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ABSTRACT

Beam search executes a search method, such
as best-first search or depth-first search, but
may abandon nonpromising search avenues in
order to reduce complexity. Although it has
existed for more than two decades and has
been applied to many real-world problems,
beam search still suffers from the drawback
of possible termination with no solution or a
solution of unsatisfactory quality. In this pa-
per, we first propose a domain-independent
heuristic for node pruning, and a method to
reduce the possibility that beam search will
fail. We then develop a complete beam search
algorithm. The new algorithm can not only
find an optimal solution, but can also reach
better solutions sooner than its underlying
search method. We apply complete beam
search to the maximum boolean satisfiability
and the symmetric and asymmetric Traveling
Salesman Problems. Our experimental results
show that the domain-independent pruning
heuristic is effective and the new algorithm
significantly improves the performance of its
underlying search algorithm.

1 Introduction

Beam search [2] executes a state-space search al-
gorithm, such as best-first search or depth-first
search [16], but may use heuristic pruning rules to dis-
card nonpromising search alternatives that seem un-
likely to lead to a solution or appear to lead to a solu-
tion of unsatisfactory quality. Heuristic pruning keeps
the size of the beam, the remaining search alternatives,
as small as possible, in order to possibly find a solu-
tion quickly. The idea of beam search is simple, and
has been successfully applied to many different prob-
lems, such as learning [4], jobshop scheduling [5], speech
recognition [12], planning [14], and vision [19].

Despite the fact that beam search has existed for more
than two decades and has been applied to many real-

world applications, it has not been carefully studied.
Beam search is a heuristic technique used to reduce
search complexity. It has, however, a serious drawback
of possible termination with no solution or a solution of
unsatisfactory quality. In other words, beam search is
an incomplete algorithm that is not guaranteed to find a
solution even if one exists. The pruning power and pos-
sibility of finding a solution depend on the accuracy of
the pruning rules used. Effective heuristic rules are gen-
erally problem dependent, and their effectiveness comes
from deep understanding of the problem domains. In
practice, it is difficult to find effective heuristic rules
that can strike the right balance of finding a desired
goal and using the minimal amount of computation.

In this paper, we first propose a domain-independent
heuristic pruning rule that uses only heuristic node
evaluations (Section 3), and a method to increase the
possibility that beam search finds a solution (Section 4).
We then develop a complete anytime beam search al-
gorithm that is able to continuously find better solu-
tions and eventually reach an optimal solution (Sec-
tion 5). We apply complete anytime beam search to
the maximum boolean satisfiability and the symmet-
ric and asymmetric Traveling Salesman Problems, and
investigate the anytime feature of the new algorithm
on these real problems (Section 6). We discuss related
work in Section 7, and finally conclude in Section 8.

2 Beam Search

Beam search runs a state-space search method, such
as best-first search (BFS) or depth-first search (DFS).
What sets beam search apart from its underlying search
is the use of heuristic rules to prune search alternatives
before exploring them. Note that these heuristic prun-
ing rules are different from the pruning rule based on
monotonic node costs and an upper bound o~ on the cost
of an optimal goal. To make the paper self contained,
we list beam search in Table 1, where R represents the
set of heuristic pruning rules, and c(n) is the cost of n.

Beam search can use any strategy, such as best first or
depth first, to select a node at line 3 of Table 1. The
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Table h Beam search. Table 2: Complete beam search algorithm.
BeamSearch(problem, I~, ~)

1. open ~- {problem};
2. WHILE (open ~ ~)
3. n ~-- a node in open;
4. If (n is a desired goal) exit;
5. If (n is a goal ~ e(n)<~) ~ ~c(n);
6. Remove n from open;
7. Generate all children of n;
8. Discard a child n’ if c(n’)>_ 
9. Discard n’ if pruned by a rule in R;

10. Insert remaining children into open.

only difference between beam search and its underly-
ing search method is line 9 of Table 1, where heuristic
pruning rules are used to prune nodes. The algorithm
terminates in two cases. It may stop when a required
goal node is reached at line 4. It may also terminate
when no node is left for further exploration, which is a
failure if a goal exists. This failure makes beam search
incomplete, an unfavorable feature for practical use.

3 Domain-Independent Pruning Rule

Whether or not beam search can find a solution de-
pends on the heuristic pruning rules it uses. Accurate
heuristic rules can provide strong pruning power by
eliminating the nodes that do not need to be explored.
On the other hand, effective heuristic pruning rules are
generally domain dependent and require a deep under-
standing of problem domains.

In this research, we are interested in domain-
independent heuristic pruning rules. We propose one
such pruning rule in this section. It uses information of
static heuristic evaluations of the nodes in a state space.
Without loss of generality, we assume that heuristic
node evaluation function is monotonically nondecreas-
ing with node depth.

Consider a node n and its child node n’ in a state
space. Let c(n) be the static heuristic evaluation or
static node cost of n. If c(n’) exceeds c(n) by 6, i.e.,
c(n’) > c(n) + then n’ is discarded, where 6 i s a
predefined, positive parameter. Thus, a smaller 6 rep-
resents a stronger pruning rule. This heuristic pruning
rule was derived from the intuition that if a child node
has a significantly large cost increase from its parent,
it is more likely that the child may lead to a goal node
with a large cost. The effectiveness of this rule will be
examined in Section 6.

4 Reducing Failure Rate

The use of heuristic pruning rules in beam search is a
two-edged sword. On one side, it reduces the amount

CompleteBeamSearch(problem, R, ~)
D0

Call HeamSearch(problem, R, eL);
Weaken heuristic pruning rules in R;

WHILE (no desired goal found ¯ a rule E R
applied in the last iteration)

of search, solving some problems in reasonable time.
On the other side, however, it runs the risk of missing
a solution completely, making it incomplete and inap-
plicable to some applications. When beam search fails
to find a solution, its heuristic pruning rules abandon
too many search alternatives. The pruned nodes are
deadend nodes, which do not have children, as far as
beam search is concerned.

The idea of increasing the possibility of reaching a goal
node is to reduce the possibility of creating deadends.
When a node has children, the pruning may be too
strong if all its child nodes are discarded. Instead of
abandoning all children based on the pruning rules,
keeping at least one child will prevent treating the cur-
rent node as a deadend. We call this a modification
rule, a meta rule that governs how the pruning rules
should be used. To find a high-quality goal node, the
modification rule chooses to explore the child node that
has the minimum cost among all the children.

5 Complete Anytime Beam Search

We have developed a complete beam search algorithm
(CBS) using a technique called i~erative weakening [18].
The algorithm is simple and straightforward. It it-
eratively runs a series of beam searches using weaker
heuristic pruning rules in subsequent iterations.

5.1 The algorithm

Specifically, the algorithms runs as follows. It first
runs the original beam search. If a desired solution is
found, the algorithm terminates. Otherwise, the heuris-
tic pruning rules are weakened, and the algorithm runs
another iteration of beam search. This iterative pro-
cess continues until a required solution has been found,
or no heuristic pruning rule was applied in the last it-
eration. The latter case means that either no required
solution exists, or the solution found so far is optimal,
because the last iteration runs the underlying BFS or
DFS (which is guaranteed to find an optimal solution).
This case also means that this algorithm is complete.
Table 2 lists the complete beam search algorithm.

When domain-specific pruning rules are used, we can
reduce the number of pruning criteria or remove in-
dividual components in pruning rules to reduce their



pruning power. For the domain-independent pruning
rule suggested in Section 3, we can increase the param-
eter 6 to make the rule weak. Recall that a child node
n’ will be pruned if its cost c(n’) is greater than the
cost of its parent c(n) by 5. By increasing 5, we reduce
the possibility of pruning the child node.

5.2 Anytime feature

Anytime algorithms [3] are an important class of al-
gorithms for real-time problem solving. An anytime
algorithm first finds a solution quickly, and then suc-
cessively improves the quality of the best solution found
so far, as long as more computation is available. CBS
is an anytime algorithm for solving combinatorial op-
timization problems. The state spaces of combinato-
rial optimization problems, such as those considered in
Section 6, have leaf nodes that are goal states. When
solving these problems, CBS can find a solution quickly
in an early iteration, and continuously find better solu-
tions in subsequent iterations.

When using best-first search (BFS) as its underlying
search method, CBS turns BFS into an anytime search
algorithm. Note that BFS does not provide a solution
until its termination [16]. By using heuristic pruning
rules, an iteration of CBS searches a small portion of
the state space that is examined by the full BFS, and
may obtain a suboptimal solution quickly. With weaker
pruning rules, a larger portion of the state space will be
explored in order to find better solutions. By repeat-
edly using weaker pruning rules, CBS can incrementally
find better solutions until it visits an optimal solution.

Now consider depth-first search (DFS). DFS is an any-
time algorithm by nature [22], as it systematically ex-
plores leaf nodes of a state space. Based on our exper-
iments on random search trees, CBS significantly im-
proves DFS’ anytime feature, finding better solutions
sooner. The real challenge is whether complete beam
search can outperform DFS on real problems. This
question will be favorably answered in the next section.

6 Applications

In this section, we apply the complete beam search
(CBS) algorithm and the domain-independent heuristic
pruning rule of Section 3, plus the modification rule of
Section 4, if necessary, to three NP-complete [15] com-
binatorial optimization problems, the maximal boolean
satisfiability and the symmetric and asymmetric Trav-
eling Salesman Problems. The purpose of this experi-
mental study is to examine the anytime feature of CBS
and the effectiveness of the domain-independent prun-
ing rule. In our experiments, we use DFS as CBS’
underlying search method, and compare CBS’ perfor-
mance profile [23] against that of DFS.

The performance profile of an algorithm characterizes

the quality of its output as a function of computation
time. Denote prof(A, t) as the performance profile of
algorithm A. We define prof(A, t) 

prof(A, t) = 1 - error(A, (1)

where error(A,t) is the error of solution cost of A at
time t relative to the optimal solution cost. During
the execution of A, prof(A,t) 1;andat t he end of
its execution, prof(A, t) = 1. In our experiments, we
compare prof(CBS, t) against prof(DFS, t).

Our domain-independent heuristic pruning rule uses a
parameter 5. In order to set the value of 6 properly,
we need information about how much the cost of a
node will increase from that of its parent. It would
be ideal if we knew the distribution of cost differences
between nodes and their parents for a given applica-
tion. Such information has to be collected or learned
from the problems to be solved. This can be done in
two ways. The first is ofltine sampling. If some sam-
ple problems from an application domain are available,
we can first solve these problems using BFS or DFS,
and use the costs of the nodes encountered during the
search as samples to calculate an empirical distribution
of node-cost differences. The second method is online
sampling, which can be used when sample problems are
not provided: Using this sampling method, the first it-
eration of CBS does not apply heuristic pruning rules
until a certain number of nodes have been generated. In
our experiments presented in the rest of this section, we
use the online sampling method and DFS as CBS’ un-
derlying search method. In our implementation, CBS
does not use pruning rules until it has reached the first
leaf node. All the nodes generated in the process of
reaching the first leaf node are used as initial samples
for computing an empirical distribution.

Using the empirical distribution of node-cost differ-
ences, we can set parameter 6. What value of 5 to use
in the first iteration and how it is updated from one
iteration to the next are critical factors that directly
determine CBS’ performance. In general, these factors
must be dealt with on a case by case basis, depending
on the applications. In our experiments on the follow-
ing three combinatorial problems, the initial 5 is set to
a value 6i such that a node-cost difference is less than
6i with probability p equal to 0.1. The next iteration
increases probability p by 0.1, and so forth, until the
heuristic pruning rule has not been used in the latest
iteration or probability p is greater than 1.

Due to space limitations, in the following discussions
we will be brief on our implementations of DFS on the
three problems.

6.1 Maximum boolean satisfiability

We are concerned with boolean 3-satisfiability (3-Sat),
a special case of the constraint-satisfaction problem
(CSP). A 3-Sat involves a set of boolean variables, and
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Figure 2: CBS vs. DFS on the symmetric TSP.

a set of disjunctive clauses of 3 literals (variables and
their negations) which defines constraints of acceptable
combinations of variables. There are many practical
CSPs in which no value assignment can be found that
does not violate a constraint; see [6] for discussion and
references therein. In this case, one option is to find an
assignment such that the total numbm" of satisfied con-
straints is maximized. In our experiment, we consider
maximum 3-Sat.

Maximum 3-Sat can be optimally solved by DFS as fol-
lows. The root of the search tree is the original problem
with no variable specified. One variable is then chosen
and set to either true or false, thus decomposing the
original problem into two subproblems. Each subprob-
lem is then simplified as follows. If the selected variable
is set to true, a clause can be removed if it contains this
variable. A clause can also be discarded if it contains
the negation of a variable that is set to false. Further-
more, a variable can be deleted from a clause if the
negation of the literal is set to true. Since the two val-
ues of a variable are mutually exclusive, so are the two
subproblems generated. Therefore, the state space of
the problem is a binary tree without duplicate nodes.
The cost of a node is the total number of clauses vi-
olated, which is monotonically nondecreasing with the
depth of the node. In our implementation of DFS, we
use the most occurrence heuristic to choose a variable;
in other words, we choose an unspecified variable that
occurs most frequently in the set of clauses.

We generated maximum 3-Sat problem instances by
randomly selecting three variables and negating them
with probability 0.5 for each clause. Duplicate clauses
were removed. The problem instances we used have
a large ratio of the number of clauses to the number
of variables (clause to variable ratio), since random 
Sat problems with a small clause-to-variable ratio are
generally satisfiable [13].

In our experiments, we studied the effects of the mod-
ification rule proposed in Section 4, which will explore
the best child node if the two children of a node are

pruned by the heuristic pruning rule. On random 3-
Sat, CBS without the modification rule cannot com-
pete with DFS. This is due to two factors. The first is
the small branching factor 2 of the state space, so that
deadend nodes can be easily generated if the modifica-
tion rule is not applied. The second is that the initial
value of S is too small, thus most early iterations of
CBS cannot find a solution at all. However, CBS with
the modification rule is significantly superior to DFS.

Figure 1 shows the experimental result of CBS using
the modification rule on 3-Sat with 30 variables and 450
clauses, averaged over 100 random problem instances.
The vertical axis presents the performance profiles of
CBS and DFS, and the horizontal axis is the num-
ber of nodes generated. The comparison has an almost
identical picture when the horizontal axis is plotted in
terms of CPU time on a SUN Sparc 2 machine, as the
time spent for online sampling is negligible. Figure 1
shows that CBS significantly improves the anytime per-
formance of DFS, finding better solutions sooner.

6.2 The symmetric TSP

Given n cities {1, 2, ..., n} and a cost matrix (ci,j) that
defines a cost between each pair of cities, the Travel-
ing Salesman Problem (TSP) is to find a minimum-cost
tour that visits each city once and returns to the start-
ing city. When the cost from city i to city j is the
same as that from city j to city i, the problem is the
symmetric TSP (STSP).

In our implementation of DFS, we use the Held-Karp
lower bound function [9] to compute node costs. This
function iteratively computes a Lagrangian relaxation
on the STSP, with each step constructing a 1-tree. A
1-tree is a minimum spanning tree (MST) [15] on n - 
cities plus the two shortest edges from the city not in
the MST to two cities in the MST. Note that a complete
TSP tour is a 1-tree. If no complete TSP tour has been
found after a predefined number of steps of Lagrangian
relaxation, which is n/2 in our experiment, the problem
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is decomposed into at most three subproblems using the
Volgenant and 3onker’s branching rule [20]. Under this
decomposition rule, the state space of the STSP is a
tree without duplicate nodes.

We generated STSP problem instances by uni-
formly choosing a cost between two cities from
{0, 1, 2,..., 232- 1}. The experiment results show that
CBS without the modification rule of Section 4 is sub-
stantially degenerated from DFS, due to the same rea-
sons described in Section 6.1, on maximum 3-sat.

Figure 2 shows the experimental result of CBS with
the modification rule on 100-city random STSPs, aver-
aged over 100 problem instances. The vertical axis still
presents the performance profiles of CBS and DFS. The
horizontal axis is the numbers of 1-trees solved by both
algorithms. We do not use the number of tree nodes
generated as a time measure, because generating a node
requires the solution of one to n/2 1-trees based on La-
grangian relaxation, and the CPU time is proportional
to the number of 1-trees solved. Figure 2 shows that
CBS improves DFS on random STSPs.

6.3 The asymmetric TSP

When the cost from city i to city j is not necessar-
ily equal to that from city j to city i, the TSP is the
asymmetric TSP (ATSP). The most efficient approach
known for optimally solving the ATSP is subtour elim-
ination, with the solution to the assignment problem
(AF) as a lower-bound function [1]. The AP is to as-
sign to each city i another city j, with the cost from i
to j as this assignment, such that the total cost of all
assignments is minimized. An AP is a relaxation on the
ATSP without the requirement of a complete tour. See
[1] for the details of this algorithm. In short, the prob-
lem space of subtour elimination can be represented by
a tree with maximum depth less than n2. We used this
algorithm in our experiments.

It is worth mentioning that the branching factor of an

ATSP state space is large, proportional to the number
of cities. Therefore, the modification rule of Section 4
does not matter much. In fact, the experimental result
of CBS with the modification rule is slightly worse than
that without the modification rule.

We used random ATSP in our experiments. The
costs among cities were uniformly chosen from
{0, 1, 2,. ¯., 2a2 - 1}. Figure 2 shows the experimental
results of CBS without the modification rule on 200-city
random ATSP, averaged over 100 instances. Figure 3
shows that CBS outperforms DFS on random ATSPs.

7 Related Work and Discussions

A restricted version of beam search was defined in [21],
which runs breadth-first search, but keeps a fixed num-
ber of nodes active on each depth. The definition used
in this paper follows that in [2] and is more general.
The most closely related work on beam search is the
early applications of beam search to various problems
which demonstrated its effectiveness [2, 4, 5, 12, 14, 19].

CBS is a combination of beam search heuristics and
iterative weakening [18]. Iterative weakening directly
follows iterative deepening [11] and iterative broaden-
ing [7]. They all repeatedly apply a search process, but
with stronger or weaker parameters in different passes.
It has been shown that a given set of search policies
should be applied in an increasing order of the search
complexities that these policies incur [18].

CBS bears a close similarity to iterative broadening.
Briefly, iterative broadening first carries out a search
with a breadth limit of two, and if it fails, the algo-
rithm repeats the search with breadth limit of three,
and so on, until it finds a solution. Early passes of both
algorithms comb through the state space for better so-
lutions, and they gradually extend the coverage of their
exploration by increasing the search breadth. The dif-
ference between these two algorithms is that iterative
broadening extends its search breadth in a predeter-
mined fashion, while CBS broadens its search depend-
ing on how heuristic pruning rules are weakened. If we
treat the way that search breadth is extended in a pre-
defined way as a special heuristic, iterative broadening
can then be considered as a special case of CBS.

CBS using the domain-independent pruning rule of Sec-
tion 3 is symmetric to Epsilon search [17]. In Epsilon
search, a node with a cost no greater than its parent’s
cost plus e is treated as if it has the same cost as its
parent, so as to force an early exploration of the node,
while in CBS a node with cost greater than its parent’s
cost plus 8 is considered as if it has an infinitely large
cost, so as to postpone the exploration of the node.

Anytime algorithms are important tools for problem
solving in a real-time setting and with resource con-
straints [3, 10, 23]. Although it is well known that



many search methods, such as depth-first search and
local search, can be used as anytime algorithms, little
work has been done to improve their anytime perfor-
mance, except that of [8, 17]. In [8], non-admissible
heuristic search runs as an anytime algorithm. CBS is
more similar to Epsilon search [17], since both manip-
ulate state space during their searches.

8 Conclusions

In this paper, we made beam search heuristics into
a complete search algorithm, called complete beam
search (CBS), by using the iterative weakening tech-
nique. CBS can not only find an optimal solution, but it
also reaches better solutions sooner than its underlying
search method. CBS is an anytime algorithm for solv-
ing combinatorial optimization problems. We also pro-
posed a domain-independent node pruning heuristic.
We applied CBS and the domain-independent heuris-
tic pruning rule to three NP-complete optimization
problems, the maximum boolean satisfiability and the
symmetric and asymmetric Traveling Salesman Prob-
lems. Our experimental results show that the domain-
independent pruning rule is effective, and CBS signifi-
cantly improves the efficiency and anytime performance
of its underlying depth-first search.
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