From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Combatting Maelstroms in Networks of Communicating Agents

James E. Hanson and Jeffrey O. Kephart
IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598
{hanson kephart }@watson.ibm.com

Abstract

Multi-agent systems in which agents can respond
to messages by automatically generating and multi-
casting other messages are inherently vulnerable to
a phenomenon that we call a maelsirom. We define
a maelstrom to be a self-sustaining chain reaction in
which a single message can unintentionally trigger the
generation of a rapidly growing, potentially infinite
number of messages, quickly incapacitating the com-
munications network. There is reason to fear that mod-
est advances in agent technology and usability could
lead to spontaneous maelstroms on the Internet in the
near future, particularly in the realm of electronic mail.
In this article we describe various classes of maelstroms
that may arise due to automated forwarding of mes-
sages and propose a novel and practical means of com-
batting them.

Introduction

The rapidly growing literature on multi-agent systems
(e.g., [Demazeau, 1998]) is largely concerned with the
design or behavioral study of systems that have been en-
gineered from a global or systemic standpoint. By this
we mean that, in addition to defining the individual
agent behaviors, the system designers carefully spec-
ify the agents’ roles in the collective and choreograph
the sequences of interaction among them. Often, the
agents are endowed with an intimate understanding of
other agents that may be present in the system. The
focus is typically on demonstrating that the individual
agents and the multi-agent system as a whole behave
as intended by the designer.

Much less well investigated, however, are what mlght
be called emergent multi-agent systems, which arise
through the haphazard aggregation of individual agents
that can communicate, even if only marginally, with
one another. By definition, the agents in such a system
were designed separately, in a variety of ways, to pur-
sue a variety of goals. Furthermore, the set of agents
and agent types typically changes over time as existing
agents become inactive and new agents become active.

Copyright ©1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

No designer can have knowledge of all the agent types
that might interact with his agent, let alone the power
to modify the other agents individually or in aggregate.

The Internet appears to be a conducive environment
for the development of this more informal type of multi-
agent system. Apart from the underlying protocols that
make communication possible, the information content,
usage patterns, computational properties, and goals
and intentions of agents on the Web are unconstrained
and, in practice, unknowable. This is especially true
in the context of electronic commerce, where organi-
zational boundaries act as barriers to the gathering of
information and the imposition of global controls.

To the extent that agent technology comes into com-
mon usage, the number, variety, and sophistication of
agents on the Internet will continue to grow. Insepara-
ble from this development is a correspondingly growing
potential—which is both threat and promise—for the
emergence of novel and unforseen collective behaviors in
the population of agents. Even in engineered systems,
designing against destructive collective behaviors can
be a subtle and difficult task; but at least in principle,
it can be done through sufficiently careful adjustment of
the agents’ individual behaviors, of their interactions,
or both. This kind of global legislation is simply im-
possible in an emergent system. Therefore it is vitally
important to understand any collective modes of be-
havior that may arise in such systems, and to develop
methods whereby an individual agent may, so far as is
possible, exploit those which are favorable and combat
those which are unfavorable.

In this paper we describe one potentially disastrous
class of collective behavior that may arise in a multi-
agent milien of the sort just described, and propose
a method whereby individual agents may combat it.
For definiteness, we model an agent as an information
processing system that receives messages from other
agents, processes them in some way, and possibly sends
messages to other agents as a result. In a population
of such agents, it is natural to suppose that a single
message could trigger a chain reaction of messages, and
that, under certain circumstances, this chain reaction
might be self-sustaining. Manber [Manber, 1990] has
reviewed a number of real-world chain reactions of this

type, which range from the Internet worm of 1988 to
infinite loops of low-level error messages in a local area
network, to the cycling of e-mail messages among a
user’s multiple accounts. In all the examples he gives,
the chain reaction was due to some hardware or software
failure at one or more of the workstations involved, or to
an unnoticed flaw in one of the protocols used. With the
advent of user-programmable intelligent agents, how-
ever, comes the possibility of a new type of chain re-
action, in which the actions of any individual agent,
considered in isolation, are entirely useful, intentional
and benign. We will refer to self-sustaining chain reac-
tions in networks of agents, whether due to a failure or
a supposedly innocent action, as maelstroms.

The rest of the paper is organized as follows. A sce-
nario for how a maelstrom of electronic mail messages
might develop is given in section 2, followed by a par-
tial taxonomy of maelstrom types. Previous methods
for preventing maelstroms are critiqued in section 3.
In section 4, we describe a novel anti-maelstrom tech-
nique that has several advantages. The performance
of an implementation of the algorithm is evaluated in
section 5, and simulation studies are used in section 6
to demonstrate that sufficient deployment within the
agent population will successfully prevent maelstroms.
We close with a summary and discussion of future work.

Maelstroms

One type of user-programmable agent that already ex-
ists in widely-used commercial electronic mail software
packages is a mail forwarding agent. The forwarding
agent scans the header and body of an incoming mail
message for specified keywords. If the right combination
of keywords is found, the agent automatically forwards
the message to a designated set of recipients.

Now consider the following scenario: A typical com-
puter user (“Fred”) is one of a small group of friends
who exchange jokes with one another via e-mail. He
decides to automate distribution of jokes. He instructs
his mail agent to forward any incoming mail with the
word “Joke” in the subject line to his friends.! Over
time, this idea occurs independently to more and more
users. Jokes start getting forwarded several times, from
mailing list to mailing list. One day, the social net-
work of automated forwarders closes upon itself, and
one of the jokes that Fred’s agent had forwarded is sent
back to Fred. It is of course automatically forwarded,
and begins the second of an endless succession of trips
around the cycle. Every time it goes around, everyone
who originally got the joke gets it again, and forwards
it again. Furthermore, because both the original mes-
sage and each copy are forwarded independently, the
number of copies of the message grows rapidly with
time. Before long, the network used for e-mail delivery
is swamped, and can't be used to transmit useful infor-

1t took us 25 seconds to program an agent in Microsoft
Outlook Express to perform exactly this operation. Similar
functionality is available in Lotus Notes.

mation to Fred or anyone else—even those not involved
in the mail loop.

The above is an example of a simple maelstrom, in
which messages are forwarded verbatim. We may iden-
tify other specialized types of maelstrom as follows:

Additive maelstroms. This is automatic message for-
warding in which additional information is added to the
message before it is sent. The additional information
may be of any nature from the most insignificant, such
as an extra blank line added to the bottom of the origi-
nal message, to the most important, such as a complete
disavowal of the original by its author.

Combinatorial maelstroms. This involves forwarding
in which several messages or parts of messages are com-
bined to form a single new message prior to forwarding.
An example of such a message is an automatically gen-
erated personalized newspaper that can be received by
another agent and in turn used by it as fodder for its
own automatically generated newspaper.

Maelstroms with finitary transformation. As the mes-
sage 1s forwarded from agent to agent, it is transformed
into a succession of variations of which there is a finite
(usually small) number of types. Simple examples in-
clude conversion of the message to all capital letters or
all lower case letters, adding or removing whitespace
characters, or applying simple character encodings.

Previous ID-based solutions

Previous approaches to preventing chain reactions in
networks have centered on inserting identifiers into
header fields of messages. One such approach was pro-
posed by Manber [Manber, 1990]. The key concept is
to assign a unique ID to each newly generated message
in the network, and to insert this ID into the header
of the message prior to forwarding.. At each forward-
ing step, each outgoing message, however transformed,
is given the same ID as the message that triggered it.
All agents maintain a list of all IDs of messages sent,
against which every incoming message is checked. If the
ID of an incoming message is found in the list, it is not
forwarded. When this prescription is strictly adhered
to, no message is forwarded twice by any agent. No
maelstrom occurs.

A second approach was proposed by Spagna specifi-
cally for e-mail messages [Spagna, 1997]. In this case,
instead of assigning a unique ID to each message, each
agent inserts its own unique ID into the header of each
message that it sends. When it receives a message, the
agent searches the header message for its own ID. If the
ID is found, then it does not forward the message. This
prescription also prevents maelstroms, and it has the
advantage of reducing the amount of data each agent
must store in order to recognize messages. It is slightly
less powerful than Manber’s approach because it fails
to detect multiple copies of a single message that have
reached an agent for the first time along distinct paths.
The agent is incapable of recognizing that the incoming
messages are duplicates, so it forwards both copies.

While ID-based approaches such as these can work in
certain contexts, there are several important situations
in which the general concept of deliberately inserting a
unique identifier of some sort into a message is either
inappropriate or ineffective:

1. If the agent doing the forwarding is written as an
add-on to an existing system. In this case, the agent
may not have write access to the message header, in
which case it can’t insert or manipulate IDs.

2. If the message is transmitted to other domains that
employ protocols other than the one used to encode
identifiers. In such situations the message header
containing the inserted ID may get lost in the trans-
lation. When the message is re-injected into the sys-
tem that checks for the identifiers, it is treated as
new, reinitiating the maelstrom.

3. If the agent modifies the message in a way that is
important to some of the other agents in the network,
but unimportant to others. In this case, only those
agents to whom the modification is important should
resend the modified version. The identifier method
prevents this, or at best severely limits it.

4. If an agent wishes to ignore some types of modifi-
cation and pay attention to others when it decides
whether to forward a modified version of a message.
As in the previous case, the identifier method pre-
vents or severely limits this.

The last two cases above illustrate a semantic draw-
back to ID-based methods: they effectively prescribe a
fixed convention to be applied to all messages modified
in any way by any agent. The decision of “same” or
“different”, which determines whether the original ID
is preserved or a new one is generated, is made once
and for all by the originating agent prior to transmis-
sion. This prevents exactly the sort of contextual, in-
dividualized decision-making that is one of the central
benefits of using intelligent agents in the first place. For
example, Manber’s scheme requires that the forwarded
message, however modified, have the same identifier as
the original—or at minimum as one of a predefined,
strictly limited set of variants of it. One consequence
of this (pointed out by Manber) is that it severely con-
strains extensive interagent “conversations” (i.e., series
of automatically generated messages passing between
two agents). Spagna’s scheme, on the other hand, re-
quires that the modified message always be treated as
new. This prevents the agents from ignoring trivial
changes in a message already encountered.

Signature-based maelstrom solution

We propose a maelstrom prevention method that is
based directly on the contents of the message itself,
rather than a message or agent ID imbedded in the
header. The content-based solution avoids the cited
drawbacks of the ID-based methods. It requires no ma-
nipulation of the message header, and does not rely
on the header remaining inviolate. It gives individual

agents the freedom to make their own decisions about
whether a new message is sufficiently distinct from a
previous one to warrant forwarding.

In order to explain the content-based solution, we
now follow the sequence of events that ensues when a
new message M is received by the agent.

1. Determine eligibility. First, M is examined to
determine whether it is eligible for forwarding. If
M does not meet the forwarding criteria, no further
processing is necessary. It may be desirable to filter
out incoming duplicate messages even if they are not
going to be forwarded by the agent, in which case
control passes to the signature extraction step below.

2. Match text. If M is eligible for forwarding, a text
matching algorithm that employs signature scanning
is used to locate any previously forwarded messages
or significant portions thereof that M may contain.

3. Generate summary. A summary of M is cre-
ated from the matches located in the previous step.
The summary expresses M as a combination of one
or more previously forwarded messages (or portions
thereof), plus any text that is unique to M.

4. Heuristically evaluate summary. A heuristic
procedure is applied to M’s summary to determine
whether forwarding is warranted, and if so the for-
warding takes place automatically.

5. Extract signature, update database. M’s status
as a new or previously forwarded message is reflected
by updating the signature database. This may in-
volve the automatic extraction of one or more signa-
tures and auxiliary information from M or perhaps
just the previously unencountered portions of M.

The remainder of this section is devoted to more de-
tailed descriptions of text matching, summary genera-
tion, heuristic evaluation, and signature extraction and
updates to the signature database.

Text matching

The text matching procedure attempts to locate previ-
ously forwarded messages (or portions thereof) within
M. In order to reduce sensitivity to common insignif-
icant textual transformations that occur when mail is
forwarded, such as the addition of right angle brack-
ets to indicate quoting, extra blank lines, etc., M’s
text is first filtered. In a current implementation, the
filtering entails removing header data, replacing mul-
tiple consecutive whitespace characters with a single
whitespace, removing (most) non-alphanumeric charac-
ters, and mapping all characters to lower case. In what
follows, this transformed text shall be referred to as M'.

Next, M’ is to be matched against similarly trans-
formed versions of all previously forwarded messages.
The naive approach of applying something like the Unix
diff operation sequentially to M’ and each of the hun-
dreds or even thousands of previously forwarded mes-
sages P is clearly much too inefficient. Instead, a highly

efficient signature scanning procedure originally devel-
oped for detecting computer viruses is used to scan M'.
The relatively slow text matching procedure only needs
to be invoked for those messages P that are associated
with signatures located within M. If the signatures
(which consist of sequences of s characters occurring in
the transformed version of a given message) are selected
carefully, they will hardly ever be found by chance, so
that if M’ contains entirely new material it is likely that
no signatures will be located, and expensive matching
will be avoided altogether. The careful selection of sig-
natures is performed by an automated signature extrac-
tion technique described more fully below.

A potential problem arises when a signature for P has
been located within M’, but P itself has been deleted.
In such a case, it is still possible to determine the loca-
tion and approximate extent of the match between P
and M’. The trick is to extract a small amount of extra
information from P before deleting P. In a current im-
plementation, we extract 4-byte checksums for a series
of roughly concentric regions of text centered around
each signature in P. Associated with each checksum
is an offset of the signature from the beginning of the
region and the number of characters in the region; this
information constitutes a “textblock triple”. Each re-
gion is roughly twice the size of the previous one, up to
and including the entire message. Thus, if the trans-
formed version of a message is 580 characters in length
and the signature length is s = 20, there will be 5 check-
summed regions with lengths of 40, 80, 160, 320, and
580 bytes.

If a signature for P has been located within M’, then
each textblock triple is tested against the M’ to identify
the longest matching region, and this information is
passed to the summary generation step. If there are no
matching triples, then the length of the partial match is
taken to be the signature length. Note that some loss
of information is expected because the length of the
matching region will be underestimated consistently.

Summary generation

The list of matching regions generated in the previous
step is used to construct a summary that replaces each
matching block of text with a short identifier that refers
to the original message in which that text occurred. A
sample message and message summary are shown in
Fig. 1. If there are multiple possible matches for a
given region of M', preference is given to the longest
match that contains that region.

Heuristic evaluation

The generated message summary is used by a heuristic
that decides whether to permit M to be forwarded. 2
One can contemplate a range of possible heuristics that
vary widely in computational feasibility and effective-
ness. One simple heuristic would forbid the forwarding

2If automatic forwarding of M is prevented, a user inter-
face could still offer the option of manual forwarding.

Message Summary ID
Meeting today, 3pm 1426
FYI: [copy of message 1/26] 1465
¢ | CANCELLED: [copy of message 1/26] | 1466

o ®

Figure 1: Schematic depiction of message summaries.
The original message (a) is not summarizable. Messages
(b) and (c) are forwarded versions of (a) with some
prepended text.

of M solely on the basis of the form of the message sum-
mary, not its textual content. For example, the heuris-
tic could forbid forwarding only if M exactly contains in
full a previously encountered message P, and contains
no more than 10 additional characters.

More sophisticated heuristics would take into account
both the form of the summary and any block of text
that is unique to M. Plausible heuristics might search
for the presence of keywords in the non-matching text
regions, or alternatively apply a text classifier to the
non-matching text regions and map the result of the
classifier into a yes/no forwarding decision. As an ex-
ample of the first approach, a keyword-based algorithm
might decide against forwarding message (b) in Fig. 1
because the additional text consists of a recognizably
unimportant word “FYI”, but it would permit message
(c) to be forwarded because of the recognizably impor-
tant keyword “CANCELLED”.

The heuristic could be adjusted or trained to the
tastes of the individual user. As with any heuristic,
there will be false positives and false negatives; the ef-
fects of false negatives will be investigated below.

Signature extraction and updating

The scanner uses a database that contains signatures
and their associated textblock triples, pointers to mes-
sages containing the signatures, a TimeLastSeen field,
whose purpose will be discussed below, and possibly
other relevant information.

If M is a new message with no relationship to a previ-
ously encountered message, then one or more signatures
for M are extracted and added to the database. As has
been discussed, it is important to select signatures that
are unlikely to appear at random in ordinary messages,
so that the expensive matching operation between M
and a previously forwarded message P is only called
upon when there is a very strong likelihood that M
and P have a significant block of text in common.

We have adapted an automatic signature extraction
procedure described in [Kephart & Arnold, 1994], origi-
nally developed for computer virus signatures. At infre-
quent intervals (perhaps once per year), a large corpus
of mail messages (for example, those stored in the user’s
mail archive or database) is filtered as described above.
The number of occurrences of each unigram a, bigram
ab, and trigram abc in the filtered database is tallied
and recorded in tables as t(a), t(ab), and t{abc), respec-
tively, along with the corpus size Z. For English and

several other languages, there are at most 128 different
ASCII characters that occur in text, so this requires
storage of 22! 4-byte integers for the trigram table, or
about 8 megabytes; the sizes of the bigram and unigram
tables are relatively insignificant.

When M is submitted to the signature extraction
procedure, it is first filtered to obtain M’. Next, all
s-byte sequences in M are considered as candidate sig-
natures. (Typically, s is set to approximately 20.) For
each candidate signature, the tallied n-gram statistics
are used to estimate the likelihood for that s-byte se-
quence to appear by chance in an ordinary (filtered)
mail message. In our implementation, we ignore possi-
ble correlations that span more than 3 characters, al-
lowing us to estimate the likelihood of the sequence
CiC2...Cs a8

~ t(C]CzCs) ‘e .t(chc,_lc,) (1)
Zt(C2C3) .o .t(c,_zc,,_l) !

If any trigram frequencies are zero, they are replaced
with estimated trigram frequencies based on bigram
and unigram frequencies.

Finally, the candidate signature or signatures that
minimize p(cics . . . ¢;) are selected and recorded in the
database, and the TimeLastSeen field is initialized to
the time at which M was received. If more than one
signature is chosen, the selection criterion is modified
slightly to encourage the selected signatures to be as
far apart as possible. For each selected signature, a
textblock triple is also computed as described above,
although this step may be deferred until M is deleted.

If M is not entirely original, but is still regarded as
sufficiently distinct from its ancestors, then it is desir-
able to reduce the potential for confusion during the
scanning phase by extracting a signature that distin-
guishes M from its ancestors. In this case, signature
extraction proceeds as described above, except that
the candidate signatures are drawn only from the non-
matching text regions in M’s message summary.

In cases where M is identical or nearly identical to a
previously encountered message P, it may not be worth-
while to extract a new signature for it. The signature
database is simply updated by recording the current
time in the TimeLastSeen field of each signature located
within M. This keeps track of how “current” the signa-
tures are. In order to bound the growth of the database,
signatures and associated data that are deemed suffi-
ciently old may be purged from the database.

pleicy...c)

Standalone Performance

For a single agent, the essential performance measures
of the anti-maelstrom method are the storage require-
ments and processing time. To estimate these, we de-
scribe the application of the method to a fixed corpus of
over 10,000 e-mail messages consisting of several years’
mail received by one of us.

In two experiments conducted on a model F50 RISC
System 6000 workstation with a 166 MHz processor,

we generated two signatures per message, each s = 20
bytes in length. For each signature, the storage require-
ment was 20 bytes for the signature, a 4-byte pointer
to the original message, a 4-byte LastTimeSeen field,
and a number of 12-byte textblock triples (4 bytes each
for the checksum, signature offset, and length) that de-
pended on the size of the message.

In a first experiment involving 3569 messages, 6889
signatures were extracted; there were some failures due
to short messages. The number of textblock triples was
39,393. Thus the total storage required was (20 + 4 +
4) = 6889 + 12 * 39,393 = 665, 608 bytes, or less than
100 bytes per signature. If messages are purged from
the database after a year of inactivity, a user receiving
5,000 messages per year requires just a one-megabyte
signature database.

5 2 8
008
>3
]
g
.

Processing time per msg (msec.)
[}
(=]
(=]

.
L]
L]

L]
L)
.

)

200 B L] : (] .
s Fomt Seve <
100 | .
o
0 2 4 6 1

x10°
Messages in database
Figure 2: Processing time vs. number of scanned files
when signatures are simultaneously being extracted.

In a second experiment, we built a signature database
from scratch by running through 10,000 mail messages.
Each message was scanned using the current signature
database, and whenever a signature was found the ap-
propriate full-text match was carried out and a mes-
sage summary was generated. Then, two signatures and
their textblock triples were extracted for the message,
the database was updated, and the next message was
processed. The amount of time required to process each
message (averaged in blocks of 100 messages) is plotted
in Fig. 2. Early on, the processing time per message
is somewhat less than 150 msec. Practically all of this
time is taken by signature extraction. As the number
of messages database grows in size towards a few thou-
sand, the processing time per message grows noticeably
because the scan starts to become slower; at 5,000 mes-
sages, it takes 200 to 250 msec per message. This would
be the asymptotic performance for a database that is
kept pruned to this size. Especially when one considers
that no algorithmic tuning has been done, this suggests
that the method is entirely practical, and would have
very little impact on storage or CPU usage.

Performance in a Network

The second test of an anti-maelstrom method is in its
performance as deployed across a network. In the con-
text of an emergent multi-agent system, we cannot hope
to universally suppress redundant messages. At best, a
“successful” solution is one which reduces the number of
undesirable messages to a level sustainable by the net-
work and by the agents themselves. Here, we can only
present the beginnings of such an evaluation pending
more detailed investigation. We will present prelimi-
nary results on the behavior of maelstroms as a function
of two separate parameters: (i) the rate of misidentifi-
cations induced by the anti-maelstrom method; and (ii)
the fraction of agents employing it.

As noted, the anti-maelstrom method will induce a
certain degree of error due to misclassification of mes-
sages by the Al heuristic. These will take the form of
false positives, in which a message that is not part of
a maelstrom is misclassified as being one that is, and
false negatives in which a “bad” message is misclassi-
fied as “good”. Obviously the actual false positive and
false negative rates will depend sensitively on the na-
ture of the transformations of the messages being sent
and on the actual heuristics in use. In practice, the
transformations will be the forcing function that drives
the evolution of the heuristic. Here, we do not spec-
ulate on the form they will take, but rather show the
behavior of the system as a function of the error rates,
however they may come about.

For the simulations presented here, we generated a
random digraph with n = 1000 nodes and k& = 4000
edges, in which each edge’s source and destination were
selected at random, but in which loops (self-edges) were
not permitted. Then we removed all nodes and edges
outside the giant strongly connected component, which
resulted in a graph with » = 969 nodes and & = 3878
edges in which a communication path existed between
each pair of nodes. At each time step, all nodes were up-
dated synchronously. When updated, a node processed
all incoming messages, determining whether each was
new or whether it had been received already. If clas-
sified as new, the message was forwarded verbatim to
each of the node’s downstream neighbors (but not back
to the sender); if not, the message was not forwarded.
The network was seeded with a single outgoing message
from a randomly selected node.

To measure the behavior under imperfect classifica-
tion, the classifier was set to randomly misidentify mes-
sages with false negative rate ry. Then the number of
messages extant in the system was measured as a func-
tion of time. Figure 3 shows the number of messages
plotted vs. time for 7y = 0.0 to 7y = 1.0 in increments
of 0.1, plus ry = 0.25. Most notable is the qualitative
change in behavior at Ry = 0.25. For values of ry
greater than this critical false negative rate, the num-
ber of messages grew without bound. (In practice, the
number of messages is bounded by the maximum car-
rying capacity of the network.) For ry < Ry, after
an initial period of exponential growth, the number of

8 T7 T T — T
L d
%108 / Ty =030
6 Ty
. /
S /
g /
g 4 /]
£ ! =025
Zo o .-.--.oo..'o.......o....................o
2r .]
.‘l
LY
0 Leat \o\', ."ouo.. :“ =020 '
0 10 20 30 40 50

time
Figure 3: Number of messages vs. time for different
false negative error rates.

messages eventually fell back to 0. At ry = 0.25, the
system reached a steady state in which the maelstrom
persisted indefinitely but the number of messages did
not grow. Because the average outdegree of each agent
is approximately 4, at ry = 0.25, each agent sends
about as many messages as it receives.

05 . . — . .

04} 4
o
2
S osl /
b4l
¥
S 02} E/ 1
w

o1} ¥ i

/:/
0.0 '/T ¢ ! 1
00 01 02 03 04 05 06
P

Figure 4: Fraction of nodes unreached vs. false positive
error rate.

The effect of false positives is summarized in fig. 4,
which shows the fraction of nodes that failed to receive
even one copy of the message as a function of the false
positive rate rp. The data were averaged over 10 trials
using different random number seeds. The mean values
at each rp are plotted, bracketed by error bars showing
the standard deviations. Beyond 7p = 0.6, the fraction
of unreached nodes quickly approached 1.0.

When both 7y and rp are nonzero, the redundant
messages generated by positive 7y and the unsent mes-
sages due to positive 7p tend to counteract each other,
but only partially. For example, when 7y = 0.10, the
fraction of unreached nodes at various 7p is typically
reduced by approximately one half. But the critical
false negative rate Ry remains at approximately 0.25
for values of 7p up to about 0.25.

To measure the behavior for different heterogeneous
populations, we disabled the anti-maelstrom solution in
a randomly selected fraction fg of nodes (“bozos™), by

1723
[
o
[y
8
@ 4
€
S
=

fa= 025

fg = 0.20

30 40 50

time
Figure 5: Number of messages vs. time for different
fractions of “bozo” agents.

setting 7y = 1 and »p = 0; the rest of the nodes had
rny = rp = 0. Figure 5 shows the number of messages
extant at a given time, plotted vs. time for fp = 0.0
to fg = 1.0 in increments of 0.1, plus fg = 0.25. One
notable finding is the similarity, both qualitative and
quantitative, with the data of Fig. 3. For fp below
a critical value Fg & 0.25, the maelstrom was eventu-
ally quenched. For fp > Fp, the number of messages
increased exponentially. At fp = Fp, the maelstrom
persisted, but the number of messages reached an equi-
librium value. Note that at fg = 0.25, each agent—and
in particular, each bozo—has on average one bozo for
a downstream neighbor.

Obviously, more investigation is needed to verify
these findings and to interpret them. Of particular in-
terest are the apparent relationships between the crit-
ical values Ry and Fp and the average outdegree, as
observed in this data.

Conclusion

In this paper, we have taken notice of a new type of
emergent phenomenon that is likely to arise in networks
of message-passing agents, with potentially disastrous
results. We have presented a solution that hinges on the
recognition of similarities in message texts. We have
evaluated that solution, both in isolation and, by simu-
lation, in the context of a randomly connected network
of mail-forwarding agents.

In isolation, the anti-maeclstrom solution was seen
to have minimal impact on storage or CPU usage.
When deployed among agents in a random network,
we found that when the rate at which redundant mes-
sages were incorrectly identified was below a threshold
value, the maelstrom was eventually quenched. Sim-
ilarly, when the fraction of agents refusing to adopt
the anti-maelstrom method was less than a thresh-
old, the maelstrom was reduced to manageable propor-
tions. Both of these thresholds were linked to topolog-
ical properties of the network. Even for false positive
rates as high as 10%, the fraction of agents in the net-
work that failed to receive the message was negligible.
In addition, a nonzero false negative rate was found to

mitigate the effect of false positives.

Plans for future work include more detailed numeri-
cal experiments on the performance of the solution we
proposed, particularly under different network topolo-
gies. The connection between collective dynamics and
network topology has been investigated in a number of
different contexts (see, for example, [Kephazt, 1994],
[Watts & Strogatz, 1998]); some of those methods and
results may be applied or adapted to maelstrom dynam-
ics.

‘We have barely touched on the heuristic classification
methods used by the agents in distinguishing, for exam-
ple, important variations in a message from unimpor-
tant ones. In any practical implementation, of course,
a viable heuristic is essential. But for the purpose of
understanding collective behavior in a network, it is
reasonable to approximate any such heuristic by false
positive and false negative error rates. Studies of the
sort presented here, if conducted on sufficiently realistic
network topologies, are an essential tool in establish-
ing the relation between the “microscopic” observables
of a heuristic—e.g., its error rates—and the induced
“macroscopic” behavior of the network—such as deliv-
ery failures and flooding. Since notions of acceptable
behavior are likely to be expressed in terms of macro-
scopic properties, this relation will help heuristic de-
signers to achieve a reasonable tradeoff between false
negative and false positive rates.

Perhaps more important than the details of the par-
ticular phenomenon we have studied, however, is the ex-
ample it provides of a danger innate to emergent multi-
agent systems: Agents may easily be programmed to
perform actions which, considered in isolation, are per-
fectly innocent, benign, and well-behaved—yet when
deployed in a network, wreak collective havoc. Without
due attention, this danger could prove to be a signifi-
cant barrier to the widespread, continued use of agent
technology on the Internet.

References
Demazeau, Y., ed. 1998. Proceedings of the Third In-
ternational Conference on Multi- Agent Systems. IEEE
Computer Society.
Kephart, J. O., and Arnold, W. C. 1994. Automatic
extraction of computer virus signatures. In Duffield,
P., ed., Proceedings of the Fourth International Virus
Bulletin Conference, 179-194. Abingdon, England:
Virus Bulletin Limited.
Kephart, J. O. 1994. How topology affects population
dynamics. In Langton, C. G., ed., Artificial Life III,
447-464. Reading, MA: Addison Wesley.
Manber, U. 1990. Chain reactions in networks. Com-
puter 57-63.
Spagna, R. 1997. A method and system for prevent-
ing routing maelstrom loops of automatically routed
electronic mail. Patent application.
Watts, D. J., and Strogatz, S. H. 1998. Collective
dynamics of ‘small-world’ networks. Nature 393:440.

