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Abstract

This paper describes a logical machinery for comput-
ing decisions based on an ATMS procedure, where the
available knowledge on the state of the world is de-
scribed by a possibilistic propositional logic base (i.e.,
a collection of logical statements associated with quali-
tative certainty levels). The preferences of the user are
also described by another possibilistic logic base whose
formula weights are interpreted in terms of priorities
and formulas express goals. Two attitudes are allowed
for the decision maker: a pessimistic uncertainty-averse
one and an optimistic one. The computed decisions are
in agreement with a qualitative counterpart to classical
expected utility theory for decision under uncertainty.

Introduction

In classical decision theory under uncertainty, the pref-
erences of the decision maker are directly expressed by
means of a utility function, while a probability distri-
bution on the possible states of the world represents
the available, uncertain information about the situation
under consideration. However, it seems reasonable to
allow for a more granular expression of both the pref-
erences and the available knowledge about the world,
under the form, e.g., of logical expressions from which
it would be possible to build the utility and the uncer-
tainty functions.

Many works are concerned with qualitative deci-
sion theory under uncertainty. Some approaches con-
sider only all-or-nothing notions of utility and plausibil-
ity (Boner and Geffner (1996)); others use in addition
a preference ordering on consequences (Brafman and
Tennenholtz (1997)). Boutilier (1994) also uses a 
sibility ordering, but focuses only on the most plausible
states. Tan and Pearl (1994) use two integer-valued
rankings for preference and plausibility and compare

t This article is dedicated to the memory of Thierry
Castell, our colleague and friend, who accidentally died in
August 1997. He significantly contributed to the develop-
ment of the MPL algorithm.
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actions pairwise, according to the relative plausibili-
ties of the subsets in which one action "dominates" the
other. This pairwise comparison is not representable by
a utility function, and the associated preference relation
is not generally transitive. A similar kind of pairwise
comparison was also studied in (Dubois, Fargier and
Prude (1997)).

In the following, we propose two syntactic ap-
proaches based on possibilistic logic, the first one being
more cautious than the second, for computing optimal
decisions. Here gradual uncertainty and preferences are
expressed by means of two distinct possibilistic proposi-
tional logic bases (which are stratified bases). Then, the
semantics underlying the two syntactic approaches are
shown to be in agreement with the two qualitative util-
ity functions advocated in (Dubois and Prude (1995)).
Then, we recall some background on the ATMS frame-
work, and it is shown how to encode a decision problem
as one of label computation. Then a procedure called
MPL is described for computing optimal decisions in
terms of labels. It relies on a modified Davis and Put-
nam (1960) (1962) semantic evaluation algorithm, 
scribed in (Castell et al. (1996), (1998)). Two 
rithms based on the use of this procedure, are proposed
for computing optimistic and pessimistic optimal deci-
sions respectively. A preliminary version of the logical
representation of decision problems used in the follow-
ing was presented in a workshop paper (Dubois et al.
(1997a)). A longer version of the present paper, 
plaining all the computational details and providing all
the proofs of the propositions is to be published (Dubois
et ai. (1998)).

Qualitative decision in stratified
propositional bases

In this article, upper case letters (K, D, P, H,...) de-
note sets of propositionM formulas that can possibly
be literais. For any set A of formulas, Â  denotes
the logical conjunction of the formulas in A and Av,
the logical disjunction. If H = {li) is a set of literals,
N H = {-~/i, li e H).

A decision problem under uncertainty can be cast
in a logical setting in the following way. A vocabulary
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V of propositional variables contains two kinds of vari-
ables: decision variables and state variables. Let Vo
be the set of decision variables which are controllable,
that is, their value can be fixed by the decision-maker.
The propositional variables outside VD are state vari-
ables. Making a decision amounts to fixing the truth
value of every decision variable (or possibly just a part
of them). On the contrary state variables are fixed by
nature, and their value is a matter of knowledge by
the decision maker. He/she has no control on them
(although he/she may express preference about their
values).

Let K be a knowledge base (here in propositional
logic) describing what is known about the world in-
eluding constraints relating the decision variables. Let
P be another propositional base describing goals de-
limiting the preferred states of the world. K, and P
are assumed to be finite, as is the logical propositional
language L under consideration. To get a flavour of
the decision procedures, assume first that K and P are
classical logic bases, and preferences are all-or-nothing.
The aim of the decision problem, described in the logi-
cal setting, is to try to make all formulas in the goal set
P true by acting on the truth-value of decision variables
which control the models of K and P. A good decision
dA (from a pessimistic point of view) is a conjunction
of decision literals that entails the satisfaction of every
goal in P, when formulas in K are assumed to be true.
Therefore, d should satisfy

K̂  A d̂  h pA. (1)

Moreover, the allowed decisions must be such that K̂  A
d̂  be consistent, for if it is not the ease, (1) is trivially
satisfied. Under an optimistic point of view, we may
just look for decisions d which are consistent with the
knowledge base and the goals,

KAAd^APA ¢_1_. (2)
Note that (2) is verified as soon as (1) is. (2) which 
over-optimistic should be used only if there is no solu-
tion to (1).

In the logical form of decision problems, the knowl-
edge base may be pervaded with uncertainty, and the
goals may not have equal priority. Let us enrich our log-
ical view of the decision problem, by assigning levels of
certainty to formulas in the knowledge base, and levels
of priority to the goals. Thus we obtain two stratified
logical bases that model gradual knowledge and prefer-
ences. It has been shown (e.g., Dubois et al. (1994))
that a possibility distribution encodes the semantics of
a possibilistic logic base, i.e., a stratified base whose for-
mulas are gathered into several layers according to their
levels of certainty or priority. In the following we focus
on how a decision problem can be stated, expressing
knowledge and preferences in terms of stratified bases.
Then we will show that the corresponding semantics
can be represented by the qualitative utility introduced
in (Dubois and Prade (1995)).

In the whole paper it is assumed that certainty
degrees and priority degrees are commensurate, and

assessed on the same (finite, as is the language un-
der consideration) linearly ordered scaleI S. The top
element of S will be denoted 1 , and the bottom el-
ement, ID. Knowledge and preferences are stored in
two distinct possibilistic bases. The knowledge base is
K = {(¢i, ~i)} where ~i E S (ai > ©) denotes a level 
certainty, and the ¢i’s are formulas in L where decision
literals may appear. The base expressing preferences or
goals is P = {(¢i,fli)}, where fli E S (fli > O) is a level
of priority, and the ¢i are formulas of L (where decision
literals may also appear).

Let Ks (resp. P#) denote the set of formulas with
certainty at least equal to a (resp. the formulas with
priority at least equal to fl). Note that we only consider
layers of K (or P) such that c~ >O and fl >O since
KiD = PiD = L. In the following we also use the nota-
tions K~ and P~ (with a <] and fl <11 ), for denoting
the set of formulas with certainty or priority strictly
greater than a or fl respectively. In particular K~) and
P~ are the sets of formulas in K and P respectively,
without their certainty levels. Since the scale S is finite,
K~ = Ks,, where al is the level of S just above a (the
same holds for P).

Making a decision amounts to choosing a subset
d of the decision set D = {li} where the li are distin-
guished positive literals of the language L. Our objec-
tive is to rank-order decisions, which will be done by
using a utility function U : 2D -+ S such that d is not
preferred to d’ iff U(d) <_ U(d’). In the following, we
will use two different functions: U. which agrees with
a pessimistic view, and U* which agrees with an opti-
mistic one.

In the first ease (pessimistic view), we are inter-
ested in finding a decision d (if it exists) such that

K2 A dA I- P# (3)

with a high and fl low, i.e., such that the decision d
together with the most certain part of K entails the
satisfaction of the goals, even those with low priority, d
is implicitly assumed to be included in the most certain
part of K U d (certainty level equal to 11 ). Moreover,
K2 A d̂  should be consistent for the a’s satisfying (3).
One way of guaranteeing this consistency requirement

is to assume K~) A ̂  i s consistent. B y convention,
utility iD is assigned to every decision d that is not
consistent with K. Besides, observe that the values
of the fl satisfying (3) are necessarily such that fl 
iD (since P~ = L is inconsistent). Let n be the order
reversing map of scale S. Namely if S is iD = c~0 <
...<a,,=l thenn(ai)=an_i.

tAn attempt to relax this assumption has been made in
(Dubois, Fargier and Prade (1997)). These authors point
out that working without the commensurability assumption
leads to a decision method close to rational inference ma-
chinery in non-monotonic reasoning. Unfortunately, that
method also proves to be either very little decisive or to
lead to very risky decisions.



Ideally, d, along with the most certain part of K
only (Kll), should entail every goal in P, even the least
preferred ones (P~-). Such a decision should have 
maximal utility (]). The worst case would be when 
decision is unable, even with the whole knowledge(K~)
to entail even only the most preferred formulas of P
(P~). Such a decision should have a utility of 1).

It can be proved that the solution of the problem
of maximizing o: and minimizing fl in (3) satisfies/? 
n(a). Thus, the pessimistic utility of decision d, defined
at the syntactic level, shall take the form:

Definition 1
U.(d) = max{a/IliAd ^ F P^. I£~Ad̂  7£ _k} andif~(~)’
{a > O,K2 Ad

^I-P^ and K2 Ad
ATe±} is empty,

then U,(d) = ~).

If now we consider the optimistic case, we are in-
terested in finding a decision d such that:

K2 A d^ ̂  P2 # ± (4)
with a and fl as low as as possible: The preferred states
are among the most plausible ones and are also consis-
tent with the decision. The optimistic utility of d is
thus given by

Definition 2
U*(d) = max{n(a)/K~ ̂  AP~7£ _k}
and V*(d) = O iy < t ^ ^,K ^d ¢
Observe that U*(d) = iff % A ̂  7£ ±, that
is if the decision is consistent with every goal and piece
of knowledge. This is of course over-optimistic in the
sense that it assumes that goals will be attained as soon
as their negation cannot be proved: however (4) can 
useful to discriminate solutions d, dt to (3) such that
U. (d) = U. (d’).

Possibilistic semantics of decision in
stratified bases

Let us present the semantics underlying the logical ex-
pression of decision problems we have adopted. Inter-
preting the ai’s (which are attached to the layers of K)
as the degrees of necessity of the formulas in the cor-
responding layers of K U d, we compute a possibility
distribution lrKd over ft (the set of all the interpreta-
tions of the language L), expressing the semantics of
K U d (see, e.g., (Dubois et al. (1994))): Vw 
~rKd(W) = min(~,,~d~g/~.¢, n(ai) if w ~ ^, and
lrga(W) : ~ if {¢i/W ~ -~¢i} = ~ and w ~ d^, and
~rgn(W) =© ifw ~ d^.

The possibility distribution rgn rank-orders the
interpretations according to their level of possibil-
ity/plausibility induced by the levels of certainty of the
formulas in K. This semantics agrees with the idea
that an interpretation w is all the less possible as it vi-
olates formulas with an higher level of certainty. Note
that since I£~ A d̂  is consistent, rrKn is normalized,

i.e., there exists at least an interpretation w with de-
gree 7rgd (W) = 

From P, interpreting the fli attached to the layers
of P as degrees of priority of the formulas in P, we
build a utility function p over fl in a similar way (w is
all the more satisfactory as it vioiates no goal with a
high priority):
#(w) = min(¢i,~i)ep,~o~-,¢i n(flj)
and #(w) =11 if {¢j/w ~ -~¢j} = ~.

The two utility functions U. and U* defined prece-
dently can be expressed in terms of the possibility dis-
tribution irK, and the utility function #:

Proposition 1 Semantic expressions of the utilities.

U. (d) = max a = rain max(n(rrg, (w)), 
a/K~Ad^l-P^ wEI~

~(~)

U* (d) = max n(a) = maxmin(rs(~ (w), #(w)).
o:/K-~^d^A~eJ- wen

The semantic expression of U. (d) is exactly the
qualitative utility function introduced in (Dubois and
Prade (1995)). These utility functions have been also
justified in a Savage-like setting in (Dubois et al.
(1997b)). Note that S is an ordinal scale, and decisions
computed as above are robust since only min, marc and
the order reversing function of S are used. The rank-
ing of decisions is insensitive to any bijective monotonic
transformation of S.

Maximizing U. (d) means finding a decision d whose
highly plausible consequences are among the most pre-
ferred ones. U.(d) is small as soon as it exists a
possible consequence which is both highly plausible
and bad with respect to preferences. This is clearly
an uncertainty-averse and thus a pessimistic attitude.
When ~ra is the characteristic function of a set A, U. (d)
reduces to: U. (d) -- min~eA ~(w), which is the Wald
criterion, that evaluates the worth of a decision as the
worst-case utility. The other utility function U* (d) cor-
responds to an optimistic attitude since U* (d) is high
as soon as it exists a possible consequence of d which is
both highly plausible and highly prized. The two util-
ity functions may not be opposed one against the other;
the optimistic utility function should be used to refine
the pessimistic one, when the latter proves not to be
decisive.

A question may be raised as to the meaning of the
different levels of preference or certainty that are as-
signed to each sentence. It is clear that the preference
ordering can be directly given by the decision maker.
The uncertainty ordering may be assessed by a unique
agent classifying the sentences into layers of different
levels of certainty. In case the knowledge is given by
multiple sources, we can suppose that they have levels
of reliability (which may be different), and thus rank
the sentences according to the levels of reliability of the
sources which provide them (all the information given
by a source having the same reliability). On the con-
trary if the sources are equally reliable, but each of them
has its own ordering, we have to suppose that there ex-
ists a common agreement on the meaning of the layers



of each source, so as to be able to merge the layers of
the different sources. Besides, System Z (Pearl (1990))
may also help to rank order pieces of generic condi-
tional knowledge by taking the specificity of formulas
into account (Benferhat et al. (1997)).

Computation of decisions

The similarity is striking between the two modes of de-
cision under uncertainty and the two modes of diagnos-
tic reasoning, namely abductive and consistency-based
diagnosis solutions (e.g., Console, de Kleer (1992)). 
is then tempting to encode a logical decision problem
under uncertainty by means of techniques coming from
the theory of assumption-based truth maintenance sys-
tems (ATMS) initiated by (De Kleer (1986)).

In this section, we give some algorithms based on
the use of the MPL procedure (which stands for ModUles
Prdfdrds et Littdraux in French) described in (Castell
et al. (1996)) to solve qualitative possibilistic decision
problems.

The MPL procedure

The MPL procedure introduced in (Castell et al.
(1996)) does the following: given a logical formula 
in conjunctive normal form, involving two types of lit-
erals, it computes its projection by restricting to one
type of literals; and this projection is the most infor-
mative such consequence of ¢, expressed in disjunctive
normal form. It is shown that nogoods in an ATMS are
easily obtained by means of this procedure.

Principle of the MPL algorithm A (Davis
and Putnam (1960)) algorithm enumerates the 
terpretations of a knowledge base K until it finds a
model (consistent case) if any (the inconsistent case 
when it finds no model). So doing, it is obvious that
searching for models is closely related to finding a dis-
junctive normal form for a knowledge base, since it is
easy to exhibit models of a DNF. Let H be a consis-
tent set of literals (Yli E H,--,li does not belong to H).
VH C V is the set of variables involved in H. Davis and
Putnam’s algorithm builds a binary search tree over V,
starting with the instanciation of the variables in VH.
At each node it branches on the truth value of a vari-
able. An interpretation I over V is then a path from
the root node to a leaf of the tree. Equivalently, it is
a set of literals. For any interpretation I we can define
its restriction over the set H by: RH(I) = I fq H. If I
is a model of K, RH(I) is called H-restricted model of
K.

The MPL algorithm tries to find (if it exists) 
H-restricted model of K, whereas the Davis and Put-
nam’s one searches for a complete one (or a V-restricted
one, stated differently). Moreover if it finds one, it is
minimal with respect to set inclusion. It is so because
the algorithm goes depth-first through the binary tree
starting with literals in --, H, building the current inter-
pretation I by adding to it literals of ,-, H and checking
its consistency with K. If {li,li E"~ H} is consistent

with K, then RH(I) =~ H ["l H = ~ is of course min-
imal. If it is not the case, it is at least guaranteed
that the first model I found is such that RH (l) is min-
imal (because of the depth-first aspect of the algorithm
and the fact that the --, H part of it is explored first).
Moreover, the MPL algorithm aims at computing every
H-restricted model of K. In order to perform this com-
putation, it does not stop after the first model is found,
but instead it goes through the whole tree. As soon
as a (minimal) H-restricted model RH(I) is found, the
clause C = VzenH(i)--,l is added to K in order to elimi-
nate every other H-restricted models containing RH(I)
(since they are not minimal), and the exploration 
the tree goes on from the same point. In this way, the
whole set of minimal H-restricted models of K, denoted
MPH(K), is found.

The computation of MPH(K̂) is performed by a
call to the procedure MPL (see Castell et al. (1996)).
MPL has three arguments: K, KA and H, KA be-
ing the set of clauses that are added during the run
of MPL (it contains the C clauses described above).
We get that MPH(K̂) = MPL(K, KA = {}, H), and
KA contains exactly -~MPH(K̂) which is a CNF form
of the nogoods after a call to MPL(K, KA = {}, g).
Note that KA is generally initially empty except, as
we will see, when MPL is used for performing a label
computation.

Application to ATMS Indeed, the basic elements
of an ATMS, labels, nogoods, will be efficiently com-
puted by the MPL0 algorithm, without any minimiza-
tion step contrary to De Kleer’s original one, due to
the following properties (first proposed in (Castell 
al. (1996)).

Proposition 2 The set of nogoods of a knowledge base
K with respect to a set of hypotheses H is exactly
MPH(-~MP~H(K^)).

Proof: E is a nogood iff K̂  t- (~ E)v and E is min-
imal - MP~H(K̂) t- (~ E)v - Ê  t- -~MP~H(K^).
So, the DNF form of the nogoods satisfies the property.

Proposition 3 Let K be a set of clauses and H a set
of hypotheses. Let ¢ be a formula. The label ore exactly
contains the elements of MPH(--,MP~H(K^ A--,¢)) that
are not among the nogoods of K.

Proof: Similar to the one above, as label(e) 
nogoods(K̂ A-,¢).

We remove the nogoods from the label because every
formula is a logical consequence of an inconsistent one.
This is done by initializing KA with the set of nogoods,
in the MPL algorithm.

Proposition 4 Let K be a set of clauses. Let ¢
and ¢ two formulas. The label of ¢ A ~b is exactly
MPH(-~MP~H(K̂ A 4¢) A -1MP~H(K̂ A ~¢)) (ex-
cept nogoods of K).

Proof: MPH(-~MP~H(K^ A -~(¢ A ¢))) 
MPH(-~MP~H((K^ A --1¢) V (K^ A -1¢))) 



MPH(-~(MP~H(K^ A -~¢) V (Kh A -~¢))) 
MPH(-~MP~H(K^ A -~¢) A -~MP~H(K̂ A -~¢)).

Owing to Prop. 4, an MPL-based ATMS is able to com-
pute the label of a phrase (a conjunction of literals) or 
clause. So we can compute the label of each preference
clause in a simple way. Let us point out the fact that
only the function MPL0 is used to compute labels and
nogoods. Difficult operations like subsumption are not
explicitly performed for these computations.

The main advantage of the MPL-technique is its
ability to compute the label of a unique literal with-
out computing the labels of the other literals as with
de Kleer’s technique. Moreover, an MPL-based ATMS
can be applied on any set of clauses (CNF formula) and
can compute in the same way the label of a literal, a
disjunction or a conjunction of literals. The label com-
putation presupposes a computation of the nogoods, in
order to remove from the label the inconsistent environ-
ments. Nogoods and labels are computed in the same
way, from the knowledge base (K) for nogoods, and
from the knowledge base augmented with the negation
of the formula, (K̂  A -~¢), for the label of this formula.

Computation of optimal decisions via MPL

Optimistic decisions The use of MPL to solve an
optimistic decision problem is easy. Assuming that K
and P are CNF representations of knowledge and pref-
erence bases 2 of the decision problem, good decisions d
can be obtained by a call to MPL:

Proposition 5 K̂  AdA Ap̂  ~ A_ iff3E E MPL(KU
P,{},D) s.t. E C d.

A good (optimistic) decision is then a consistent super-
set of an element from MPL(K t^ P, {}, D).
Let K̂  = ¢IA¢2...A¢~ and P^ = ¢IA¢2A...A¢,,~.
Finding d maximizing U* (d) = n(a) such that: I£~ 
d̂  A P~- ¢ A_ (cf Definition 2) is equivalent to finding
MPL(K-~ U P-~, {}, D) ¢ {} minimizing a.
This method has one requirement: K̂  A P^ must be a
CNF formula, so P^ must be a CNF formula, that is P
must contain only clauses.

Pessimistic optimal decisions We propose to
translate the pessimistic decision problem into a prob-
lem tractable by an ATMS. Let us define the set of as-
sumption symbols 7/= D. Then, assume that K is the
knowledge base of the decision problem in conjunctive
normal form and consider the goal base P as a formula
P^. Using the symbols in 7/, a decision d is a sub-
set of 7/. For any decision d such that K̂  A d̂  ~- P^
and K̂  A d^ ~ .l_ there is at least one element E of
labeIg (P) according to the assumption set 7t such that
ECd.

2A stratified possibilistic knowledge base can always be
put in an equivalent base of weighted clauses (Dubois et al.
(1994)), since necessity measures are min-decomposable 
conjunction.

Proposition 6 K̂  A d^ ~- P^ and K̂  A d^ ¢ _k iff
3E C labelK (P) s.t.E C d.
A good (pessimistic) decision is then a superset of 
element from labeIK (P). In the following we will only
look for decisions which are minimal for set inclusion.
Let K̂  = ¢1 A ¢2.-- A Cn and P^ = ~b1 A ¢2 A... A era.
Finding all decisions d maximizing a such that: K~ A
d^ I- P^ and K~ A d̂,(~) ¢ _l_ is equivalent to finding
label~:~ ( Pn-~(~) ¢ maximizing a.

Algorithm I: COMPUTE_PESSIMISTIC_DECISION

Data: K the knowledge base, P the preference base,
and D the set of decision symbols.

Result: Utility of the best pessimistic decisions,
set of the best pessimistic decisions.

begin
+-- ~ % we consider the most certain layer ;

s~-{} ;
while S:{} anda> ©do

% we must first compute the nogoods of K ;
NG’ e- MPL(K~, {},.~ D) 
NG +--N MPL(-~NG’, {}, D) 
% NG contains the nogoods of K~ ;
S~ +-- MPL(K~U ,.~ P]l, {}, "~ D) 
S +--..~ MPL(-~S~,~ NG, D) 
% S contains the label of P1 ;
/5 +-- 1 ;
while /5>n(o 0 andS#{} do

S’ +-- S~ A MPL(Kc~U ~ P(p), {},--~ D) 
S +-- MPL(~S~, ~ NG, D) 
% S contains the label of PZ ;
/5~/5;

ifS : {} then ~ +-- ma:c(a_,n(/5)) 

return < ~,S > ;
end

where P(p) = PZ - Pg is the set of goals with pri-
ority level/5, a denotes the level (either of certainty or
of priority) of the next non-empty layer below ~.

We need to compute the nogoods, and then the
required label. The restriction here is to have K̂  A (-.~
P)^ as a CNF formula, so pv being a DNF formula.
Since P is a CNF, this procedure will accept only P as
a single clause or a single phrase (both are CNF and
DNF form). Thus, we have to use a particularity of
MPL to compute the label of a conjunction of formulas:
the label of a conjunction ¢ A ¢ can be performed from
the two first steps needed to compute the label of both
¢ and ¢ (Prop. 4). This approach allows to stop label
computation as soon as the intermediate label is empty.

One of the major advantages of our approach is
that we only need to implement the MPL algorithm.
An efficient implementation of MPL entails an efficient
implementation of the decision algorithm. Thanks to
the relation between the MPL algorithm and the Davis
and Putnam algorithm, some improvements on the lat-



ter can be used in the former (heuristics for instance).
The anytime aspect of the MPL algorithm can also be
pointed out here. If you stop the algorithm before its
normal end, you can obtain a subset of the set of op-
timal decisions. This can be used for instance if we
only need a single optimal decision, or the utility of the
optimal decision(s).

Concluding remarks
The main contribution of this paper has been to de-
scribe a logical machinery for decision-making, imple-
menting the qualitative possibilistic utility theory, in
the framework of possibilistic logic. A link between
this logical machinery and the ATMS framework has
been pointed out, which allowed to adapt some efficient
algorithms proposed in this framework to possibilistic
qualitative decision making.

Besides, in (Le Serre and Sabbadin (1997)), 
other logical machinery has been presented, in the diag-
nosis and repair framework. There, probabilities are as-
signed to assumptions, and numerical rewards to goals,
leading to a variant of the expected-utility criterion,
based on belief functions.
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