“ Erom: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

A Formal Methodology for Verifying Situated Agents

Phan Minh Dung
Department of Computer Science,
Asian Institute of Technology
PO Box 2754, Bangkok 10501, Thailand
dung@cs.ait.ac.th

Abstract

In this paper, we develop a formal methodology for
verifying situated agents. The methodology consists
of two elements, a specification language for specify-
ing the agent capabilities to execute its actions in dy-
namic environments and a repertoire of proof methods
by which the correctness of an agent, relative to its ca-
pabilities, can be formally verified.

Keywords: Planning and control: situated reason-
ing, plan execution, reactive control.

Introduction

In recent years there is a shift in Al from the classi-
cal paradigm of rational agents to the notion of reac-
tive, sitnated agents that have an intelligent ongoing
interaction with dynamic and uncertain environments
(Agre et al 1987, Brooks 1991, Georgeff et al 1987,
Kowalski et al 1996, Rosenschein et al 1995, Saffioti
et al 1995, Shoham 1993). The correct construction of
reliable situated agents is an important task in agent
research nowadays.

Consider for example the following plan for a robotic
agent to cross a busy motor way:

Wait until the road is clear then cross .

Is it a correct plan to cross a busy road 7 !

The correctness of this plan depends very much on
the robot’s capabilities. If the robot is fast enough to
be able to finish crossing the road before a car could
pass by then the above plan is correct. But it may not
be correct for a slower robot.

The correctness of plans depends on the capabilities
of the agents executing them. There is some debate in
the literature on whether capability should be defined
in mental terms or not (Cohen et al 1990, Lesperance
et al 1995, Shoham, 1993, Thomas 1994). Here we
will not take a stance on this issue. Our notion of
capability is grounded fully in terms of actions and

Copyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

!By correctness we mean that the robot should not be
run over by cars when executing this plan

states of automata-like agents. We define an agent’s
capability as sets of possible execution processes that
can unfold during the execution of the agent’s plans in
interaction with the environment.

Let us look at the road crossing problem again. As
crossing a road takes time, we follow the literature
(Reiter 1996) in representing it as a sequence of two
actions: start-crossing;end-crossing where the effects
of stari-crossing and end-crossing are on-road and not
on-road, respectively.

For an agent to execute a plan in an uncertain envi-
ronment is like to play a game with an unpredictable
opponent where the moves of the agent are constrained
by the plan while the environment can make its moves
randomly. In the road crossing game, the environment
has two actions car-appear and car-pass-by to its dis-
posal where the action car-appear is executable in all
situations (i.e. a car could appear anytime) with the
effect that the fluent car-coming becomes true after a
car appears. The action car-pass-by is executable only
in those situations in which car-coming is true

Imagine a situation s where the agent is alive and
on road while a car is coming., Formally s is repre-
sented by s = {alwe, on-road, car-coming}. Further
let p be a plan whose only action is end-crossing. Let
us consider two possible scenarios in the game to exe-
cute this plan between the agent and the environment.
In one scenario, the agent manages to make a move
by executing the action end-crossing before the envi-

ronment does anything. This scenario is represented

<y end-crossin
by the sequence of state transitions: s LoIng g

where s’ = {alive, car-coming}. In the other scenario,
the environment manages to make a move by execut-
ing the action car-pass-by before the agent could finish
the action end-crossing. Afterwards the agent’s action
end-crossing is not defined anymore (as the agent has
ceased to be alive). This scenario is represented by the

" car-pass-by L
sequence of state | transitions: s — = &' — "

where s = {on-road} and the label 1 means that the
game has been interupted as the agent can not execute
the action end-crosszng any more.

Note that though both actions end-crossing and car-
pass-by are executable in the situation s, the second

Knowledge Representation 637

scenario can not happen if the agent has the capability
to finish crossing the road before any car could pass
by.

Formally, an agent’s capability is represented by an
capability function C which assigns to each plan p and
state r, a set C(p, r) of possible execution processes of

. . X ;
p, starting from r, which could unfold in the agent’s

game with the environment. For example, the agent’s
capability to finish crossing a road before a car could
pass by in the situation s above is characterized by
('(p'nr]-r-'r'nem'nn e\ = I end—mszng gl

\LirTLI Vo

In this paper, we develop a formal methodology for
verifying situated agents. The methodology consists
of two elements, a specification language for specify-
ing the agent capabilities to execute its actions in dy-
namic environments and a repertoire of proof methods
by which the correctness of an agent, relative to its
capabilities, can be formally verified.

Preliminaries

The methodology for representing actions in this paper
is adopted from (Gelfond et al 1993). The language for
describing the world consists of a set of propositional
fluent names FLU and a set of action names ACT. A
state of the world is represented by a subset of FLU.
The set of all states is denoted by STA. The effects of
an action A is determined by a partial transition func-
tion Ty : STA — STA. We say that A is executable
in s if T4 (s) is defined.

Example 1 The language for our road crossing prob-
lem is given by: FLU = {alive (al), on-road (on),
car-coming (cc)}, and ACT = {car-appear (ca),

car-pass-by (cp), start-crossing (sc), end-crossing (ec)}.

The actions have effects according to thewr common-
sense understanding:

_ | su{on} if s = al A-on
Te(s) = { unde fined

otherwise
_f s~{on} if sEalAon
Tee(s) = { undefined otherwise

Tea(s) = s U {cc} for every s.

s —{ec} if s = ccA—on
Top(s) =4 s—{cc,al} if sl=cchon
undefined otheruise

Reasoning about the effect of actions have been stud-
ied extensively in the literature (see Gelfond et all 93,
Reiter 96 and the references therein). As our interest
in this paper is not primarily about reasoning about
action, we will not dwell further on this topic from
now on,

2We assume that the agents always act with their best
capability

638 Robotics

Agent Capabilities
The world of our agent in this paper consists of the
agent itself and its environment. Therefore the set
of action names ACT is a disjoint union ACT =
ACTagent U ACT,p, of the set of the agent’s actions
AC’Tagem and the set of environment actions ACTonv.

AL n A ~ .
11. OCHLLCILLLLH [IG(LIL lb agnnea as a pCYyuclice .110, ,An

of the agent’s atomic actions 4; € ACT,ent, 0 5 i <

Definition 1 1. A (possibly infinite) global process e
DITY ﬁ

starting from sy is a sequence of the form
80 —> 81 ... > Spgl e

such that for each i > 0, A; € ACT and A; is
ezecutable in s;, and s;y1 = Ty,(s;). The set of
all states in e is denoted by St(e), i.e. St(e) =
{50,y 8n,- .}

2. A global process is called an environment process if
foreachi> 0, A; € ACTeny

3. The wmitial and final state of a global process e are
denoted by initial(e) and final(e) respectively. We
often write s ~» § 1o indicate that e is a global
process with initial state s and final state s. We also
write s~ to indicate that e 1s a global process with
witial state s.

4. For global processes e, e’ such that ﬁnal(e = ini-
tzal(e) the concatenation of e and e’, denoted by
e.e’, is deﬁned as the global process

initial(e) ~» final(e) %
For sets of global processes 5,57, deﬁne
{ee'lee S, ¢ €8, final(e) = mztzal(e’)}

To understand the definition of the crucial notion
of plan execution process in the following definition,
remember that for an agent to execute a plan in an
uncertain environment is like to play a game with an
unpredictable opponent where the moves of the agent
are constrained by the plan while the environment can
make its moves randomly.

8.8 =

Definition 2 A possible execution process of a sequen-
tial plan p starting from a staie sp € STA is defined
inductively as follows:

1. p = A where A € ACTagen:. Then a possible execu-
tion process of p starting from so has

(a) either the form
where e is a finite enwironment process and A is
executable in 51, and s2 = Ta(51).3

(b) or the form s~ 51 L5

where ¢ s g finile environment nprocess an

e A
8g ~* 81 — 82

[and A is

not executable in s1. 4

3In this case, the environment has already made the
moves in e before the agent manages to actually perform A

*In this case, the environment has already made the
moves in e before the agent is about to perform A which
has become unexecutable.

2. p= A;q where A € Actagen:. Then a possible exe-
cution process of p starting from sg s

(a) either an ezecution process of A from so which s
ended by an undefined action L

(8) or of the form e1.eq where ey is a successful ezecu-
tion process of A °, and ey is a execution process
of ¢ starting from final(ey).

3. The set of all possible execution processes of p start-
ing from s € STA is denoted by Exe(p,s).

4. A plan execution process is interupted if it is ended
by an undefined actzon L

§. A plan ezecution process is successful if it is not in-
terupted.

Two examples of possible execution processes of the
plan p = se; ec in the road crossing example are:
sC ec sC ca ec
sg — 8§y —> 59 and sy — 81 —> S9 — S3
where sg = {al}, sy = {al,on}, sa = {al,on,cc},
s3 = {al, cc}
Now we can define the crucial notion of capability.

Definition 3 The capability of an agent 1s defined as
a function that assigns to each pair (p,s) of a sequential
plan p, and a state s € STA a set C(p,s) C Eze(p, s)
such that the following properties are satisfied:

1. C(p, s) is a finite nonempty subset of Exe(p,s)

2. For any plans p1,pa: C(p1;p2) = C(p1).C(p2)
where for any plan p, C(p) = |J{C(p,s) | s € STA}.

Intuitively, C(p, s) represents the set of all possible
execution processes which could occur when the agent
is executing p from s. The first condition is motivated
by the assumption that our agent can execute any ex-
ecutable action A € ACT,gen: in a finite time interval,
and to exlude Zeno processes in which there are in-
finitely many state-changes in a finite time interval.
The motivation for the second condition should be in-
tuitively clear.

In the road crosing example, our agent’s capabili-
ties to cross a clear road before any car could appear
is represented by any capability function C satisfying
C(se;ee, s0) = {so 2% 51 =% 55} . Morerover, the
incapability to finish crossing a road alive in the state
s3 = {al,on,ce} is expressed by the following capa-
bility function: C(ec,sz) = {s =+ r N r} where
r = {on}

It is not difficult to see that the following lemma
holds.

Lemma 1 Two capability functions coincide on every
plan if they coincide on the single action plans.

This lemma shows that the capability of an agent to
carry out a plan is fully determined by her capability
to carry out the basic actions in the plan.

For later use, for each plan p, each fluent proposition

, define C(p, @) = U{C(p,s) | s = ¢}

5See point 5 in this definition

A Language for Agent Capabilities

Agent capabilities are described by ability propositions
of the form

executable p when ¢ before ¢

where ¢, 1 are fluent propositions and p is a sequential
plan. The informal semantics of such proposition is
that whenever the agent starts executing p in a state
satisfying ¢, it will finish before ¢ could become true.

For example, the proposition that the agent is capa-
ble to cross a clear road before any car could appear,
is expressed by the following proposition:

executable sc; ec when —ceAalA—on before cc (1)

The semantics of the ability propositions is defined
with respect to the capability functions as follows.

Definition 4 Let C be a capability function and e
be an ability proposition of the form executable p
when ¢ before .

1. We say that C satisfies ¢, written C = ¢, if for each
e € C(p,) : e is successful and Vs' € St(e), s’ = o

2. C is said to be a model of a set of ability propositions
if C satisfies each proposttion in this set. A set of
abilaty propositions is consistent if it has a model.

3. We say that ¢ follows from a set of ability proposi-

tions &, written £ |= ¢ if each model of £ is also a
model of €.

In the road crossing example, any capability function
C such that

C(scyec, 80) = {850 — 51 =% 50} (2)

satisfies the ability proposition (1).

Reactive Plans

For each fluent proposition ¢, we assume that
ACT,gent contains an action (7 to test whether ¢ holds
in the current situation. Formally, the semantics of a
test action ¢? is defined by

1. T,po(s) is defined iff s |= ¢
2. If T,2(s) is defined then Tip2(s) = s

Definition 5 1. A conditional plan ¢ has the form
p=p
where @, called the test of ¢ and denoted by test(c),
is a fluent proposition and p, called the body of ¢ and
denoted by body(c), is a sequential plan.

2. A reactive plan is a finite (possibly empty) set of
conditional plans. The disjunction of the tests of all
the conditional plans in e reactive plan R is denoted
by cond(R).

Reactive plans are executed in cycles. At the begin
of each cycle, the test conditions of the conditional
plans are checked. If none of them hold then the agent
waits until some of them become true. If one of the
test conditions holds (either at the first check or after

Knowledge Representation 639

waiting a while), then the body of the corresponding
conditional plan is executed. If it is successful then a
new cycle starts. If not, the execution of the reactive
plan will be interupted.

For an agent to operate safely in an environment,
it seems necessary that it should possess a capability
to sense any relevant change of the environment early
enough to react accordingly. An agent is said to be
alert if it has the capability to recognize every relevant
change of the environment ”instantly” (in the sense
that during the sensing time the environment under-
goes no significant change).

Definition 6 A capability function C is said to be alert
if for any fluent proposition ¢

Clp?s)={s L5} if sk
Clp?,s)={s =5} if sE
For simplicity and understandability, we will restrict

ourself on alert agents when considering the execution
of reactive plans.

Naefinition 7 uetf’ bo an alert can nln’a
[Tt & LA AA

AT LLARLVAR LR 4

R = {‘PD = Po).-

1. A possible execution process e of R with respect to C

starting from an intial state so 1s defined as follows:

(a) Cuase 1: 50 = cond(R). Then for some k such that
0 l': Pk,

i. either e has the form eg.eqy where ey 15 a success-
ful ezecution process in C{pr7; px, So0), and eq 18
an execulion process of R with respect to C start-
ing from final(eg).

#. or e is an interupted execufion process n
C(px7; px, 0)

(b) Case 2: so [cond(R). Then
i. either e has the form eg.e; where
e ¢y is an environment process of the form

Tt funp-lanrn and
e an alet apa yJ uuuuuuuu ana
cte

s Pn =>p}bear ve plan.

Ao Am—l
$g —+81... — Sm

such that for each 0 < i < m, s; [cond(R)
and sm = cond(R), and
e ¢y is an execution process of R with respect to
C starting from sm,
1. or e 15 an infinile environment process such that
for each state s € St(e), s = cond(R) ©.
ih. or e is a finile environment process such that for
each s € St(e) s | cond(R) and there exists no
ezecutable environment action at final(e) 7 .

2. A reactive plan execution process is inlerupted zf it
is ended by an undefined action 1.

3. A reactive plan execution process is successful if it is
not interupted.

8This represents the case where the agent has to wait

infinitely
"The agent also has to wait infinitely in this case

640 Robotics

4. The set of all execution processes of R wrt C start-
ing from a state s is denoted by Exec(R,s) while
Ezec(R, @) denotes the set of all execution processes
of R wrt C starting from a state satisfying ¢

For example, consider again the road crossing ex-
ample where the agent has the capability (2). Let
Ro = {=ec = sc;ec}. Then Ezecc(Ro,50) = {50 — 2ee?

=¢ce?
SO——>31—>SO———>30—>31———>50——>...}

Verification of Reactive Agents

‘We consider in this paper the verification of invariance
formulas of the forms

 — O(R, %)

which states that if the agent starts executing R (a
reactive plan) in a state satisfying ¢ then 1 will always
hold during the execution of R.

We say that an alert capability function C satisfies
a formula ¢ — O(R,), written C E ¢ — O(R,¢),
if for each execution process e € Exzec(R, ¢), for each
state s € G o) , 8 ‘F /{’//1

Gus o T et

For the verification of invariance formulas, we also
need to consider verification conditions of the form

[¢] p[4]

which states that if the agent starts executing p (a
sequential plan) in a state satisfying ¢ then it will ter-
minate successfully in a state satisfying .

We say that a capability function C satisfies a for-
mula [¢] p[¥], written C = [¢] p [¢], if each execution
process e € C(p,) is successful and terminates in a
state satisfying 4.

Verifying [¢] p[¢]

To prove the condition [¢] p[¥], we need another kind
of conditions of the form

{¢} pinv y {¢}

which states that every successful execution process
e € Eze(p,) satisfying the property that v is invari-
ant during it (i.e. Vs € St(e) : s =), terminates in a
state satisfying .

1t is important to note that the validity of condition
{¢} p inv vy {#} does not depend on the agent’s capa-
bilities. They are therefore often referred to as cap-free
conditions.

We can now give the rule for proving [¢] p[¢]

. (SP)

executable p when ¢ before ¢
{o}p inv ~y {4}
[o] p [¥]

Lemma 2 The rule (SP) 1s sound n the sense that
for each capability function C, if C = executable p
when ¢ before v, and {¢}p inv -y {¢} holds then
C k= [¢lpl¥]

f DII]QE 'Pn'm r\‘uhgmon n A-+':

ALULCD LUl UG.P_J.'I.‘:C VUI.I.\J.IUIG‘.IS
For each fluent proposition ¢, define Ty(p) =
{T4(s)|s = ¢}. Further we write T4 () |= 9 if each
state in T4 () satisfies .

The following notion of environment invariance plays
an important role in the rules for proving cap-free con-
ditions,

Definition 8 1. A fluent proposition ¢ is said to
be environment invariant with respect to 7y start-
ing from v if for each environment process e, if
zmtzal(e) = ¢ and Vs € Si(e) : s = v then
Vs € Sie) : s = .

2. We often say that ¢ 1s environment wnvariant start-
tng from ¢ if v = true

3. We also say that ¢ is environment invariant of it is
environment invariant starting from .

We can now introduce the rules for proving cap-free
conditions.

¢ (CF1)

i is environment invariant wrt v starting from ¢
Tl A AN e o,
TAPAYET =Y

{¢} Ainvy {¢}

® (CFQ)
{¢}p inv vy {4}
{4} ¢ inv 7y {¥}
{e}p;¢ invy {9}
o (CF3)

¢ — o {etp invy{¥), § — ¢
{¢"}p inv v {¢¥'}
Lemma 3 The proof system for cap-free condiizons is
sound.

Proof Theory for Ability Propositions
Rules for Sequential Operator

¢ (CP1)
executable p;q when ¢ before 9
executable p when ¢ before ¥
e (CP2)
lelp[¥]
executable p when ¢ before ¢
executable q when ¢ before ¢
executable p;q when ¢ before ¢
e (CP3)

executable p; A when ¢ before 9
executable p when ¢ before v
[elrl4]

{¢}Ainv =[]

-y is environment invariant wrt — starting from ¢

executable p; A when ¢ before v

executable A when ¢ before v

o {e} A inv —y {-9}
—p is environment invariant wrt —y starting from ¢
executable A when ¢ before ¢

Other Rules
¢ (CP5)

executable p when ¢ before ¢
executable p when ¢; before ¢
executable p when ¢ A ¢ before 9 V ¢4

« (CP6)

executable p when ¢ before ¢
executable p when ¢; before 1,
executable p when ¢ V ¢, before ¢ A ¢

e (CPT)

executable p when ¢ before 9

(Pll:(p) ¢1l:¢

executable p when ¢; before ¢

For each set of ability proposition £, let I's be the
set of rules obtained by adding to the rules for ability
propositions a new rule of the form

o (CP8)
ceeél

€

Lemma 4 The proof system for the abz'lz'ty proposz'—

tions 15 sound in the sense that for each set of ability

propositions &, if Ebp, ¢, then E = ¢

Rule for Invariance Formulae
We can now give the rule for invariance formula.

o (IF)

3¢ p—¢, 6—

is environment invariant wrt —cond(R)
starting from ¢

[¢ Atest(c)] body(c) [¢]

executable body(c) when ¢ A test(c)
before)

e — O(R,¥)

Lemma 5 The rule (IF) is sound in the sense that for
each alert capability function C, for each reactive plan
R, if there exists ¢ such that folowing conditions are
satsfied:

o o — ¢ and ¢ — Y are valid and ¢ is environment
invarient wrt ~cond(R) starting from ¢

e ForeachceR,CE [¢/\test(c)] body(c) [¢] and C =
7¢) whe

executable bod dy(c) when ¢ Atest(c) before -

YeeR:

Knowledge Representation 641

then C = — O(R, ¥)

Example 2
Let € be the capability proposition (1). Further let
Ro = {~ee = sc;ec).
We want to prove: {e}t (al A—on) — O(Ro,al)
It 1s easy to sce that al A—on 15 environment tnvar:-
ant. Using rule (CF1) we get
F {al A —on} sc inv =cc {al A on} (3)
F {al A on} ec inv —ce {al A —on} (4)
éFrom (3,4) using rule (CF2) we get
t {al A —on} sc; ec inv —ee {al A —on} (5)
Therefore, it is obvnous from (CF3) and (5)
F {al A =on A —cc} sc;ec inv e {al A—on} (6)
Let & = {¢}, it follows from (CP8) &\ ¢. Using rule
(CP1) we have
£ + executable sc when —cc A al A —on before cc
7
Hence usgnn /C’P) and frn'm f‘\’ ’7) 21 fn”v wWs ()

8 + [al A —on A —-cc] sclal A on] (8)

Using rule (CF3) and (3), we get
F {al A =on A —cc} sc inv —ce{al Aon} (9)

Using (CP4) and (7,9), we get

£ I executable sc when —cc A al A —on before —al
10
Using (CF3), we get from (4) (i0)
 {al A on} ec inv ~cc {al} (11)
Using (CP3), we get from (11,8,9), € and the fact that

al 1s environemt invariant wrt —ec from al Aon :
£ I- executable sc; ec when —ceAalA—on before —al
(12)

Using rule (SP), we can derive from € and (6)

& I {al A —on A —ec] sc; ec [al A —on] (13)
Using rule (IF), where ¢ = al A —on, ¢ = ¢, and
1 = al, we can conclude from (12,13) and the fact that
al A —on is environment invariant:

EF (al A=on) — O(Ro,al)

Discussion

Reasoning about complex actions in dynamic environ-
ment where environment actions are allowed to occur
randomly has also been studied in the literature lately
(Baral et al 1998, De Giacomo et al 1997). But these
works consider only agents with a capability C satis-
fying C(p,s) = Eze(p,s) for each p and s. In other
words, their agents constitute a subset of the class of
agents considered in this paper.

For simplification and ease of understanding, we
have made an assumption that our agents are alert. In
many real world applications, this assumption could be
an oversimplification. Hence it is important to study
agents which are not alert in the future. Integrating
the framework of (Saffioti et al 1995} with ours could
be promising here.

642 Robotics

Acknowledgement

We would like to thank Bob Kowalski, Franchesca
Toni, Marek Sergot, Rob Miller, Murray Shanahan,
Fariba Sadri, Ber, Paolo Mancarella, Antonio Brogi
for their many very valuable suggestions. We are also
very grateful to the three anonymous referees for their
constructive and helpful suggestions. The paper is par-
tially supported by the EC Keep in Touch grant, LP-
KRR.

References

Agre P.E., Chapman D., 1987, Pengi: An Implemen-
tation of a Theory of activity, Proc. of AAAI’87, pp
268-272

Brooks R., 1991, Intelligence without Reasons Proc.
of IJCAI'91, pp 569-595

C. Baral and Son T.C. Relating theories of actions
and reactive conirol, http://cs.utep.edu/chitta, 1998

Cohen P.R., Levesque H.J., 1990, Intention is choice
with commitment, Artificial Intelligence 42, No 3, 213-
261

De Giacomo G., Lesperance Y, Levesque H.J. Rea-

soning about concurrent actions, prioritized interupts
and exoaenouns actions 1 the situation caleulus, IYCAIL-.

& LAUGEHRUUS QLLLUTNS © il S50 GL00I0 CRMLKITa, A8l

97.

M. Georgeff and A. Lansky, 1987 Reactive reasoning
and planning, In AAAT 87.

M. Gelfond and V. Lifschitz., 1993, Representing ac-
twons and change by logic programs, Journal of Logic
Programming, 17(2,3,4):301-323.

Kowalski R., Sadri F.,1996, Towards a Unified Agent
Architecture that Combines Rationality with Reactiv-
iy, Proceedings of International Workshop on Logic
in Databases, San Miniato, Italy, Springer Verlag.

Lesperance Y, Levesque H.J., 1995, Indexical knowl-
edge and robot action - a logical account, Artificial
Intelligence, Vol 73, Feb 1995, pp 117-148

Levesque H.J., Reiter R., Lesperance Y., Lin F., and
Scherl R. GOLOG: A Logic Programming Language
for Dynamic Domains Journal of LP, Vol 31, 1997

R. Reiter., 1996, Natural actions, concurrency and
continuous time in the situation caleulus, In L. Aiello,
J. Doyle, and S. Shapiro, editors, KR 96, pages 2-13,
1996.

Rosenschein S.J, Kaelbling L.P., 1995, A situated view
of representation and conirol, Artificial Intelligence,
Vol 73, Feb 1995, pp 149-176

Saffioti A., Konolige K., Ruspini E. A multivalued
logic approach to integrating planning and control Ar-
tificial Intelligence, Vol 76, 1995

Shoham Y., 1993, Agent-oriented Programmang, Ar-
tificial Intelligence, Vol 60, Feb 1993, pp 51-92
Thomas S.R.., 1994, The PLACA agent programming

language Proc. of ECAI’04 Workshop (ATAL), LNAI
890, 1994

