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Abstract

Description Logics (DLs, for short) allow reasoning
about individuals and concepts, i.e. set of individuals
with common properties. Typically, DLs are limited to
dealing with crisp, well defined concepts. That is, con-
cepts for which the problem whether an individual is
an instance of it is a yes/no question. More often than
not, the concepts encountered in the real world do not
have a precisely defined criteria of membership: we
may say that an individual is an instance of a concept
only to a certain degree, depending on the individual’s
properties. Concepts of this kind are rather vague than
precise. As fuzzy logic directly deals with the notion of
vagueness and imprecision, it offers an appealing foun-
dation for a generalisation of DLs to vague concepts.
In this paper we present a general fuzzy DL, which
combines fuzzy logic with DLs. We define its syntax,
semantics and present constraint propagation calculi
for reasoning in it.

Introduction
Description Logics (DLs, for short) provide a logical
reconstruction of the so-called frame-based knowledge
representation languages1. Concepts, roles and individ-
uals are the basic building blocks of these logics. Con-
cepts are expressions which collect the properties, de-
scribed by means of roles, of a set of individuals. From a
first order point of view, concepts can be seen as unary
predicates, whereas roles are interpreted as binary pred-
icates. A knowledge base (KB) typically contains a set
of assertions. An assertion states either that an indi-
vidual a is an instance of a concept C (written C(a)),
or that two individuals a and b are related by means of
a role R (written R(a, b)). A basic inference task with
knowledge bases is entailment and amounts to verify
whether the individual a is an instance of the concept
C w.r.t. the KB Σ (written Σ |= C(a)).

Typically, DLs are limited to dealing with crisp con-
cepts. However, many useful concepts that are needed
by an intelligent system do not have well defined bound-
aries. That is, often it happens that the concepts en-
countered in the real world do not have a precisely de-
fined criteria of membership, i.e. they are vague con-
cepts rather than precise concepts. For instance, Tall
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1See the DL Web Home Page: http://dl.kr.org/dl.

is such a concept: we may say that an individual tom is
an instance of the concept Tall only to a certain degree
n ∈ [0, 1] depending on tom’s height.

Fuzzy logic directly deals with the notion of vague-
ness and imprecision using fuzzy predicates. Therefore,
it offers an appealing foundation for a generalisation of
DLs in order to dealing with such vague concepts.

The aim of this work is to present a general fuzzy DL,
which combines fuzzy logic with DLs. In particular we
will extend DLs by allowing expressions of the form
〈C(a)n〉 (n ∈ [0, 1]), e.g. 〈Tall(tom) .7〉, with intended
meaning “the membership degree of individual a being
an instance of concept C is at least n”.

Extending DLs with fuzzy features has already be
done in the past. For instance, in (Yen 1991) the
very limited DL FL− (Brachman & Levesque 1984)
has been extended with some fuzzy features. In par-
ticular, it allows the definition of fuzzy concepts and
the only supported reasoning mechanism is determin-
ing subsumption2. Unfortunately, it does not allow rea-
soning in presence of assertions. Recently, (Meghini,
Sebastiani, & Straccia 1997) proposed a fuzzy DL as
a tool for modelling multimedia document retrieval3.
But this work was rather at a preliminary stage and no
reasoning algorithm was given.

We present a more general framework in the sense
that it is based both on the DL ALC, a significant and
expressive representative of the various DLs, and on
sound and complete constraint propagation calculi for
reasoning in it. This allows us to adapt it easily to
the different DLs presented in the literature. Moreover,
we will show that the additional expressive power has
no impact from a computational complexity point of
view. This is important as the nice trade-off between
computational complexity and expressive power of DLs
contributes to their popularity.

Finally, note that most existing work in extend-
ing DLs for uncertainty management lie in the cate-
gory of probabilistic extension like e.g. (Heinsohn 1994;
Jäger 1994; Koller, Levy, & Pfeffer 1997) with some
exceptions like (Hollunder 1994). Even though these

2Roughly, a concept D subsumes a concept C iff from a
first order point of view, ∀x.C(x)→ D(x) is logically valid.

3The idea to use DLs in the context of multimedia docu-
ment retrieval has been proposed in (Gobel, Haul, & Bech-
hofer 1996) too.
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probabilistic extensions enlarge the applicability of DLs
they do not directly address the issue of reasoning about
individuals and vague concepts. Moreover, reasoning in
a probabilistic framework is generally a harder task,
from a computational point of view, than the rela-
tive non probabilistic case (see e.g. (Roth 1996) for an
overview) and thus, the computational problems have
to be addressed carefully like in (Koller, Levy, & Pfeffer
1997).

In the following sections we first introduce crisp ALC,
then we extend it to the fuzzy case. Thereafter, we will
present constraint propagation calculi for reasoning in
it.

A quick look to ALC
The specific DL we will extend with fuzzy capabilities
is ALC, a significant representative of the best-known
and most important family of DLs, the AL family.

We assume three alphabets of symbols, called prim-
itive concepts (denoted by A), primitive roles (denoted
by R) and individuals (denoted by a and b). The con-
cepts (denoted by C and D) of the language ALC are
formed out of primitive concepts according to the fol-
lowing syntax rules4:

C,D −→ > (top concept)
⊥ (bottom concept)
A| (primitive concept)

C uD| (concept conjunction)
C tD| (concept disjunction)
¬C| (concept negation)
∀R.C| (universal quantification)
∃R.C (existential quantification)

An interpretation I is a pair I = (∆I , ·I) consisting
of a non empty set ∆I (called the domain) and of an
interpretation function ·I mapping different individuals
into different elements of ∆I , primitive concepts into
subsets of ∆I and primitive roles into subsets of ∆I ×
∆I . The interpretation of complex concepts is defined
in the usual way: >I = ∆I , ⊥I = ∅, (C uD)I = CI ∩
DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \CI , (∀R.C)I

= {d ∈ ∆I : ∀d′. (d, d′) ∈ RI implies d′ ∈ CI}, and
(∃R.C)I = {d ∈ ∆I : ∃d′. (d, d′) ∈ RI and d′ ∈ CI}.
For instance, the concept Tall u Student denotes the
set of tall students.

An assertion (denoted by α) is an expression of type
C(a) (a is an instance of C), or an expression of type
R(a, b) (a is related to b by means of R). For instance,
(Tall u Student)(tom) asserts that tom is a tall stu-
dent, whereas Friend(tim,tom) asserts that tom is a
friend of tim.

The semantics of assertions is specified by saying that
the assertion C(a) (resp. R(a, b)) is satisfied by I iff
aI ∈ CI (resp. (aI , bI) ∈ RI). A set Σ of assertions
will be called a knowledge base (KB). An interpretation
I satisfies (is a model of) a KB Σ iff I satisfies each ele-
ment in Σ. A KB Σ entails an assertion α (written Σ |=
α) iff every model of Σ also satisfies α. For instance, if
Σ is {(Tall u Student)(tom), Friend(tim,tom)} then

4Through this work we assume that every metavariable
has an optional subscript.

Σ |= (∃Friend.Tall)(tim), i.e. tim has a tall friend.
Notice that Σ |= R(a, b) iff R(a, b) ∈ Σ.

Fuzzy ALC
From a syntax point of view, in fuzzy ALC we are
dealing with fuzzy assertions (denoted with γ), i.e. ex-
pressions of type 〈αn〉, where α is an ALC assertion
and n ∈ [0, 1].

From a semantics point of view, we will follow
Zadeh’s semantics. According Zadeh’s work about
fuzzy sets (Zadeh 1965), a fuzzy set X with respect
to a set S is characterized by a membership function
µX : S → [0, 1], assigning a X-membership degree,
µX(s), to each element s in S. This membership de-
gree gives us an estimation of the belonging of s to
X. Typically, if µX(s) = 1 then s definitely belongs
to X, while µX(x) = .7 means that s is “likely” to
be an element of X. Moreover, according to Zadeh, the
membership function has to satisfy three well-known re-
strictions. For all s ∈ S and for all fuzzy sets X,Y with
respect to S: µX∩Y (s) = min{µX(s), µY (s)}, µX∪Y (s)
= max{µX(s), µY (s)}, and µX(s) = 1 − µX(s), where
X is the complement of X in S, i.e. S \X5.

In fuzzy ALC, a concept is interpreted as a fuzzy
set. Therefore, concepts and roles become imprecise (or
vague). According to this view, the intended meaning
of e.g. 〈C(a)n〉 we will adopt is: “the membership de-
gree of individual a being an instance of concept C is at
least n”. Similarly for roles. Hence, e.g. 〈Tall(tom) .7〉
means that the degree of tom being Tall is at least .7,
i.e. tom is likely tall; 〈Tall(tom) 1〉 means that tom is
tall, whereas 〈¬Tall(tom) 1〉 means that tom is not tall.

A fuzzy interpretation is now a pair I = (∆I , ·I),
where ∆I is, as for the crisp ALC case, the domain,
whereas ·I is an interpretation function mapping (i)
individuals as for the crisp case; (ii) ALC concepts
into a membership degree function ∆I → [0, 1], and
(iii) ALC roles into a membership degree function
∆I × ∆I → [0, 1]. Therefore, if C is a concept then
CI will naturally be interpreted as the membership de-
gree function of the fuzzy concept (set) C w.r.t. I, i.e. if
d ∈ ∆I is an object of the domain ∆I then CI(d) gives
us the degree of being the object d an element of the
fuzzy concept C under the interpretation I. Similarly
for roles. Additionally, ·I has to satisfy the following
equations: for all d ∈ ∆I

>I(d) = 1
⊥I(d) = 0
(C uD)I(d) = min{CI(d), DI(d)}
(C tD)I(d) = max{CI(d), DI(d)}
(¬C)I(d) = 1− CI(d)
(∀R.C)I(d) = mind′∈∆I{max{1−RI(d, d′), CI(d′)}}
(∃R.C)I(d) = maxd′∈∆I{min{RI(d, d′), CI(d′)}}.

Just note that w.r.t. the ∀ connective, (∀R.C)I(d) is
the result of viewing ∀R.C as the first order formula

5Other membership functions have been proposed in the
literature. The interested reader can consult e.g. (Dubois &
Prade 1980; Kundu & Chen 1994).



          

∀y.R(x, y) → C(y), where F → G is ¬F ∨ G6 and
the universal quantifier ∀ is viewed as a conjunction
over the elements of the domain. Similarly, for the ∃
connective (∃R.C)I(d) is the result of viewing ∃R.C
as ∃y.R(x, y) ∧ C(y), where the existential quantifier
∃ is considered a disjunction over the elements of the
domain (see e.g. (Lee 1972)).

It is easily verified that for all interpretations I and
individuals d ∈ ∆I , (¬(C uD))I(d) = (¬C t ¬D)I(d)
and (¬(∀R.C))I(d) = (∃R.¬C)I(d).

An interpretation I satisfies a fuzzy assertion
〈C(a)n〉 (resp. 〈R(a, b)n〉) iff CI(aI) ≥ n (resp.
RI(aI , bI) ≥ n). An interpretation I satisfies (is a
model of) a set of fuzzy assertions Σ, i.e. a fuzzy KB, iff
I satisfies each element of Σ. A fuzzy KB Σ fuzzy en-
tails a fuzzy assertion γ (written Σ|≈γ) iff every model
of Σ also satisfies γ. Given a fuzzy KB Σ and an
assertion α, we define the maximal degree of truth of
α with respect to Σ (written Maxdeg(Σ, α)) to be
max{n > 0 : Σ|≈〈αn〉} (max ∅ = 0). Notice that Σ
|≈ 〈αn〉 iff Maxdeg(Σ, α) ≥ n.
Example 1 Suppose we have two images i1 and
i2 regarding tim, tom and joe. i1 and i2 have
been indexed as follows: Σi1 = {〈About(i1, tim) .9〉,
〈Tall(tim) .8〉, 〈About(i1, tom) .6〉, 〈Tall(tom) .7〉},
Σi2 = {〈About(i1, joe) .6〉, 〈Tall(joe) .9〉}. More-
over, let ΣB = {〈Student(tim) 1〉, 〈Student(tom) 1〉,
〈Student(joe) 1〉, 〈Image(i1) 1〉, 〈Image(i2) 1〉}. We
define Σ1 = Σi1 ∪ ΣB and Σ2 = Σi2 ∪ ΣB. Our inten-
tion is to retrieve all images in which there is a tall
student. This can be formalised by means of the query
concept C = Image u ∃About. (Student u Tall). It can
easily verified that Maxdeg(Σ1, C(i1)) = .8, whereas
Maxdeg(Σ1, C(i2)) = .6. Therefore, we will retrieve
both images and rank i1 before i2.

Some properties
The following properties are easily verified: for
all concepts C,D and for all n,m ∈ [0, 1],
{〈C(a)n〉, 〈¬C(a)m〉} is satisfiable iff n ≤ 1−m and

Maxdeg(∅, (¬C t C)(a)) = .5 (1)

{〈C(a)m〉, 〈(¬C tD)(a)n〉}|≈〈D(a)n〉, if m > 1− n (2)

Relation (2) is a sort of modus ponens over concepts.
Similarly for ∀, the semantics of the ∀ connective gives
us a sort of modus ponens over roles: if k = min{n,m}
then

{〈R(a, b)m〉, 〈(∀R.C)(a)n〉}|≈〈C(b)n〉, if m > 1− n (3)

{〈(∃R.D)(a)m〉, 〈(∀R.C)(a)n〉}|≈〈(∃R.D u C)(a) k〉,
if m > 1− n. (4)

It is natural to ask whether there is a relation between
|= and |≈. As first, given a fuzzy KB Σ, let Σ be the

6In the literature, several different definitions of the
fuzzy implication connective → has been proposed. See
e.g. (Kundu & Chen 1994) for a discussion.

(crisp) KB Σ = {α : 〈αn〉 ∈ Σ}. Since every “crisp”
interpretation is a fuzzy interpretation, the following
proposition is easily verified.
Proposition 1 Let Σ be a fuzzy KB and let α be an
assertion. For all n > 0, if Σ|≈〈αn〉 then Σ |= α. a
Proposition 1 states that there cannot be fuzzy en-
tailment without entailment. For instance, w.r.t. Ex-
ample 1 we have Σ1|≈〈C(i1) .8〉 and Σ1 |= C(i1).
Unfortunately, the converse of Proposition 1 is
not true in the general case. For instance,
{〈C(a) .3〉, 〈(¬C tD)(a) .6〉} 6|≈〈D(a)n〉 for all n > 0,
whereas {C(a), (¬C tD)(a)} |= D(a).

A simple result concerning the “converse” relation
between |≈ and |= is the following. Let Σ be a crisp
KB: we define Σ̃ = {〈α 1〉 : α ∈ Σ}.
Proposition 2 If Σ |= α then Σ̃|≈〈α 1〉. a
A closer relationship holds whenever we consider nor-
malized fuzzy KBs. We will say that a fuzzy assertion
〈αn〉 is normalized if n > .5. A fuzzy KB is normalized
if every fuzzy assertion in it is. If we consider normal-
ized fuzzy KBs only, then from (Lee 1972) it follows
that
Proposition 3 If Σ is normalized then there is n ≥ .5
such that Σ|≈〈αn〉 iff Σ |= α. a
For instance, {〈C(a) .6〉, 〈(¬C tD)(a) .7〉}|≈〈D(a) .7〉
and and {C(a), (¬C t D)(a)} |= D(a) hold. The rea-
son relies on the fact that for m,n > .5, the condition
m > 1− n in (2) – (4) is always true.

Deciding fuzzy entailment
Deciding whether Σ|≈〈αn〉 requires a calculus. We will
develop a calculus in the style of the constraint propaga-
tion method, as this method is usually proposed in the
context of DLs (see, e.g. (Buchheit, Donini, & Schaerf
1993)). The calculus extends the propositional frame-
work described in (Chen & Kundu 1996) to the DL
case.

Consider a new alphabet of variables. An Inter-
pretation is extended to variables by mapping these
into elements of the interpretation domain. An ob-
ject (written w) is either an individual or a variable.
A constraint (written τ) is an expression of the form
w:C or (w1, w2):R, where w,w1, w2 are objects, C is
an ALC concept and R is a role. A fuzzy constraint
(written σ) is an expression having one of the follow-
ing forms: 〈τ ≥ n〉, 〈τ > n〉, 〈τ ≤ n〉, 〈τ < n〉. An in-
terpretation I satisfies a fuzzy constraint 〈w:C rel n〉
(resp. 〈(w1, w2):R rel n〉) (rel ∈ {≥, >,≤, <}) iff
CI(wI) rel n (resp. RI(w1

I , w2
I) rel n). I satisfies a

set S of fuzzy constraints iff I satisfies every element of
it. In the following we will reduce the fuzzy entailment
problem to the unsatisfiability problem of a set of fuzzy
constraints. Given a fuzzy KB Σ, let

SΣ = {〈a:C ≥ n〉|〈C(a)n〉 ∈ Σ}∪
{〈(a, b):R ≥ n〉|〈R(a, b)n〉 ∈ Σ}. (5)

It follows then that7

7Notice that Maxdeg(Σ, R(a, b)) = max{n : 〈R(a, b)n〉
∈ Σ}.



       

Σ|≈〈C(a)n〉 iff SΣ ∪ {〈a:C < n〉} not satisfiable. (6)

Our calculus, determining whether a set S of fuzzy con-
straints is satisfiable or not, is based on a set of con-
straint propagation rules transforming a set S of fuzzy
constraints into “simpler” model preserving sets Si un-
til either all Si contains a clash (indicating that from all
the Si no model of S can be build) or some Si is com-
pleted and clash-free, that is, no rule can be further be
applied to Si and Si contains no clash (indicating that
from Si a model of S can be build).

A set of fuzzy constraints S contains a clash iff it
contains either 〈w:⊥ ≥ n〉 with n > 0, or 〈w:⊥ > n〉,
or 〈w:⊥ < 0〉, or 〈w:> ≤ n〉 with n < 1, or 〈w:> < n〉,
or 〈w:> > 1〉, or S contains a conjugated pair of fuzzy
constraints. Each entry in the table below says us un-
der which condition the row-column pair of fuzzy con-
straints is a conjugated pair.

〈τ < m〉 〈τ ≤ m〉
〈τ ≥ n〉 n ≥ m n > m
〈τ > n〉 n ≥ m n ≥ m

Given a fuzzy constraint σ, with σc we indicate a con-
jugate of σ (if there exists one). Just notice that a
conjugate of a fuzzy constraint may be not unique, as
there are could be infinitely many. For instance, both
〈a:C < .6〉 and 〈a:C ≤ .7〉 are conjugates of 〈a:C ≥ .8〉.

Concerning the rules, for each connective u,t,¬,∀
and ∃ there is a rule for each relation rel ∈ {≥, >,≤, <},
i.e. there are 20 rules. We will restrict our presentation
to the set rel ∈ {≥,≤}. The rules for the case rel ∈ {>
,<} are quite similar. The rules can take the following
two forms:

Φ→ Ψ if Γ Φ⇒ Ψ if Γ (7)

where Φ and Ψ are sequences of fuzzy constraints and
Γ is a condition. Both rules fire only if the condition Γ
holds and if the current set S of fuzzy constraints con-
tains fuzzy constraints matching Φ. After execution,
the first deletes the fuzzy constraints matching Φ from
S, while the second keeps them. Both forms add the
constraints from Ψ to S after firing. In order to pre-
vent infinite application of the second type of rules, we
assume that each instantiation of the rules is applied
only once. The rules are the following:

(¬≥) 〈w:¬C ≥ n〉 → 〈w:C ≤ 1− n〉
(¬≤) 〈w:¬C ≤ n〉 → 〈w:C ≥ 1− n〉

(u≥) 〈w:C uD ≥ n〉 → 〈w:C ≥ n〉, 〈w:D ≥ n〉
(t≤) 〈w:C tD ≤ n〉 → 〈w:C ≤ n〉, 〈w:D ≤ n〉

(t≥) 〈w:C tD ≥ n〉 → 〈w:C ≥ n〉 | 〈w:D ≥ n〉
(u≤) 〈w:C uD ≤ n〉 → 〈w:C ≤ n〉 | 〈w:D ≤ n〉

(∀≥) 〈w1:∀R.C ≥ n〉, σc ⇒ 〈w2:C ≥ n〉
if σ is 〈(w1, w2):R ≤ 1− n〉

(∃≤) 〈w1:∃R.C ≤ n〉, σc ⇒ 〈w2:C ≤ n〉
if σ is 〈(w1, w2):R ≤ n〉

(∃≥) 〈w:∃R.C ≥ n〉 → 〈(w, x):R ≥ n〉, 〈x:C ≥ n〉
if x new variable

(∀≤) 〈w:∀R.C ≤ n〉 → 〈(w, x):R ≥ 1− n〉, 〈x:C ≤ n〉
if x new variable

(8)

An instance of the (∀≥) rule is e.g.

〈a:∀R.C ≥ .8〉, 〈(a, b):R ≥ .7〉 ⇒ 〈b:C ≥ .8〉,

where σ is 〈(a, b):R ≤ .2〉 and σc = 〈(a, b):R ≥ .7〉 is a
conjugate of σ.

A set of fuzzy constraints S is said to be complete if
no rule is applicable to it. Any complete set of fuzzy
constraints S2 obtained from a set of fuzzy constraints
S1 by applying the above rules is called a completion of
S1. Due to the presence of the rules t≥, t>, u≤ and
u<, more than one completion can be obtained. These
rules are called nondeterministic rules. All other rules
are called deterministic rules.
Example 2 Consider γ = 〈(∃R.D u C)(a) .6〉 and Σ =
{〈(∃R.D)(a) .7〉, 〈(∀R.C)(a) .6〉}. We show that Σ|≈γ,
confirming (4), by verifying that all completions of S =
SΣ ∪ {〈a:∃R.D u C < .6〉} contain a clash. In fact, we
have the following two sequences.

(1) 〈a:∃R.D ≥ .7〉 Hypothesis:S
(2) 〈a:∀R.C ≥ .6〉
(3) 〈a:∃R.D u C < .6〉
(4) 〈(a, x):R ≥ .7〉, 〈x:D ≥ .7〉 (∃≥) : (1)
(5) 〈x:C ≥ .6〉 (∀≥) : (2), (4)
(6) 〈x:D u C < .6〉 (∃<) : (3), (4)

Ω1 | Ω2

where the two sequences Ω1 and Ω2 are respectively

(7a) 〈x:D < .6〉 (u<) : (6)
(8a) clash (4), (7a)

and
(7b) 〈x:C < .6〉 (u<) : (6)
(8b) clash (5), (7b).

Soundness, completeness and complexity
It is easily verified that the above rules are sound, i.e. if
S1 is satisfiable then there is a satisfiable completion
S2 of S1 and, thus, S2 contains no clash. Vice-versa,
completeness, i.e. if there is a completion S2 of S1 con-
taining no clash then S1 is satisfiable, can be shown
by building an interpretation I from S2 satisfying S1.
Roughly, given a clash-free completion S2 of S1 we con-
sider N1[τ ] = max{n : 〈τ ≥ n〉 ∈ S2}, and N2[τ ] =
max{n : 〈τ > n〉 ∈ S2}. Since S2 is clash-free, it fol-
lows that there is ε > 0 such that the interpretation
I, (i) with domain ∆I being the set of objects ap-
pearing in S2, (ii) wI = w for all w ∈ ∆I and (iii)
>I(wI) = 1, ⊥I(wI) = 0, AI(wI) = max{N1[w:A],
N2[w:A] + ε}, RI(w1

I , w2
I) = max{N1[(w1, w2):R],

N2[(w1, w2):R] + ε}, satisfies both S2 and S1. It can
be shown that
Proposition 4 A set of fuzzy constraints S is satisfi-
able iff there exists a clash free completion of S. a



         

From a computational complexity point of view, it is
easily verified that termination of the above algorithm
is guaranteed. Moreover, from Proposition 2 and from
PSPACE-completeness of the entailment problem in
crisp ALC (Schmidt-Schauß & Smolka 1991), PSPACE-
hardness of the fuzzy entailment problem follows. It
can be verified that trace rules as in (Schmidt-Schauß
& Smolka 1991) can be defined. Therefore,

Proposition 5 Let Σ be a fuzzy KB and and let γ
be a fuzzy assertion. Determining whether Σ|≈γ is a
PSPACE-complete problem. a

Computing the maximal degree of truth
The problem of determining Maxdeg(Σ, α) is impor-
tant, as computing Maxdeg(Σ, α) is in fact the way
to answer a query of type “to which degree is α (at
least) true, given the (vague) facts in Σ ?”. An easy
algorithm can be given in terms of a sequence of fuzzy
entailment tests. It is based on the observation that
Maxdeg(Σ, α) ∈ {0, .5, 1} ∪ NΣ, where NΣ = {n :
〈An〉 ∈ Σ}. The algorithm is described below.
Algorithm Max(Σ, α)
Let Σ be a set of ALC fuzzy assertions, let α be an assertion.
Set Min := 0 and Max := 2.

1. Pick n ∈ NΣ ∪ {.5, 1} such that Min < n < Max. If
there is no such n, then set Maxdeg(Σ, α) := Min and
exit.

2. If Σ|≈〈αn〉 then set Min = n and go to Step 1, else set
Max = n and go to Step 1.

By a binary search on NΣ the value of Maxdeg(Σ, α)
can be determined in at most log |NΣ + 1| fuzzy en-
tailment tests. As checking fuzzy entailment is time
consuming, this approach may be unfeasible.

In the extended version of this work, we present an
alternative method for computing Maxdeg(Σ, α) per-
forming the fuzzy entailment test only once. Essen-
tially, the method extends the ideas described in (Strac-
cia 1997) to our DL context.

Roughly, in order to determine Maxdeg(Σ, C(a)),
we start with a set of constraints of the form S =
SΣ ∪ {〈a:C < λ〉}, where λ is a new variable symbol.
Thereafter, we apply to S constraint propagation rules
similar to those in (8) until each derived set Si of con-
straints is completed. Finally, we are looking for the
maximal value n ∈ [0, 1] such that for each of the com-
pletions Si, the constraint set Si[λ/n] (if not empty)
contains a clash, where Si[λ/n] is the set obtained by
replacing each occurrence of λ by n.

Concerning computational complexity, it can be
shown that the problem of determining Maxdeg(Σ, α)
inherits the result of determining (fuzzy) entailment,
and thus, determining Maxdeg(Σ, α) is a PSPACE-
complete problem.

Dealing with terminological axioms
We shortly show how to dealing with terminological ax-
ioms. In DLs, a general terminological axiom assumes
the form C ⇒ D, where C and D are concepts. From
a first-order point of view, C ⇒ D is viewed as the
formula ∀x.C(x) → D(x). For instance, Ferrari ⇒
SportCaru∃Ownedby.CarFanatic states that a Ferrari

is a sport car which is owned by a car fanatic. When we
switch to the fuzzy case, the simple form of fuzzy termi-
nological axiom we allow is 〈C ⇒ Dn〉, where n ∈ [0, n].
The semantics is given coherently to the above first
order view of C ⇒ D: an interpretation I satisfies
〈C ⇒ Dn〉 iff mind∈∆I{(¬C tD)I(d)} ≥ n. As for
the ∀ connective, F → G is viewed as ¬F ∨ G. It is
easily verified that {〈C(a)m〉, 〈C ⇒ Dn〉} |≈ 〈D(a)n〉
if m > 1− n, which is similar to (2).

We will say that D subsumes C with degree n w.r.t. Σ
(written Σ|≈〈C ⇒ Dn〉) iff all models of Σ are mod-
els of 〈C ⇒ Dn〉. Maxdeg(Σ, C ⇒ D) is the maxi-
mal degree n such that Σ|≈〈C ⇒ Dn〉. For instance, if
Σ is {〈A⇒ C .6〉, 〈B ⇒ D .7〉}, then it can be verified
that Maxdeg(Σ, A u B ⇒ C u D) = .6. Notice that
Maxdeg(∅, C ⇒ C) = .5, according to (1).

Example 3 Consider Example 1. Suppose
we add {〈Student u (Male t Tall)⇒ TallStudent .7〉,
〈Male(tim) 1〉, 〈Male(tom) 1〉, 〈Male(joe) 1〉} to the
background KB ΣB . Suppose the query concept
C is Image u ∃About. TallStudent. It can be
verified that Maxdeg(Σ1, C(i1)) = .7, whereas
Maxdeg(Σ1, C(i2)) = .6.

From a calculus point of view, we make the following
assumptions: (i) 〈C ⇒ Dn〉 is considered a constraint
too; and (ii) given Σ, then SΣ is defined as usual ex-
cept that additionally we add 〈C ⇒ Dn〉 to SΣ for each
〈C ⇒ Dn〉 ∈ Σ. Just note that, w.r.t. subsumption, we
have that Σ|≈〈C ⇒ Dn〉 iff SΣ ∪ {〈(¬C tD)(a) < n〉}
not satisfiable, where a is a new individual. Moreover,
we will make the following restrictions: (i) the fuzzy
terminological axioms in a fuzzy KB Σ have to be of
the form 〈A⇒ C n〉 (if A then C) or 〈A: = C n〉 (A iff
C), where A is a primitive concept; and (ii) we do not
allow cycles. Here, 〈A: = C n〉 is a macro for 〈A⇒ C n〉
and 〈C ⇒ An〉. This restriction guarantees us sound-
ness, completeness and termination of the deduction
process8.

The rules are the following:

(⇒R) 〈A⇒ C ≥ n〉, σc ⇒ 〈w:C ≥ n〉
if σ = 〈w:A ≤ 1− n〉

(⇒L) 〈C ⇒ A ≥ n〉, σc ⇒ 〈w:C ≤ 1− n〉
if σ = 〈w:A ≥ n〉

(9)

Example 4 Let Σ = {〈A⇒ C .6〉, 〈B ⇒ D .7〉} and
consider δ = A u B ⇒ C u D. It is easily
verified that Maxdeg(Σ, δ) = .6. We show that
Σ|≈〈δ .6〉 by verifying that all completions of S =
SΣ∪{〈a:¬(A uB) t (C uD) < .6〉} contain a clash. By
applying rules (8) and (9), we have the following two
sequences.

8Unfortunately, the technique used in (Buchheit, Donini,
& Schaerf 1993) in order to reason in presence of axioms of
the form C ⇒ D is not directly applicable in the fuzzy case.
This remains an open problem yet.



         

(1) 〈A⇒ C .6〉 Hypothesis:S
(2) 〈B ⇒ D .7〉
(3) 〈a:¬(A uB) t (C uD) < .6〉
(4) 〈a:¬(A uB) < .6〉, 〈a:(C uD) < .6〉 (t<) : (3)
(5) 〈a:A uB > .4〉 (¬<) : (4)
(6) 〈a:A > .4〉, 〈a:B > .4〉 (u>) : (5)
(7) 〈a:C ≥ .6〉 (⇒R) : (1), (6)
(8) 〈a:D ≥ .7〉 (⇒R) : (2), (6)

Ω1 | Ω2

where the two sequences Ω1 and Ω2 (which determine
the two c-completions S1 and S2, respectively) are

(9a) 〈a:C < .6〉 (u<) : (4)
(10a) clash (9a), (7)

and
(9b) 〈a:D < .6〉 (u<) : (4)
(10b) clash (9b), (8)

respectively.
A further extension (which we roughly address here
without working it out formally) is to allow termi-
nological axioms in which the membership function
is specified explicitly. These axioms are of the form
A =µ µA(f1, . . . , fn), where A is a primitive con-
cept, fi are features (i.e. functional roles) and µA is
a fuzzy membership function defined on a concrete do-
main (called universe of discourse in (Yen 1991)) such
that µA depends on the features fi (see (Baader & Han-
schke 1991) for the formal aspects about concrete do-
mains). For instance, the concept Tall could be de-
fined as Tall =µ µTall(height), where µTall is defined
as a lambda abstraction on reals such that it relies on
the height of an individual: e.g. λx.min{(x/200)2, 1}.
Therefore, if Σ contains both height(tom) = 180
and the above axiom, then we may infer that
〈Tall(tom) .81〉, where .81 = µTall(height(tom)) =
(λx.min{(x/200)2, 1})(height(tom)) =
min{(180/200)2, 1}.

Conclusions and Future Work
We have presented a fuzzy DL which enables us to rea-
son in presence of imprecise concepts. In particular,
syntax, semantics and sound and complete algorithms
for reasoning in it has been presented. The complex-
ity results shows that the additional expressive power
has no impact from a computational complexity point
of view. This work can be used as a basis both for
extending existing DL based systems and for further
research. In particular, the case of considering gen-
eral terminological axioms (including cycles) and role-
forming rules should be worked out. Another interest-
ing point is to understand the impact of fuzziness on
the computational complexity: is it always true that
the upper bound of the complexity is the same as in
the crisp case?
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