- 
tions, to control the robot’s behavior. Each program 
is given a fitness-a measure of how well it performs. 
Akin to natural evolution, this population of random 
programs undergoes a simulated version of natural se- 
lection and reproduction to produce a new and hope- 
fully better population of programs. In GP, the com- 
puter generates the programs rather than human de- 
signers. It is our hope that this approach may create 
innovative control strategies. 

Special Considerations 

Aside from designing algorithms to vacuum the floor, 
we have had to tackle a few other problems. Two of 
those problems are the inaccuracy of dead reckoning, 
and the difficulty of short distance obstacle avoidance 
using only the sonar readings of the Pioneer robot. 

Dead Reckoning. The Saphira software keeps an 
estimate of the robot’s global position. While good 
enough to correlate sonar readings over time, this es- 
timate is not sufficiently accurate to keep the robot’s 
position on a map over a long interval. Our code ex- 
tends the accuracy of this estimate by comparing sonar 
readings with the arrangement of items near the robot 
on a map. First, the program attempts to fit a straight 
line to the point locations of recent sonar readings. It 
discards points until the remaining data can be fit with 
acceptably small error. If a fit is found without discard- 
ing too many points, the program assumes that a wall 
has been detected. It then scans the map, trying to 

Photo 
Resistor A 

Power 

Robot 

Figure 2: Circuit schematic 

find a line segment with position and orientation, rel- 
ative to the robot’s estimated situation, most similar 
to that of the observed line. If the map segment found 
is similar enough, it is assumed to correspond to the 
observed segment. Any disparity between the two is 
therefore assumed to represent the difference between 
the actual and estimated position of the robot, and the 
estimate is adjusted accordingly. 

Close-range obstacle avoidance. We found that 
the sonar sensors provided with the robot were insuf- 
ficient to reliably detect objects within one foot of the 
robot. We decided to add visible light sensors based 
on photo resistors, instead of infrared, because of cost 
considerations. Eight sensor modules are attached to 
the robot, two per side. Each sensor module consists of 
three photo resistors, three standard resistors, a light 
source, two comparators, and an OR gate. All compo- 
nents are mounted on a vertical member attached to 
the side of the robot. One photo resistor is mounted 
facing up on the top of assembly. The other two photo 
resistors are mounted facing horizontally, at the top 
and bottom. The light is mounted horizontally in the 
middle. The components are then connected as de- 
tailed in Figure 2. (Photo Resistors A, B, and C corre- 
spond to vertical, top, and bottom.) Under standard 
lighting conditions this assembly can sense walls up to 
four inches away, under half light, the range extends 
to one foot. 

References 
ActivMedia, Inc. 1996. Pioneer 1 Mobile Robot 
Saphira Software Manual, Version 4.1.2. 

Brooks, R. 1986. A Robust Layered Control System 
for a Mobile Robot. IEEE Journal of Robotics and 
Automation, March 1986, 14-23. 

Koza, J. R. 1994. Introduction to Genetic Program- 
ming. In Advances in Genetic Programming. 21-42. 
MIT Press, Cambridge, MA. 

784 MOBILE ROBOT COMPETITION 


