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Abstract

The technology for building large knowledge bases
(KBs) is yet to witness a breakthrough so that a KB
can be constructed by the assembly of prefabricated
knowledge components. Knowledge components in-
clude both pieces of domain knowledge (for example,
theories of economics or fault diagnosis) and KB tools
(for example, editors and theorem provers). Most of
the current KB development tools can only manip-
ulate knowledge residing in the knowledge represen-
tation system (KRS) for which the tools were origi-
nally developed. Open Knowledge Base Connectivity
(OKBC) is an application programming interface for
accessing KRSs, and was developed to enable the con-
struction of reusable KB tools. OKBC improves upon
its predecessor, the Generic Frame Protocol (GFP), in
several significant ways. OKBC can be used with a
much larger range of systems because its knowledge
model supports an assertional view of a KRS. OKBC
provides an explicit treatment of entities that are not
frames, and it has a much better way of controlling
inference and specifying default values. OKBC can
be used on practically any platform because it sup-
ports network transparency and has implementations
for multiple programming languages. In this paper, we
discuss technical design issues faced in the development
of OKBC, highlight how OKBC improves upon GFP,
and report on practical experiences in using it.

Introduction

In the construction of a new knowledge base (KB), sig-
nificant productivity gains can be obtained by reusing
existing knowledge components. These components in-
clude pieces of domain knowledge (for example, theo-
ries of economics or fault diagnosis) and KB develop-
ment tools (for example, editors and theorem provers).
To support reuse of domain knowledge, the knowledge

1Copyright c©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

2OKBC implementations in Lisp, C and Java may be
obtained from http://ontolingua.stanford.edu/okbc/.

3The work presented in this paper was done while the
author was at SRI International.

sharing community has undertaken various efforts, in-
cluding the development of shared portable ontologies
(Farquhar, Fikes, & Rice 1997) and the development
of well-defined languages for knowledge interchange
(Genesereth & Fikes 1992). There has been, however,
less emphasis on the reuse of KB development tools.
A significant amount of effort is invested in building
customized tools for specific knowledge representation
systems (KRSs). These tools work only with a single
KRS, and the development effort is wasted if the KRS
is no longer used. A KRS developer usually does not
have the choice of using off-the-shelf tools and is forced
to develop tools on her own.

Open Knowledge Base Connectivity (OKBC) is an
application programming interface (API) for KRSs that
has been developed to address the problem of KB tools
reusability. The name OKBC was chosen to be analo-
gous to ODBC (Open Database Connectivity), as used
in the database community (Geiger 1995).

An API specifies the operations that can be used to
access a system by an application program. When spec-
ifying an API for a KRS, some assumptions must be
made about the representation used by that KRS. Such
assumptions are made explicit in the OKBC knowl-
edge model. As it can be too restrictive to enforce the
same semantics for all operations in an API across all
KRSs, OKBC supports behaviors to allow for differ-
ences among KRSs. Behaviors are a tool to achieve
flexibility in specifying OKBC operations. Thus, the
OKBC specification consists of three components: a
knowledge model, a collection of operations to access a
KRS, and a collection of behaviors.

A KRS can be bound to OKBC by defining a mapping
from OKBC to the native API of that KRS. To achieve
interoperability, a KB tool accesses a KRS using only
OKBC operations. Such a tool is isolated from the
peculiarities of the KRS and can be used with any KRS
that has been bound to OKBC. The interoperability
achieved by using OKBC is at the level of the OKBC
knowledge model. For example, the OKBC knowledge
model defines the concept of a class that has the same
interpretation across all OKBC bindings. OKBC does
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not guarantee, however, that a particular class (e.g.,
Person) defined in KBs residing in two different KRSs
represents identical concepts.

OKBC is a successor to the Generic Frame Protocol
(GFP) (Karp, Myers, & Gruber 1995) and improves
upon GFP in two significant ways. First, OKBC sup-
ports a larger class of KRSs because its knowledge
model includes an assertional view of a KRS, provides
an explicit treatment of entities that are not frames,
and has a much better way of controlling inference and
specifying default values. Second, OKBC can be used
on practically any platform and with a substantially
larger range of applications because it supports network
transparency, multiple programming languages, and a
remote procedure language.

Two conclusions can be drawn from the design expe-
rience of OKBC. First, an expressiveness vs. generality
tradeoff emerged. The expressiveness of the knowledge
model must be controlled so that it can work with a
range of KRSs. If the knowledge model is too expres-
sive, it becomes difficult to define OKBC bindings for
systems that have limited representational power. If the
knowledge model is insufficiently expressive, the OKBC
bindings for systems with more representational power
will not expose their capabilities. Second, the protocol
was augmented by two features to support variability
among KRSs: additional returned values and behaviors.
Wherever it is not feasible to legislate certain require-
ments, KRSs can expose the difference either globally
by setting the value of a behavior or locally by returning
an additional value from an operation.

This paper is devoted to the discussion of the tech-
nical issues faced in the design of OKBC. It is not in-
tended to be a comprehensive description of OKBC,
which may be found elsewhere (Chaudhri et al. 1997;
Rice & Farquhar 1998). The paper is organized along
the two major classes of enhancement in OKBC: ex-
panding the range of supported KRSs, and expanding
the range of supported applications. We also discuss
practical experiences in using OKBC.

The OKBC Knowledge Model

The OKBC knowledge model is designed to include
representational features supported by several KRSs
(Karp 1992). It includes constants, frames, slots, facets,
classes, individuals, and knowledge bases. Classes and
individuals form two disjoint partitions of a KB (see
Figure 1). A class is defined as a set of entities. Each
of the entities in a class is said to be an instance of that
class. An individual is an entity that is not a set.

Any entity has associated with it a collection of own
slots. Own slots describe the direct properties of an
entity. For example, if the age of Fred is 42, then age
is an own slot of Fred. Own slots and their values are
not inherited. A class has associated with it a collection
of template slots. Template slots describe properties of
the instances of a class (own slots of a class describe
the properties of the class itself). Template slots are

Classes Individuals

Frames

Facets

Slots

Figure 1: The OKBC knowledge model defines that
classes and individuals form disjoint partitions of a
KB. It does not commit to whether classes, individ-
uals, slots, and facets are represented as frames. It also
does not commit to whether slots and facets should be
represented as classes or individuals.

inherited by subclasses of a class; a template slot on a
class becomes an own slot on each instance of the class.

Own facets describe the properties of slots associated
with an entity, for example, cardinality or range. A
template slot of a class has associated with it a collec-
tion of template facets that describe own facets for the
corresponding own slot of each instance of the class.

Orthogonal to the knowledge-level distinction be-
tween classes and individuals is the notion of a frame. A
frame is a data structure that is typically used to repre-
sent a single entity and the slots and facets associated
with it. The decision as to which entities are repre-
sented as frames is driven primarily by implementation
considerations; historically, KRSs have made different
decisions about it. The OKBC knowledge model does
not legislate which entities are frames (see Figure 1).
For example, in a given KRS, classes may or may not
be represented as frames. Even if classes are gener-
ally represented as frames, OKBC allows for a subset
of classes not to be represented as frames. Indeed, it is
common for KRSs to excluded unnamed sets, such as
{1, 2, 4}, and primitive data structures, such as num-
bers and strings, from the set of frames.

The OKBC knowledge model does not legislate
whether slots and facets should be represented as classes
or individuals. In some KRSs, a slot (or more generally,
a relation) denotes a set of tuples. In such systems, a
slot is therefore also a class. In other KRSs, the space
of classes and slots are disjoint. In such systems, a slot
is also an individual. As shown in Figure 1, the knowl-
edge model allows for a slot or a facet to be either a
class or an individual.

A KB is a collection of classes, individuals, frames,
slots, slot values, facets, facet values, frame-slot associ-
ations, and frame-slot-facet associations and sentences.
Multiple KBs may be represented in a KRS.

OKBC supports operations that apply to specific
frames in a KB (for example, querying the values of
a slot of a frame), operations that apply to a KRS but
not to any specific KB (for example, getting a list of all
the KBs defined using a specific KRS), and operations



that apply neither to a KRS nor to a KB (for example,
establishing a connection to a knowledge server).

Expanding the range of supported KRSs

Although GFP was successfully used in several projects
at Stanford University’s Knowledge Systems Labora-
tory (KSL) (Farquhar, Fikes, & Rice 1997; Farquhar et
al. 1996) and at SRI International (Paley, Lowrance,
& Karp 1997; Karp et al. 1996), it lacked the power
and flexibility needed in a generic API. Most of the
enhancements considered here address the deficiencies
encountered while GFP was used at KSL and SRI.

Support for assertions
GFP was found to be inadequate for use with KRSs
that prefer to view a KB as a collection of logical sen-
tences, as well as systems that have a knowledge model
more expressive than the knowledge model of GFP. To
address these problems, we introduced a tell/ask inter-
face that supports an assertional view of a KB.

The design approach for supporting OKBC was anal-
ogous to the one adopted in KRYPTON (Brachman,
Fikes, & Levesque 1983). An OKBC KB supports two
alternative and isomorphic views of a KB: a frame-
oriented view and an assertional view. (The frame-
oriented view was called the terminological component
in KRYPTON.) While defining the assertional view of a
KB, we took a lowest common denominator approach:
an assertion language with an expressive power roughly
equivalent to an object-oriented frame language is de-
fined. For other assertions, support is provided, but no
portability claims are made.

Assertion Language OKBC defines an assertion
language (AL) for declarative specification of knowl-
edge. The AL is a first-order language with conjunction
and predicate symbols, but without disjunction, ex-
plicit quantifiers, function symbols, negation, or equal-
ity. The predicate symbols of the OKBC AL are class,
individual, primitive, instance-of, type-of,
subclass-of, slot-of, facet-of, template-slot-of,
template-facet-of, own-slot-value, own-facet-
-value, template-slot-value, and template-facet-
-value. For example, (instance-of John Person)
means that John is an instance of the class Person.
For convenience, (instance-of John Person) may be
written as (Person John).

A well-formed formula (WFF) of the AL is an atomic
formula constructed by enclosing one of the predicate
symbols followed by a number of terms in parentheses.
The terms of the AL are constants and variables. The
conjunction of two WFFs of the AL is a WFF.

OKBC provides the tell, ask and untell operations
to query and update a KB using the AL. OKBC guaran-
tees that only ground WFFs can be telled or untelled.
Any WFF may be asked.

OKBC specifies the effect of telling any WFF of
the AL to a KB by identifying an equivalent set of

OKBC operations that does not include tell. For ex-
ample, the operation (tell (instance-of frame class)),
which asserts frame to be an instance of class, is equiva-
lent to the operation (add-instance-type frame class).
Asking any WFF of the AL is similarly equivalent
to a set of OKBC operations not including ask. For
example, the operation (ask (instance-of ?x class))
is equivalent to the operation (get-class-instances
class).

Assertions not guaranteed to be supported by
OKBC To handle assertions outside of the AL,
OKBC defines the operations tellable and askable.
The OKBC operation tellable determines which sen-
tences may be acceptable to tell for a specific KB. Be-
fore using tell with an arbitrary formula, an application
can check whether a formula is tellable. If the formula
is not tellable, the application cannot safely assert that
formula using tell.

For example, consider the WFFs (age John 30) and
(friend John Sally). It is straightforward to assert
them using either tell or add-slot-value. An applica-
tion may, however, wish to assert the disjunction, (or
(age John 30) (friend John Sally)), which is not a
WFF of the AL. An OKBC binding for a KRS is free
to accept this formula, and an application can check
for this by using the tellable operation. If a formula
is tellable for a KRS, the tell operation can be used
to communicate that formula to the KRS. Using this
mechanism, a KB may accept formulae that contain
quantifiers, functions, or higher arity predicates.

There is no equivalence between using tell with arbi-
trary formulae and a set of OKBC operations that do
no use tell. Use of such formulae may, therefore, not
be portable across different OKBC bindings.

Handling entities that are not frames
As discussed above, KRSs make different assumptions
about which entities are represented as frames. These
differences influence the semantics of operations that
systematically process frames in a KB (for example,
get-kb-frames, get-kb-individuals, get-kb-classes
that respectively return all the frames, classes, and in-
dividuals in a KB). These operations could be specified
by saying that they respectively return all the frames,
classes, and individuals in a KB. Because of differences
in which entities are represented as frames, this sim-
plicity can be deceptive.

Not all entities are frames As shown in Figure 1,
not all classes in a KB are necessarily represented as
frames. Given such differences, it is not obvious how to
define the operation get-kb-classes. Should it return
only those classes that are frames? Should it return all
sets in a KB?

Returning only those classes that are frames is a
problem for KRSs that do not represent all classes as
frames. Some of the non-frame classes can be important
to a client application. Defining get-kb-classes to re-
turn all the sets is also problematic because the results



of one OKBC operation cannot necessarily be passed
to another operation, making an application program
more complex. The complexity occurs because it is gen-
erally not possible to perform operations such as creat-
ing slots and adding slot values to entities that are not
frames. Thus, if get-kb-classes were to return classes
that are not frames, an application program would need
to identify those classes that are not frames and treat
them differently. A possible solution to this problem
is to require a KRS to appear as if it represents every
class as a frame. This is not reasonable, however, be-
cause it is unnatural and can make the implementation
extremely inefficient.

To address this problem, we introduced an extra ar-
gument, selector, to get-kb-classes and similar oper-
ations. When the value of selector is :frames, only
those classes that are frames are returned, and when
its value is :all, all classes are returned. For a sys-
tem in which all classes are represented by frames, get-
kb-classes returns identical results for these two val-
ues of selector. We expect many applications to use
:frames as a value for the selector argument, because
it has the desirable property that the union of get-kb-
classes and get-kb-individuals equals the result of
get-kb-frames. A third legal value for this argument
is :system-default, which gives a KRS the freedom to
use the most efficient or natural method of computing
get-kb-classes.

Not all entity categories are frames As shown
in Figure 1, not all KRSs represent all categories of
entities as frames. Consider two KRSs: KRS1, which
represents slots as frames, and KRS2, which does not.
Furthermore, consider KB1, stored in KRS1, and KB2,
stored in KRS2, both of which were created using an
identical set of OKBC creation operations. Calling an
operation such as get-kb-frames will return different
results on KB1 and KB2. This may make it more diffi-
cult for an application to work portably with both KBs,
but it is acceptable if OKBC provides a mechanism to
detect the difference. The :are-frames behavior al-
lows a KRS to indicate which categories of entities are
represented as frames.

The values of the :are-frames behavior constitute a
set of the following keywords: :class, :slot, :facet,
and :individual. If the values of :are-frames contain
an entity category, it implies that frames may be used to
represent them. In most KRSs, classes and instances of
those classes are represented as frames, and therefore we
expect the most common set of values for :are-frames
to be at least {:class, :individual}. If two KRSs
have different values for the behavior :are-frames, we
can expect to get a different list of frames by executing
get-kb-frames on these KBs.

Controlling KRS inference
One area in which KRSs differ widely is in the infer-
ence mechanisms that they support and in the methods
available to control the inference mechanisms. It is crit-

ical for applications to have some means of controlling
the type and cost of inferences that a KRS performs in
response to a retrieval operation. Unfortunately, there
is not yet widespread agreement on either the inference
mechanisms or the parameters used to control them.
This makes it impossible for OKBC to provide a rich
KRS-independent method for controlling inference. In-
stead, OKBC provides a restricted method for specify-
ing which inferences should be performed in retrieval
operations, as well as methods for a KRS to indicate
the degree to which the specifications have been satis-
fied. OKBC does not provide means to specify limits
on computing time in performing those inferences.

OKBC retrieval operations support an inference-
level argument that takes one of the following three
values: :direct, :taxonomic, or :all-inferable.
When inference-level is :direct, at least the directly
asserted non redundant values are returned. When
inference-level is :taxonomic, at least the directly as-
serted and inherited values are returned. The inherited
values are computed using at least the taxonomic in-
heritance axioms defined by the knowledge model. For
example, a taxonomic inheritance axiom for slot val-
ues states that if a template slot S of a class C has
value V, then for all instances of C, the own slot S
has value V, and for all subclasses of C, the template
slot S has value V. Similar inheritance axioms are de-
fined for facet values, and for the class/subclass and
class/instance relationships. When inference-level is
:all-inferable, values inferable by any means sup-
ported by the KRS are returned, including any values
inferable at the :taxonomic inference level.

With an inference-level value of :direct, return-
ing exactly the directly asserted values may impose a
high burden on some systems such as forward chaining
systems that do not maintain a distinction between di-
rectly asserted and inferred values. To permit flexibility
in such cases, we use the following two techniques.

First, the inference-level argument defines the
lower bound on the values that may be returned. For
example, when the inference-level is :direct, at least
the directly asserted values are returned, but a KRS is
not prevented from returning additional values. Sec-
ond, any OKBC operation accepting the inference-
level argument returns two additional values, called
exact-p and more-status. The value of exact-p
is true if it is known that exactly the :direct (or
:taxonomic) values are returned. An OKBC imple-
mentation that always returns false as the value of
exact-p is compliant. The value of more-status is
either false, which indicates that there are known to be
no more results, or :more, which indicates that there
may still be more results but the KRS was unable to
find out how many more, or an integer, which indicates
how many more values exist.

By specifying the inference level in terms of the lower
bound on the result and returning two additional val-
ues, exact-p and more-status, we were able to permit
flexibility in the specification and also be accurate.



Handling defaults
In the absence of any widely accepted model of defaults
(Brewka, Dix, & Konolige 1997), OKBC incorporates
only simple provisions for default values of slots and
facets. Template slots and template facets have a set of
default values associated with them. Intuitively, these
default values inherit to instances unless the inherited
values are logically inconsistent with other assertions in
the KB, the values have been removed, for example, at
the instance, or the default values have been explicitly
overridden by other default values. OKBC does not re-
quire a KRS to determine the logical consistency of a
KB, nor does it guarantee a means of explicitly over-
riding default values. Instead, OKBC leaves the inheri-
tance of default values unspecified. That is, no require-
ments are imposed on the relationship between default
values of template slots and facets and the values of
the corresponding own slots and facets. The default
values on a template slot or template facet are simply
available to the KRS to use in whatever way it chooses
when determining the values of own slots and facets.
The slot or facet values that are not default values are
referred to as “known true” values. Operations on slot
and facet values take a value-selector argument that
allows a user to choose between only default values and
monotonic (“known true”) values.

Expanding the range of applications

The OKBC implementation was heavily influenced by
pragmatic considerations, for example, the need to sup-
port different programming languages and efficient op-
eration over a network. Network operation is necessary
because many applications are developed using a client-
server model, and because knowledge sharing should
not be restricted to sharing of KBs on the same ma-
chine or within the same institution.

Network transparency is achieved using an abstrac-
tion called a connection that encodes the actual location
of an OKBC KB and mediates communication between
an OKBC application and the KB. To communicate
with a KB, an application program first establishes a
connection to the KRS in which the KB resides and
subsequently, with each OKBC operation, the program
must indicate the connection that should be used in
executing it. Some OKBC operations take an explicit
connection argument, whereas others derive the con-
nection from a KB argument. Thus, once a connection
is established, a user need not be aware of the actual
location of the KB or whether the KB is being accessed
from the same address space as the application or over
the network.

The network substrate in the OKBC implementation
plays an important role in supporting multiple pro-
gramming languages, as it allows OKBC applications
to manipulate KBs through a network connection that
appears and operates just like a local KB. Client-side
implementations for OKBC exist for Lisp, C, and Java.

To improve efficiency in a networked environ-

ment, OKBC defines an implementation-language-
independent procedure language. The procedure lan-
guage allows an application writer to combine several
OKBC operations into a single procedure or set of pro-
cedures. These procedures can be recursive, and are
transmitted over a network to achieve a substantial per-
formance boost. For example, computing the informa-
tion necessary to display a complete class graph for a
KB may require calling at least two OKBC operations
for each class (one to get its subclasses, and the other
one to get a printable representation of the class name).
This could result in many thousands of invocations of
OKBC operations. With the procedure language, all
the invocations can be done within a single procedure,
and only a single network call is needed.

OKBC operations on large KBs may return many
values. If only a portion of the result is necessary, sig-
nificant speedup can be obtained by retrieving only the
desired part of the result. OKBC supports enumerator
operations that allow an application to retrieve the re-
sult in batches. For C++ and Java, enumerators are
a common programming idiom. Operations are defined
on enumerators to get the next element, to determine
if an enumerator has-more elements, to fetch a list of
elements, to prefetch a batch of elements, and to free
an enumerator.

Experiences in using OKBC

Defining a metric to measure the success of a generic
API is difficult. We will argue that OKBC has been suc-
cessful in its goal of enabling the construction of inter-
operable tools by presenting empirical evidence based
on the definition of OKBC bindings for several KRSs.
We also consider a small case study of building an in-
teroperable tool using OKBC.

OKBC bindings
Defining OKBC bindings for a KRS means implement-
ing a subset of OKBC operations by using calls to
the native API of that KRS (Rice & Farquhar 1998).
OKBC bindings for several systems have been defined
by our research groups at KSL and SRI. At SRI,
OKBC bindings were defined for LOOM (MacGregor
& Burstein 1991), Theo (Mitchell et al. 1989), SIPE-2
(Wilkins 1988), and Ocelot (Paley, Lowrance, & Karp
1997). At KSL, OKBC bindings were defined for On-
tolingua (Farquhar, Fikes, & Rice 1997), Abstract The-
orem Prover (ATP) (a theorem prover developed at
KSL), CML (Farquhar et al. 1996), Tuple-KB (Rice &
Farquhar 1998), file system KB, and CLOS. The Uni-
versity of Southern California’s Information Sciences
Institute has now produced its own version of an OKBC
binding for LOOM. An OKBC binding for Cyc (Lenat
& Guha 1990) has been defined by Cycorp.

OKBC was recently licensed by Pangea Systems
Inc. (see http://www.panbio.com) in support of its
projects in the area of bioinformatics. It is used exten-
sively in several ongoing projects at Stanford and SRI,



and has been adopted by DARPA’s HPKB program (see
http://www.teknowledge.com/HPKB/). OKBC server
implementations in Lisp and Java and client implemen-
tations in Lisp, C, and Java may be obtained from
http://ontolingua.stanford.edu/okbc/.

The KRSs for which OKBC bindings were defined fall
into three categories: systems with a knowledge model
that closely match the OKBC knowledge model, sys-
tems with knowledge models more expressive than the
OKBC knowledge model, and systems with a knowl-
edge model less expressive than the OKBC knowledge
model. Defining OKBC bindings for systems that have
a knowledge model closely matching the OKBC knowl-
edge model is straightforward. We discuss how we han-
dled the systems in the other two categories.

Binding a less expressive KRS A compliant
OKBC binding must implement all the OKBC oper-
ations. Many OKBC users are interested in only a
subset of the functionality specified by OKBC, be-
cause their KRSs have knowledge models less expres-
sive than the OKBC knowledge model. Instead of ex-
cluding such systems, OKBC defines compliance classes
that allow a KRS to specify which subset of OKBC
functionality it supports. By reviewing numerous
KRS bindings, we developed the following compliance
classes: :facets-supported, :user-defined-facets,
:read-only, and :monotonic. A KRS in the
:facets-supported class supports facets, in the
:user-defined-facets class it supports user-defined
facets, in the :read-only class it supports at least all
the read operations, and in the :monotonic class it sup-
ports at least all the operations that monotonically up-
date a KB.

For example, consider the OKBC bindings for the
Unix file system: directories are mapped to classes, sub-
directory relationships are mapped to subclass relation-
ships, and the files in a directory that themselves are not
directories are mapped to individuals. For such a bind-
ing, there is no natural way to create new facets. There-
fore, the OKBC bindings for a Unix directory system
will not satisfy the :user-defined-facets compliance
class. If a user does not have write permissions on a
file system, it can still be compliant in the :read-only
compliance class. An implementation of OKBC bind-
ings for a file system is included in the OKBC source
distribution (Rice & Farquhar 1998).

Binding a more expressive KRS The ATP sys-
tem, developed at KSL, is a model elimination theorem
prover that supports full first-order logic (FOL), pro-
vides limited support for axiom schema definitions, and
is designed to handle a large number of ground facts ef-
ficiently. It provides a good example of a system with
a knowledge model that is much more expressive than
that of OKBC. Defining an OKBC binding for ATP
presented several interesting design choices.

Because ATP is not a frame-oriented system, there is
considerable freedom in deciding which objects should
correspond to frames. We considered two possibili-

ties. The first possibility is to introduce a specific class
“frame”, all of whose instances are frames. The sec-
ond possibility is to make every object, function, and
relation constant a frame (ATP allows for predications
over relation and function constants). The first choice
makes it harder to use the OKBC binding with an ar-
bitrary ATP KB that does not include axioms for the
class “frame”. The second choice makes the ATP no-
tion of a frame slightly more inclusive than many KRSs.
For example, ATP would have a frame representing the
number 42. Copying the frame representing the num-
ber 42 to a KRS that provides data structures for all
frames can easily result in a frame data structure be-
ing allocated for 42, rather than using the built-in ma-
chine representation that the target KRS would prefer.
Nonetheless, we chose to model all constants as frames.

ATP supports many ways of representing the basic
relationships used by OKBC. Consider the subclass re-
lationship between the class dog and the class mammal.
This can be represented by the implication (=> (dog
?x) (mammal ?x)), or by the WFF (subclass-of dog
mammal) of the AL. Because we expected querying and
asserting subclass relationships to be a common oper-
ation, we wanted it to be efficient. ATP provides an
efficient mechanism for storing ground facts. To ex-
ploit this efficient representation, all WFFs of the AL
are implemented using ground facts. In addition to be-
ing efficient for OKBC’s basic queries, this simplifies
the deletion of frames.

For inference-level, OKBC defines the values:
:direct, :taxonomic, and :all-inferable. We im-
plemented this by using the multiple theories feature of
ATP to place all of the taxonomic inference axioms in a
separate theory. For inference level :direct, ATP looks
only at the ground facts; for inference level :taxonomic,
ATP uses the facts together with the taxonomic axioms;
and for inference level :all-inferable, all available
axioms are used.

For ATP, any FOL sentence is both tellable and ask-
able. Some surprises may arise when a sentence is told
that it is equivalent to some WFF in the AL, but has a
different form. For example, the relationship between
dog and mammal can be asserted in the implication, (=>
(dog ?x) (mammal ?x)), instead of using the corre-
sponding WFF of the AL, (subclass-of dog mammal).
As long as the inference level is :all-inferable, the
expected inferences are drawn (for example, a dog will
be a mammal). At the :taxonomic inference level, how-
ever, the implication would not be used, and the infer-
ence would not be drawn.

Interoperable tools built using OKBC
At least two browsing and editing tools have been
built using OKBC: the Generic Knowledge Base Edi-
tor (GKB-Editor) (Paley, Lowrance, & Karp 1997) and
the Java Ontology Tool (JOT). GKB-Editor is a tool for
graphically browsing and editing KBs and is written us-
ing Common Lisp. JOT is a Java-based tool for viewing
and editing the contents of KBs and was written using



a commercial off-the-shelf widget package. For the pur-
pose of the current discussion, we say that a browser
has been “successfully tested” with a KRS if it is able
to display the class-subclass relationships and all the
contents of frames.

GKB-Editor was initially developed and tested with
Ocelot. After the initial testing with Ocelot, GKB-
Editor was tested with Ontolingua. One of the dif-
ferences between Ontolingua and Ocelot is the value of
the :frame-names-required behavior. Ocelot sets the
value of the :frame-names-required behavior to true;
Ontolingua sets it to false. Browsing with the GKB-
Editor substantially depends on frame names. There-
fore, porting the GKB-Editor to Ontolingua required
us to assign fictitious names to frames in Ontolingua.
Since the fictitious names have no significance to a user,
they are never displayed, and instead the pretty names
of the frames are shown. Except for this difficulty with
frame names, we were able to test the GKB-Editor with
Ontolingua successfully. In addition to Ocelot and On-
tolinuga, GKB-Editor has been successfully tested with
LOOM and Theo. In fact, it is being used in con-
junction with LOOM in a natural language generation
project at the Technical University of Berlin (Stede &
Umbach 1998).

JOT was initially developed and tested with On-
tolingua and Tuple-kb. It was successfully tested with
Ocelot without any difficulty. JOT demonstrates the
language independence of OKBC, as one can use it
freely and transparently to browse and edit tightly cou-
pled KBs implemented in Java, network-based Java
KBs, and numerous different KBs written in Common
Lisp. Much of this editor’s operation is done by means
of remote procedures. This experiment shows that tools
written using OKBC, such as JOT, really do interoper-
ate with a wide range of KRSs.

Limitations of OKBC
The goal of OKBC is to enable the construction of
reusable KB tools, that is, the application programs
that access a KRS to perform browsing, editing, or rea-
soning tasks. Empirical evidence has shown that it has
been successful in meeting this goal. Potential users
of OKBC are usually concerned with whether they can
successfully use OKBC in their projects. Here, we iden-
tify some of the commitments and sacrifices that they
may need to make to use OKBC successfully.

To construct a new OKBC binding for a KRS, it is
necessary to identify the knowledge model used by the
KRS and define a mapping between it and the OKBC
knowledge model. By providing both frame-oriented
and assertional views of a KB, OKBC is capable of sup-
porting a wide range of systems. Some systems do not
easily admit to either of these views. While an OKBC
binding can be defined for such systems, some users
may not find it to be an intuitive or natural mapping.
OKBC bindings work best when the knowledge model
of the KRS closely matches that of OKBC.

OKBC bindings isolate a KB tool from many of the

peculiarities of a KRS, but certainly cannot cover all
of them. Therefore, porting a KB tool to a new KRS
usually requires some additional effort. For example,
Ocelot supports a slot type called :unique. The slots
of this type are inherited by subclasses and instances,
but their values are not inherited. For the GKB-Editor
to handle this peculiarity, a small amount of Ocelot-
specific code had to be added. Similarly, ATP provides
operations to return the proof that a value satisfied
some query, but OKBC does not currently provide any
operations for specifically extracting proofs.

OKBC is neither the lowest, nor the highest common
denominator protocol. It cannot hope to expose all of
the functionality of every system, but it exposes what
we believe most applications want. In addition, the pro-
tocol is specifically designed to be extensible by means
of the behavior mechanism so that clients and servers
can negotiate the use of a more powerful functionality
than is provided by the protocol.

OKBC does not solve the problem of semantic KB in-
teroperation. For example, using the OKBC operation
get-slot-values, an application may query the salary
of a person from two different systems, but there is no
guarantee that the returned values will be semantically
identical — one system may return annual salary and
the other system may return monthly salary. Semantic
interoperation is beyond the scope of OKBC.

OKBC is a functional interface to a KB (Brachman,
Fikes, & Levesque 1983) and does not specify the data
structures that should be used to implement its knowl-
edge model. Using OKBC, an application cannot ma-
nipulate internal data structures of a KRS that are used
to implement frames.

Summary and Conclusions

We have shown how OKBC provides an effective in-
terface between diverse software tools and KRSs. The
OKBC knowledge model is inspired by an extensive
study of existing KRSs. OKBC defines a comprehensive
set of operations for accessing a KB. The semantics of
those operations are precise, yet flexible enough to sup-
port both frame-oriented and assertional interaction.

For supporting variability among KRSs, behaviors
and additional return values proved to be central tech-
niques. Wherever it is not feasible to legislate cer-
tain requirements, KRSs can expose their differences
from the OKBC knowledge model either globally by
setting the value of a behavior, or locally by returning
an additional value from an operation. For example,
support for frame names can be advertised by using
the :frame-names-required behavior, and the degree
of conformity to the :inference-level argument is ex-
posed by an extra return value.

Design experience with OKBC suggests the existence
of an “expressiveness vs. generality” tradeoff that is
similar to the “expressiveness vs. tractability” trade-
off (Levesque & Brachman 1987). Some of the KRSs
with which we have used OKBC are highly expressive



and would require OKBC to support an equally expres-
sive knowledge model to expose their full functionality.
A highly expressive knowledge model, however, makes
defining OKBC bindings for KRSs with limited func-
tionality difficult and time consuming. Throughout the
design of OKBC, this tradeoff was a guiding principle
for carefully controlling the expressiveness of the knowl-
edge model. We believe that expressiveness vs. gener-
ality is a fundamental tradeoff in knowledge sharing.

OKBC represents a major advance over its prede-
cessor GFP. OKBC supports a larger class of KRSs:
its knowledge model includes an assertional view of a
KRS, provides an explicit treatment of KB entities that
are not frames, has a stronger method to control infer-
ences and has a better method for specifying default
values. Unlike GFP, OKBC can be used on practically
any platform and with a substantially larger range of
applications because it supports network transparency,
multiple programming languages, and a remote proce-
dure language.

In summary, OKBC substantially advances our abil-
ity to achieve interoperability between KRSs and client-
side KB tools. Its success is shown by its use with a
broad range of systems, one of which is being used in a
commercial environment. Availability of OKBC imple-
mentations in multiple programming languages makes
it an attractive choice for the developers of applica-
tions that make use of the content and services pro-
vided by KRSs. They can have increased confidence
that their applications will interoperate with multiple
KRSs. With the availability of OKBC-compliant tools,
KRS developers will be able to use off-the-shelf knowl-
edge components that are not the primary focus of their
work. We believe that OKBC makes a modest contribu-
tion toward achieving plug-and-play operation between
KB tools and KRSs.
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