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Abstract 

In this paper, we develop a formal methodology for 
verifying situated agents. The methodology consists 
of two elements, a specification language for specify- 
ing the agent capabilities to execute its actions in dy- 
namic environments and a repertoire of proof methods 
by which the correctness of an agent, relative to its ca- 
pabilities, can be formally verified. 

Keywords: Planning and control: situated reason- 
ing, plan execution, reactive control. 

Introduction 
In recent years there is a shift in AI from the classi- 
cal paradigm of rational agents to the notion of reac- 
tive, situated agents that have an intelligent ongoing 
interaction with dynamic and uncertain environments 
(Agre et al 1987, Brooks 1991, Georgeff et al 1987, 
Kowalski et al 1996, Rosenschein et al 1995, Saffioti 
et al 1995, Shoham 1993). The correct construction of 
reliable situated agents is an important task in agent 
research nowadays. 

Consider for example the following plan for a robotic 
agent to cross a busy motor way: 

Wait until the road is clear then cross at. 

Is it a correct plan to cross a busy road 7 i 
The correctness of this plan depends very much on 

the robot’s capabilities. If the robot is fast enough to 
be able to finish crossing the road before a car could 
pass by then the above plan is correct. But it may not 
be correct for a slower robot. 

The correctness of plans depends on the capabilities 
of the agents executing them. There is some debate in 
the literature on whether capability should be defined 
in mental terms or not (Cohen et al 1990, Lesperance 
et al 1995, Shoham, 1993, Thomas 1994). Here we 
will not take a stance on this issue. Our notion of 
capability is grounded fully in terms of actions and 
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‘By correctness we mean that the robot should not be 
run over by cars when executing this plan 

states of automata-like agents. We define an agent’s 
capability as sets of possible execution processes that 
can unfold during the execution of the agent’s plans in 
interaction with the environment. 

Let us look at the road crossing problem again, As 
crossing a road takes time, we follow the literature 
(Reiter 1996) in representing it as a sequence of two 
actions: start-crosszng;end-crossing where the effects 
of start-crossing and end-crossing are on-road and not 
on-road, respectively. 

Par an agent to execute a plan in an uncertain envi- 
ronment is like to play a game with an unpredictable 
opponent where the moves of the agent are constrained 
by the plan while the environment can make its moves 
randomly. In the road crossing game, the environment 
has two actions car-appear and car-pass-by to its dis- 
posal where the action car-appear is executable in all 
situations (i.e. a car could appear anytime) with the 
effect that the fluent car-coming becomes true after a 
car appears. The action car-pass-by is executable only 
in those situations in which car-comang is true 

Imagine a situation s where the agent is alive and 
on road while a car is coming. Formally s is repre- 
sented by s = {alzve, on-road, car-coming). Further 
let p be a plan whose only action is end-crossing. Let 
us consider two possible scenarios in the game to exe- 
cute this plan between the agent and the environment. 
In one scenario, the agent manages to make a move 
by executing the action end-crossing before the envi- 
ronment does anything. This scenario is represented 
by the sequence of state transitions: s end-ysing s’ 
where s’ = {alive, car-coming}. In the other scenario, 
the environment manages to make a move by execut- 
ing the action car-pass-by before the agent could finish 
the action end-crossing. Afterwards the agent’s action 
end-crossing is not defined anymore (as the agent has 
ceased to be alive). This scenario is represented by the 

sequence of state ! transitions: s car-z-by s” A s” 
where s” = {on-road} and the label I means that the 
game has been interupted as the agent can not execute 
the action end-crossang any more. 

Note that though both actions end-crosszng and car- 
pass-by are executable in the situation s, the second 
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scenario can not happen if the agent has the capability 
to finish crossing the road before any car could pass 
by. 2 

Formally, an agent’s capability is represented by an 
capability function C which assigns to each plan p and 
state r, a set C(p) r) of possible execution processes of 
p, starting from r, which could unfold in the agent’s 
game with the environment. For example, the agent’s 
capability to finish crossing a road before a car could 
pass by in the situation s above is characterized by 
C(end-crossing, s) = {s end-Zsing s’) 

In this paper, we develop a formal methodology for 
verifying situated agents. The methodology consists 
of two elements, a specification language for specify- 
ing the agent capabilities to execute its actions in dy- 
namic environments and a repertoire of proof methods 
by which the correctness of an agent, relative to its 
capabilities, can be formally verified. 

Preliminaries 
The methodology for representing actions in this paper 
is adopted from (Gelfond et al 1993). The language for 
describing the world consists of a set of propositional 
fiuent names FLU and a set of action names ACT. A 
state of the world is represented by a subset of FLU. 
The set of all states is denoted by STA. The effects of 
an action A is determined by a partial transition func- 
tion TA : STA -+ STA. We say that A is executable 
in s if TA(s) is defined. 

Example 1 The language for OUT road crossing prob- 
lem is given by: FLU = {alive (al), on-road (on), 
car-coming (cc)}, and ACT = {car-appear (ca), 
car-pass-by (cp), start-crossing (SC), end-crossing (ec)} 
The actaons have eflects accordang to thezr common- 
sense understandang: 

L(s) = ;;Lf;;ed f$,feFw;p ion 
{ 

T,,(s) = 
I 

s - {on) if s b al A on 
undefined otherwise 

Tea(s) = s U {cc} for every s. 

{ 

s - {cc} 2f s /=ccA-ron 
T,(s) = s - {cc, 4 

undefined 
$;ek,c,c,A on 

Reasoning about the effect of actions have been stud- 
ied extensively in the literature (see Gelfond et all 93, 
Reiter 96 and the references therein). As our interest 
in this paper is not primarily about reasoning about 
action, we will not dwell further on this topic from 
now on. 

‘We assume that the agents always act with their best 
capability 
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Agent Capabilities 
The world of our agent in this paper consists of the 
agent itself and its environment. Therefore the set 
of action names ACT is a disjoint union ACT = 
ACTagent u ACT,,, of the set of the agent’s actions 
ACT,,,,1 and the set of environment actions ACT,,, . 

A sequential plan is defined as a sequence Ao; . . .; A, 
of the agent’s atomic actions Ai E ACTagent, 0 < i < 
12. 
Definition 1 1. A (possibly infinite) global process e 

2. 

3. 

4. 

startzng from so is a sequence of the form 

so ++ s1 . . . -5 s,+1 . . , 

such that for each i 1 0, Ai E ACT and Ai is 
executable in si, and si+l = TA.(s~). The set of 
all states in 5 is denoted by St(e), i.e. St(e) = 
{so,. ..,sn )..’ . 
A global process is called an environment process if 
for each i 1 0, Ar E ACT,,, 
The znitial and final state of a global process e are 
denoted by initial(e) and final(e) respectzvely. We 
often write s -% s’ to indicate that e is a global 
process with initial state s and final state s ,. We also 
wriie s 2 i0 indzcaie ihai e as a global process wiih 
anitial state s. 
For global processes e, e’ such that final(e) = ini- 
tial(e’), the concatenation of e and e’, denoted by 
e.e’, is defined as the global process 

initial(e) -5 final(e) A 
For sets of global processes S,S,,’ define S.S’ = 
(e.e’ ) e E S, e’ E S’, final(e) = initial(e’)} 
To understand the definition of the crucial notion 

of plan execution process in the following definition, 
remember that for an agent to execute a plan in an 
uncertain environment is like to play a game with an 
unpredictable opponent where the moves of the agent 
are constrained by the plan while the environment can 
make its moves randomly. 
Definition 2 A possible executaon process of a sequen- 
tial plan p starting from a state so E STA is defined 
inductively as follows: 

1. p = A where A E ACT,,,,t. Then a possible execu- 
tion process of p starting from so has 

(a) eather the form so -& s1 5 s2 
where e is a finite envaronment process and A is 
executable in ~1, and s2 = TA(s~).~ 

,(b) or the form 
I so z+ Sl - s1 

31n this case, the environment has already made the 
moves in e before the agent manages to actually perform A 

41n this case, the environment has already made the 
moves in e before the agent is about to perform A which 
has become unexecutable. 



2. p = A; q where A E Actagent, Then a possible exe- 
cution process of p starting from so is 

(a) either an execution process of A from SO whzch zs 
ended by an undefined actaon I 

(6) or of the form el .e2 where er is a successful execu- 
tion process of A 5, and e2 is a execution process 
of q starting from finad(e-i). 

3. The set of all passable execution processes of p start- 
ing from s E STA is denoted by Exe(p,s). 

4. A plan execution process is iderupted if it is ended 
by an undefined actzon I 

5. A plan execution process is successful zf it is not in- 
fergpfe(-J. 

Two examples of possible execution processes of the 
plan p = SC; ec in the road crossing example are: 

so 5 s1 % so and so % s1 s s2 % s3 

where SO = {~a}, si = {al, on}, s2 = {al,+ cc}, 
s3 = {c-d, cc} 

Now we can define the crucial notion of capability. 

Definition 3 The capability of an agent as defined as 
a function that assigns to each pair (p,s) of a sequential 
plan p, and a state s E STA a set C(p, s) c Exe(p, s) 
such that the followzng propertaes are satasfied: 

1. C(p, s) is a finite nonempty subset of Exe(p, s) 
2. For any plans ~1, ~2: C(p1; ~2) = C(m).C(p2> 

where for any plan p, C(p) = U{C(p,s) 1 s E STA}. 

Intuitively, C(p, s) represents the set of all possible 
execution processes which could occur when the agent 
is executing p from s. The first condition is motivated 
by the assumption that our agent can execute any ex- 
ecutable action A E ACT,,,,t in a finite time interval, 
and to exlude Zeno processes in which there are in- 
finitely many state-changes in a finite time interval. 
ml-- ---AI-.-A.-- t-- LL- _^^^_ J ---A:L:-l. ,.L . . . . ?I l., :, IlIt; InwblVablun I”1 IdIt: sec;“IIu C”Ilulbl”ll SII”luU ut: 111- 
tuitively clear. 

In the road crosing example, our agent’s capabili- 
ties to cross a clear road before any car could appear 
is represented by any capability function C satisfying 
C(sc; ec, SO) = {SO % si -% SO} . Morerover, the 
incapability to finish crossing a road alive in the state 
s2 = {uI, on, cc} is expressed by the following capa- 
bility function: C(ec,sz) = {s -% r f r} where 
r = {on} 

It is not difficult to see that the following lemma 
1. -1 .I- novas. 

Lemma 1 Two capability functions coincide on every 
plan if they coincide on the single action plans. 

This lemmashows that the capability of an agent to 
carry out a plan is fully determined by her capability 
to carry out the basic actions in the plan. 

For later use, for each plan p, each fluent proposition 
cp, define C(P, P> = U-IC(P, 8) I s b ~1. 

5See point 5 in this definition 

\ ,/ /J 

A Language for Agent Capabilities ’ ” 
Agent capabilities are described by ability propositions 
of the form 

executable p when p before 4 
where cp, $ are fluent propositions and p is a sequential 
plan. The informal semantics of such proposition is 
that whenever the agent starts executing p in a state 
satisfying ‘p, it will finish before 4 could become true. 

For example, the proposition that the agent is capa- 
ble to cross a clear road before any car could appear, 
is expressed by the following proposition: 

executable SC; ec when TccAudAlon before cc (1) 

The semantics of the ability propositions is defined 
with respect to the capability functions as follows. 

Definition 4 Let C be a capability function and E 
be an abilaty proposition of the form executable p 
when p before $. 

1. 

2. 

3. 

c 

We say that C satisfies e, written C j= E, if for each 
e E C(p,cp) : e is successful and ‘ds’ E St(e), s’ k II, 
C is said to be a model of a set of ability propositions 
if C satisfies each proposataon in this set. A set of 
abalaty propositaons is consistent if it has a model. 
We say that E follows from a set of ability proposi- 
tions E, written E i= e if each model of & is also a 
model of e. 

In the road crossing example, any capability function 
such that 

C(sc; ec, SO) = {SO -2 s1 5 SO} (2) 

satisfies the ability proposition (1). 

Reactive Plans 
For each fluent proposition (p, we assume that 
ACTagent contains an action ‘p? to test whether ‘p holds 
in the current situation. Formally, the semantics of a 
test action (o? is defined by 

1. TV?(s) is defined iff s k ‘p 
2. If Tqv(s) is defined then TP7(s) = s 

Definition 5 1. A conditional plan c has the form 

whTrz,Pcalled the test of c and denoted by test(c), 
is a fluent proposition and p, called the body of c and 
,...-i-, I-. I -,-.,-, . aenutea uy ““lLy(c/) ,as a seq.uenti;al plan. 

2. A reactive plan is a finite (possibly empty) set of 
conditional plans. The dagunction of the tests of all 
the condataonal plans in a reactave plan R is denoted 
by co&(R). 

Reactive plans are executed in cycles. At the begin 
of each cycle, the test conditions of the conditional 
plans are checked. If none of them hold then the agent 
waits until some of them become true. If one of the 
test conditions holds (either at the first check or after 
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waiting a while), then the body of the corresponding 
conditional plan is executed. If it is successful then a 
new cycle starts. If not, the execution of the reactive 
plan will be i&erupted. 

For an agent to operate safely in an environment, 
it seems necessary that it should possess a capability 
to sense any relevant change of the environment early 
enough to react accordingly. An agent is said to be 
alert if it has the capability to recognize every relevant 
change of the environment “instantly” (in the sense 
that during the sensing time the environment under- 
goes no significant change). 

Definition 6 A capability function C is said to be alert 
if for any fluent proposition ‘p 

C(cp?, s) = {s -5 s) if s b ‘p 

C(p?,s)={s-$s} if sb=p 

For simplicity and understandability, we will restrict 
ourself on alert agents when considering the execution 
of reactive plans. 

Definition 7 Let C be an alert capabalaty function and 
R={Po*Po,* ..,(P~ + p,} be a reactave plan. 

i. A possibie execution process e 0fR wath respect to C 
starting from an inatial state so as defined as follows: 

(a) Case 1: so b cond(K!). Then for some k such that 
so I= WC, 

i. either e has the form eo.el where eo is a success- 
ful executaon process an C(cpk?;pb, so), and el as 
an execution process of R wath respect to C start- 
zng from finaZ(e0). 

ii. or e is an interupted executaon process an 
qa?; PI;, so> 

(b) Case 2: so k cond(Z). Then 
i. either e has the form eo.el where 

l eo is an environment process of the form 

A -I so * Sl... = .5-m 

such that for each 0 5 i < m, si F cond(7Z) 
and snz /= co&(R), and 

l el is an execution process of R with respect to 
C starting from sm 

ii. or e as an infinate environment process such that 
for each state s E St(e), s F cond(R) 6. 

iii. or e is a finite environment process such that for 
each s E St(e) s k cond(R) and there exasts no 
executable environment action at final(e) 7 . 

2. A reactive plan execution process is interupted if it 
is ended by an undefined action 1. 

3. A reactive plan execution process is successful if it is 
not interupted. 

‘This represents the case where the agent has to wait 
infinitely 

‘The agent also has to wait infinitely in this case 

4. The set of all executaon processes of R wrt C start- 
ing from a state s is denoted by Exec(R,s) while 
Exec(R, ‘p) denotes the set of all execution processes 
of R wrt C starting from a state satisfying ‘p 

For example, consider again the road crossing ex- 
ample where the agent has the capability (2). Let 
Ro = {lee 3 SC; ec}. Then Execc(Ro, so) = {so ‘ee? 
so s 81 s so -ccl so % s1 s so + . . .) 

Verification of Reactive Agents 
We consider in this paper the verification of invariance 
formulas of the forms 

which states that if the agent starts executing R (a 
reactive plan) in a state satisfying ‘p then II, will always 
hold during the execution of R. 

We say that an alert capability function C satisfies 
a formula cp -k q (R, $), written C + ‘p --> O(K?,$) , 
if for each execution process e E Exec(R, cp), for each 
state s E St(e) , s k 4. 

For the verification of invariance formulas, we also 
need to consider verification conditions of the form 

[PIP WI 
which states that if the agent starts executing p (a 
sequential plan) in a state satisfying y, then it, will ter- 
minate successfully in a state satisfying $. 

We say that a capability function C satisfies a for- 
mula [v] p [$I, written C b [(p3 p [$I, if each execution 
process e E C(p, ‘p) is successful and terminates in a 
state satisfying +. 

Verifying b~l P W I 
To prove the condition [p] p [$J, we need another kind 
of conditions of the form 

which states that every successful execution process 
e E Exe(p, ‘p) satisfying the property that y is invari- 
ant during it (i.e. Vs E St(e) : s + r), terminates in a 
state satisfying I/J. 

It is important to note that the validity of condition 
{cp} p inv y {$} does not depend on the agent’s capa- 
bilities. They are therefore often referred to as cap-free 
conditions. 

We can now give the rule for proving [(p’l p [$] 

l WY 

executable p when p before y 
icp>P inv 1-y ($1 

[PI P WI 
Lemma 2 The rule (SP) as sound an the sense that 
for each capability function C, if C b executable p 
when p before y, and {cp)p inv 1-r {$} holds then 
c I= MPWI 
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For each fluent proposition ~3, define TA(JO) = 
(T’(s) ] s j= cp}. Further we write TV + $ if each 
state in TAG satisfies $. 

The following notion of environment invariance plays 
an important role in the rules for proving cap-free con- 
ditions. 
Definition 8 1. A fluent proposition ‘p is said to 

be environment invariant with respect to y start- 
ing from II, if for each environment process e, if 
initial(e) + 7) and Vs E St(e) : s + y then 
Vs E St(e) : s b p. 

2. We often say that cp as environment anvariant start- 
ing from I) if y 3 true 

3. We adso say that cp is environment invariant af it is 
environment invariant starting from ‘p. 
We can now introduce the rules for proving cap-free 

conditions. 

l (CFl) 

y2 is environment invariant wrt y starting from ‘p 
m /,.. * ,.\ I- ^> ~ “1. 
lA(Y “‘YJ h ‘I - Y 

{p} A inv y (4) 

. (CF2) 

l (CF3) 

Lemma 3 The proof system for cap-free condztzons is 
sound. 

Proof Theory for Ability Propositions Rule for Invariance Formulae 
Rules for Sequential Operator We can now give the rule for invariance formula. 

l (CPl) l (IFI 

executable p;q when ‘p before II, 
executable p when ‘p before $ 

l (CP2) 
I~l?l T?bl !.I-,= LTA 

executable p when cp before 4 
executable q when $ before 4 

executable p;q when ‘p before c$ 

l (CP3) 

3qi : cp++, 4-g 
4 is environment invariant wrt lcond(R) 
starting from f#~ 

Vc E R: [gt A test(c)] body(c) [4] 
executable bodyjcj when 4 A testjcj 

Lemma 5 The rule (IF) is sound in the sense that for 
each alert capability function C, for each reactive plan 
72, if there exists 4 such that folowing conditions are 
satasfied: 
l [p -+ q5 and 4 + $ are valid and q5 is environment 

invaraant wrt -xond(R) starting from qb 
l For each c E R, C b [$Atest(c)] body(c) [4] and C k 

...--- ,...C..I.l, l.“d../,I . ..L.... A  A t”“+/“\ l..,cr.,, -.I, 
t3ACLUbQ”lt: ““Uy( L, W111?11 y I\ ‘GU‘\bJ “Gl”IFi ‘y 

executable p; A when ‘p before 4 
executable 2, when cp before Y 

i&l PM ’ 
{4)A inv ++YI 

’ 

7-y is environment invariant wrt + starting from d 
executable p; A w’nen cp DeIore 7 

executable A when ‘p before y 
1~1 A inv -Y i-41 

-T/J is environment invariant wrt ly starting from ‘p 
executable A when ‘p before $ 

Other Rules 
0 (CP5) 

executable z) when (D before ti 
executable p when (~1 before $1 

executable p when ‘p A ‘p1 before 4 v $I 

l (CP6) 

executable p when ‘p before 11, 
executable p when ~1 before $1 

executable p when ‘p V (~1 before $ A & 

l (CP7) 

executable p when cp before $ 
(Pl != ‘PI $1 I= II, 

executable p when ‘p1 before $1 

For each set of ability proposition E, let IYE be the 
set of rules obtained by adding to the rules for ability 
propositions a new rule of the form 

0 (CP8) 

EEE 

E 

Lemma 4 The proof system for the ability proposi- 
---z. f “z..‘,..L. Lions 88 SXiJid in iki2 S~~~~ i&ii fOF CUCIL Si3i (7~ uvasicy 

proposataons C, af & l-r, E, then & b E 
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Example 2 
Let E be the capabalaty proposataon (1). Further let 

Ro = {-cc * SC; ec} . 
We want to prove: {c} k (aZ A ion) + U(Ro, al) 

It is easy to see that alAwn as envaronment invara- 
ant. Using rule (CFI) we get 

k {ad A Ton} SC inv TX {al A on} (3) 
I- {ad A on} ec inv TX {al A Ton) (4 

iFrom (3,4) using rule (CF2) we get 
I- {al A Ton} SC; ec inv -WC {al A Ton} (5) 

Therefore, it is obvaous from (CF3) and (5) 
k {a! A ion A TX} SC; ec inv TX {aa A ion} (6) 

Let E = {E}, it follows from (CP8) & I- 6. Using rule 
(CPl) we have 
E I- executable SC when TX A al A ion before cc 

(7) 
Hence using (SP) and from (3,7), at follows: 

E I- [al A -on A -cc] SC [al A on] (8) 
Using rule (CF3) and (3), we get 

k {ad A Ion A TX} SC inv ICC {al A on} (9) 
Using (CPd) and (7,9), we get 
8 I- executable SC when lee A al A Ton before lad 

(10) 
Using (CF3), we get from (4) 

b {al A on} ec inv lee {al} (11) 
Using (CP3), we get from (11,8,9), E and the fact that 
al is environemt invariant wrt YX from al A on : 
,Y I- executable SC; ec when ~,ccAadA-on before -~a[ 

(12) 
Usang rule (SP), we can derive from E and (6) 

I I- [al A eon A --cc] SC; ec [al A TOT%] (13) 
Using rule (IF), where ‘p E al A Ton, 4 z ‘p, and 
qb 3 al, we can conclude from (12,131 and the fact that 
al A yen is environment invaraant: 

& 1 (a/ A Ton) + q (Ro, aa) 

Discussion 
Reasoning about complex actions in dynamic environ- 
ment where environment actions are allowed to occur 
randomly has also been studied in the literature lately 
(Baral et al 1998, De Giacomo et al 1997). But these 
works consider only agents with a capability C satis- 
fying C(p, s) = Eze(p, s) for each p and s. In other 
words, their agents constitute a subset of the class of 
agents considered in this paper. 

l7-.. -:--l:c”e+:-.. -..?l --,.,. ,c ..,.-l,.,“+,,,-l:,,e .ge I’“L DIIIIp‘IILLa.~L”II auu r;aar; “I uuu~mmuurutj, 
have made an assumption that our agents are alert. In 
many real world applications, this assumption could be 
an oversimplification. Hence it is important to study 
agents which are not alert in the future. Integrating 
the framework of (Saffioti et al 1995) with ours could 
be promising here. 
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