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Abstract

This paper analyzes automated distributive negotia-
tion where agents have firm deadlines that are private
information. The agents are allowed to make and ac-
cept offers in any order in continuous time. We show
that the only sequential equilibrium outcome is one
where the agents walt until the first deadline, at which
point that agent concedes everything to the other. This
holds for pure and mixed strategies. So, interestingly,
rational agents can never agree to a nontrivial split
because offers signal enough weakness of bargaining
power (early deadline) so that the recipient should
never accept. Similarly, the offerer knows that it of-
fered too much if the offer gets accepted: the offerer
could have done better by out-waiting the opponent.
In most cases, the deadline effect completely overrides
time discounting and risk aversion: an agent’s payoff
does not change with its discount factor or risk atti-
tude. Several implications for the design of negotiat-
ing agents are discussed. We also present an effective
protocol that implements the equilibrium outcome in
dominant strategies.

1 Introduction
Multiagent systems for automated negotiation between
self-interested agents are becoming increasingly impor-
tant due to both technology push and application pull.
For many-to-many negotiation settingsFmarket mecha-
nisms are often usedFand for one-to-many negotiationF
auctions are often appropriate. The competitive pres-
sure on the side with many agents often reduces un-
desirable strategic effects. On the other handFmarket
mechanisms often have difficulty in "scaling down" to
small numbers of agents (Osborne & Rubinstein 1990).
In the limit of one-to-one negotiationFstrategic con-
siderations become prevalent. At the same timeFone-
to-one negotiation settings that crave software agents
are ubiquitous. ConsiderF for exampleFtwo schedul-
ing agents negotiating meeting times on behalf of their
usersFor any e-commerce application where agents ne-
gotiate the final price of a goodFor a scenario where
agents representing different departments bargain over
the details of a service which they provide jointly.

One-to-one negotiation generally involves both in-
tegrative and distributive bargaining. In integrative
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bargaining the agents search for Pareto efficient agree-
mentsFi.e, deals such that no other deal exists for mak-
ing one agent better off without making the other worse
off. IntuitivelyFintegrative bargaining is the process of
making the joint cake as large as possible. Enumer-
ating and evaluating the Pareto efficient deals can be
difficult especially in combinatorially complex settings.
Automated negotiating agents hold significant promise
in this arena due to their computational speed (Sand-
holm 1993).

In distributive bargainingl~he focus of this paperFthe
agents negotiate on how to split the surplus provided
by the dealFi.e, how to divide the cake. A continuum
of splits is possible at least if the agents can exchange
sidepayments. We call any split where each agent gets a
nonnegative benefit from the deal individually ralionalF
i.e. each agent would rather accept the deal than no
deal. Splitting the gains of an optimal contract in an
individually rational way can be modeled generically as
follows. Without loss of generalityFthe surplus provided
by the contract is normalized to 1Fund each agent’s fall-
back payoff that would occur if no contract is made is
normalized to 0. ThenFdistributive bargaining can be
studied as the process of "splitting-a-dollar". This pa-
per focuses on designing software agents that optimally
negotiate on the user’s behalf in distributive bargaining.

The designer of a multiagent system can construct
the interaction protocol (aka. mechanism) which de-
termines the legal actions that agents can take at any
point in time. Violating the protocol can sometimes be
made technically impossible--e.g, disallowing a bidder
from submitting multiple bids in an auction--or ille-
gal actions can be penalized e.g. via the regular legal
system. To maximize global goodFthe protocol needs
to be designed carefully taking into account that each
self-interested agent will take actions so as to maximize
its own utility regardless of the global good. In other
wordsFthe protocol has to provide the right incentives
for the agents. In the extremeFthe protocol could spec-
ify everythingFi.e, give every agent at most one action
to choose from at any point. HoweverFin most negotia-
tion settingsFthe agents can choose whether to partici-
pate or not. SoFto have the protocol usedFthe designer
has to provide incentives for participation as well. We
will return to this question in Section 8.

The most famous model of strategic bargaining is
the infinite horizon alternating offers game (l%ubinstein
1982). Since it has a unique solution where agents
agree on a split immediatelyFit seems attractive for au-
tomated negotiationF see e.g. (KrausF WilkenfeldP &5
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Zlotkin 1995). HoweverF the model has some weak-
nesses. The infinite horizon assumption is often not
realistic. MoreoverFthe results change considerably if
there is a known last periodFor even if the distribution
from which the number of negotiation rounds is drawn
is known and has a finite support. AlsoFthe predictions
of the model are specific to exponential time discount-
ing and to the assumption that the dollar is infinitely
divisible. For exampleFunder linear time discounting--
i.e. a fixed bargaining cost per round of offers--the
results change dramatically. The first mover either gets
the whole surplus or most of it depending on the ratio
of the fixed costs of the two agents. The assumption of
perfect information is also of limited use to designers
of agents and negotiation protocols. In practiceFagents
have private information. In such settingsFthe alternat-
ing offers model leads to multiple equilibriaFincluding
some where the true types are revealed after long de-
laysFor never. The length of the delay depends on the
number of types. See e.g. (Fudenberg &; Tirole 1983)F
(FudenbergFLevineF~ Tirole 1985)Fand (l~ubinstein
1988). The usefulness of the model as a blueprint for
designing agents and protocols is questionable when it
allows for such qualitatively different outcomes.

StillFthe tools of game theory and mechanism design
can be used to study new types of bargaining mod-
elsFinspired by the various applications of automated
negotiation. In factFgame theory and mechanism de-
sign theory are more suitable for software agents than
for humans because agents can be designed off-line to
act rationally even if determining rational strategies is
complex (Rosenschein & Zlotkin 1994). AlsoFcompu-
tational agents do not suffer from emotional irrational-
ity. FinallyFthe bounded rationality of computational
agents can be more systematically characterized than
that of humans (Sandholm & Lesser 1997).

In our modelPagents face firm deadlines in their bar-
gaining. This is an appealing assumption from a practi-
cal perspective since users easily understand deadlines
and can trivially communicate them to software agents.
Since each agent’s deadline is private informationl~here
is a disadvantage in making offers. Any offer--with
the exception of demanding everything for oneself--
reveals some information about the proposer’s dead-
lineI’namely that it cannot be very long. If it wereF
the proposer would stand a good chance of being able
to out-wait the opponentFand therefore would ask for
a bigger portion of the surplus than it did. SimilarlyF
the offerer knows that it offered too much if the offer
gets accepted: the offerer could have done better by
out-waiting the opponent. To model real world auto-
mated negotiationFwe replace the temporal monopoly
assumption of alternating offers at fixed intervalsFwhich
underlies ~ubinstein’s modelFby a protocol where each
agent can make and accept offers in continuous time.
HoweverFour results go through even if time is discrete.

Our model resembles war of attrition games where
two agents compete for an object and winner-takes-all
when one concedes. Those games exhibit multiplicity of

equilibria. If the value of the object is common knowl-
edgeFthere is a symmetric equilibrium where one agent
concedes immediately. There is also a symmetric equi-
librium where agents concede at a rate which depends
on the value of the object. (HendricksFWeissF& Wil-
son 1988) study the general class of war of attrition
gaines with perfect information. (Hendricks & Wilson
1989) study the case of incomplete informationFnor-
mally about the object’s valueFsee also (l~iley 1980).
The game was introduced by (Smith 1974) in a biologi-
cal context and has been applied in industrial economics
(Fudenberg e~ al. 1983)P(Kreps & Wilson 1982)).

Our model differs from the war of attrition. Agents
are allowed to split the dollar instead of winner-takes-
all. One would expect that to enlarge the set of equi-
libria and equilibrium outcomes. This intuition turns
out to be false. We show that the only equilibrium out-
come is one where agreement is delayed until one of the
deadlines is reachedFand then one agent gets the entire
surplus.

We show that there exists a sequential equilibrium
where agents do not agree to a split until the first
deadlineFat which time the agent with the later dead-
line receives the whole surplus. ConverselyFwe show
that there do not exist any other Bayes-Nash equilib-
ria where agents agree to any other split at any other
time. Therefore both our positive and negative results
are strong with respect to the degree of sequential ra-
tionality agents are assumed to have. Intuitively speak-
ingFin these equilibria the agents update their beliefs
rationallyFand neither agent is motivated to change its
strategy at any point of the game given that the other
agent does not change its strategy.

Our results are robust in other ways as well. FirstF
there does not exist even a mixed strategy equilibrium
where an agent concedes at any rate before its deadline.
ThisragalnFis in contrast with the usual equilibrium
analysis of war of attrition games. SecondFthe results
hold even if the agents discount time in addition to
having deadlines. ThirdFeven if agents have different
risk attitudesF they will not agree to any split before
their deadline. That isFeven risk averse agents will
refuse safe and generous offers and will instead prefer
to continue to the risky "waiting game".

The rest of the paper is organized as follows. Sec-
tion 2 describes our formal model of bargaining with
deadlines. Section 3 presents our main results for pure-
strategy equilibria. Section 4 extends them to mixed
strategies. Sections 5 and 6 present the results with
time discounting and with agents with risk attitudes.
Section 7 describes the entailed insights for designing
automated negotiating agents. Section 8 discusses im-
plications for the design of interaction protocols. Fi-
nallyFSection 9 concludes.

2 Our model of bargaining under deadlines

Our bargaining gameFI’(a,b)Fhas two agentsP 1 and
2. The type of agent 1 is its deadline dl. The type of
agent 2 is its deadline d2. The types are private infor-



marion: each agent only knows its own type. The type
dl is drawn from a distribution a(dl)rand d2 is inde-
pendently drawn from a distribution b(d2)Fwhere a and
b are common knowledge. Without loss of generality we
scale the time axis so that

min(min(dl), min(d2)) = (1)

max(max(d1), max(d2)) (2)

That isFdl,d2 E (0, 1).
A history {H(t)) is a (possibly empty) list of all 

cepted offers up to time t. An action at time t describes
the threshold of what offers are acceptable to the agent
from then onFand what offer the agent has outstand-
ing from then on. We do not assume that the agents
have to improve their offers over time. They can even
offer less than they offered earlier. Each agent also has
a belief updating rule. FinallyFeach agent chooses a
strategy for the game. A pure strategy is an agent’s
deterministic mapping from her history to actionFi.e.
it defines what offers the agent would accept and make
as a function of what offers and rejections/acceptances
the other agent has made so far. A mixed strategy is
an agent’s probability mixture over pure strategiesFi.e.
the agent can secretly throw a (possibly biased) dice 
choose up front which pure strategy to use.

The agents can agree to any split (x, 1 - x) where
x E [0, 1]. The payoffs from an agreement (x, 1 - re)
at time t < dl,d2 are x and 1 - x for agents 1 and 2
respectively. 1 The payoff for an agent from any agree-
ment which takes place after her deadline is 0. We
assume that an agent strictly prefers to hand over the
whole surplus than to miss her deadline. In other wordsr
if the agent will get zero payoff anywayFit will rather
give the surplus to the other agent than not.2

We use two standard game-theoretic solution con-
cepts to model how rational agents would play the
game: Bayes-Nash equilibrium and sequential equilib-
rium. In brief[’a strategy-profile (Sl,S~) is a Bayes-
Nash equilibrium if sl is best response to s2 in every
information setFs2 is best response to Sl in every in-
formation setFand each agent updates her beliefs based
on the strategies and the observed history using Bayes
rule (Mas-ColellFWhinstonF& Green 1995).

A sequential equilibrium is a refinement of Bayes-
Nash equilibrium which places the further requirement
that agents act rationally also in zero probability in-
formation sets. Intuitively speakingF agents must not

1 Payoffs could be defined in several ways. One approach,
by Smith (1997), is to define payoffs in terms of aspiration
levels, or acceptance thresholds. However, it turns out to be.
sufficient for the results of this paper to express payoffs not
in terms of strategies, but in the traditional way of stating
them in terms of preferences over final agreements.

2Our results still hold if this assumption is removed, but
an additional set of equilibria appears where agents miss
their deadline with probability 1. Still, our assumption can
be defended on the grounds that there is usually a small
(possibly infinitesimally small), but positive utility associ-
ated with reaching an agreement.

use threats that are not credible. FormallyFa strategy-
profile (sl, s~) is a sequential equilibrium if (sl, s2) 
a Bayes-Nash equilibrium and there exists a sequence
(s~,s~) such that (i) for any 7 ands~ consist of
beliefs which are fully mixedFi.e, beliefs which attach
positive probability to every information setF and (it)
(s~*, s~) converges to (sl, s2) (Mas-ColellFWhinstonF&
Green 1995).

3 Pure strategy equilibria
It turns out that a "sit-and-walt" way of playing the
game is one rational way for agents to behave:

Proposition 3.1 There exists a sequential equilibrium
of r(a,b), where the agent with the latest deadline re-
ceives the whole surplus exactly at the earlier deadline.

Proof. Consider the following (symmetric) strategies:
si(di): demand x = 1 (everything) at any time t 
di. At t = di accept any offer. At any timet < dir
reject offers xi > di. Update beliefs according to Bayes
rulerputting all the weight of the posterior distribution
over the values of the opponent’s deadlineFd_iFover
the interval (1 - xi, 1). At any time t < diFreject offers
xi < di. Update beliefs in the following way. If 1 - xi is
already in the prior of d-i then the posterior is simply
equal to the prior. If 1 - xi is not in the prior of d-i
then add the point 1-xi and update according to Bayes
rule.

We first show that the beliefs specified above are con-
sistent: Let s~ (for i = 1, 2) assign probability 1 
to the above specified posterior beliefsFand probabil-
ity e to the rest of the support of d-i. As e ---+ 0 the
fully mixed strategy pair converges to (sl, s2)Fwhile the
beliefs generated by the fully mixed strategy pair con-
verge to the beliefs described above. It is now easy to
see thatFgiven these beliefsFactions are sequentially ra-
tional. Along the equilibrium path agents will always
demand the full surplus and therefore no agreement will
be achieved before the fist deadline. At the first dead-
lineI’the agent with the later deadline will receive the
whole surplus. []

The equilibrium described above is clearly also an
equilibrium of any subgame beginning at time t onwards
regardless of the historyF(H(t)). That isFat any stage
of the game each agent can move to this waiting gameF
and the other agent’s best response is to do the same.
We use this property in the proof of our main result
which states thatFsurprisinglyFthe "sit-and-walt" way
of playing the game is the only rational one. We could
prove this impossibility result using sequential equilib-
rium. HoweverFwe prove the stronger claim that there
is no equilibrium even using a weaker definition of equi-
libriumFthe Bayes-Nash equilibrium. It follows that no
sequential equilibrium exists either. For pedagogical
reasons we present the result for pure strategies first.
We generalize it to mixed strategies in Section 4.

Theorem 3.1 If dl > 0 or d2 > 0, there does not exist
a pure strategy Bayes-Nash equilibrium ofF(a, b), where
agents agree to a split other than (1,0) or (0, 1).



Proof. AssumeFfor contradictionFthat there exist
types dl > 0 and d2 > 0 and a pure strategy Bayes-
Nash equilibrium (sl, s2) where the agents agree to 
split (rrl, 7r2) -- (x, 1 - x)rwhere x ~ (0, 1) at time
t >_ 0. We assumeFwithout loss of generalityFthat agent
1 receives at least one half[i.e, x > 1. We can therefore
write x = ½ + ePwhere ½ >e > 0.

Let go(d2) denote agent l’s beliefs about d2 at time t.
SimilarlyHet fo(dl) denote agent 2’s beliefs about dl at
time t. Denote by G(d2) - 1 go(d2)dd2 the cumulative

distribution of g0Fand by F(dl) - 1 fo (dl)ddl the
cumulative distribution of f0.

In equilibriumFagent 2 will accept 1 - x only if she
does not expect to receive more by unilaterally moving
to the waiting game. The expected payoff from the
waiting game is simply agent 2’s subjective probability
that d2 < dl. Hence agent 2 would accept only if

1
j82-~ - e >_ fo(dl)ddl = F(d2) - F(t) = (3)

In other wordsFagent 2’s typeFd2Fmust not be too high.
Let a(y) ~ inf[d2 l Y -> F(d2)]. With this notationP(3)
can be rewritten as d2 < a(½ - e).

NowFagent 1 will only accept this offer if it will give
her an expected payoff at least as large as that of the
waiting gameFwhich equals her subjective probability of
winning the waiting game. There are two cases. FirstF
if dl > a(1- - e)Fagent 1 knows that she will win the2
waiting game with probability oneFso the split (x, l-x)
could not occur in equilibrium. The second case occurs
when dl < a(½ - e). Agent 1 can use the fact that

d2 < a(½ -e) to update her beliefs about agent 2’s
dead-line as follows:

1 _ c). OtherwiseF
gl(d2) = 0 ifd2>o~(~

L1 g0(d2)
gl(d2) =

go(d2) .(½_C)g° d2

L ()
1 dg0( 2)_

= g0(d2)[l+f )l, 
_>2 because a(½-c)_< median(g0)

Based on these updated beliefsFagent 1 would accept
only if

1

/td~-~q-e > gl(d2)dd2 >_ 2[G(dl)-G(t)] = 2G(dl) (5)

In other wordsPagent l’s typeFdlFmust also not be
too high. Let fl(y) in f[dl I Y > G(dl)]. Wi th th

notationF(5) can be rewritten as dx </3(~+’)¯ -- 2 "
In eqmlibriumFagent 2 only accepts if it gives her

an expected payoff at least as large as that of the
waiting gameFwhich equals her subjective probability
of winning the waiting game. There are two cases.

Firstr if d2 > ( z . agent 2 knows that she will

win the waiting game with probability oneFso the split
(x, 1 - x) could not occur. The second case occurs
when d2 < /3(~--~). Agent 2 can use the fact that

dl < f4(_~.5~ to update her beliefs about agent l’s dead-_ t"k 2 ]
line as follows:

fl(dl) : 0 if dl fl (~-). Otherwiser

£1/0 (dl)f~(dl) = fo(d~) !+,
fZ( 2~:~) fo(dl)at

1 1
f;(~)fo(dl)

= f0(dl) [1+ ~+, ] (6)

", j;13( 2 ) fo(dll)

>2 because p( ~-2-~+~)_< median(f 

Based on these updated beliefsFagent 2 would accept
only if

1

ftd~~--e ~ fl(dl)ddl ~_~ 2[F(d2)-F(t)] ~-- 2F(d2) 

_1_Ci.e. d2 < ~(~-~)).
This process of belief update and acceptance thresh-

old resetting continues to alternate between agents. Af-
ter r rounds of this alternationF all types have been
eliminated except those that satisfy dl < fl(V) and

d2 < c~( 2~ )’ This process can continue for an unlim-
ited number of stepsFrFso the upper bounds approach
zero. Therefore the equilibrium cannot exist if dl > 0
or d2 > 0. Contradiction¯ [::3

4 Mixed strategy equilibria

We now strengthen our impossibility result by show-
ing that it holds for mixed strategies as wellFi.e, that
there is no other rational way of playing the game than
"sit-and-walt" even if randomization is possible¯ This
is yet another difference between our setting and war of
attrition games. In the latterFmixed strategies play an
important role: typically the unique symmetric equilib-
rium has concession rates that are mixed strategies.

Theorem 4.1 If dl > 0 or d2 > O, there does not
exist a mixed strategy Bayes-Nash equilibrium ofF(a, b),
where the agents agree to a split other than (1,0) or
(0, 1) with positive probability.

Proof. AssumeFfor contradictionFthat there exist
types dl > 0 and d2 > 0 and a mixed strategy Bayes-
Nash equilibrium where there is positive probability of
an agreement other than (1, 0) or (0, 1). Now there 
to exist at least one point in timeFtFwhere there is
positive probability of an agreement other than (1,0)
or (0, 1). We analyze the equilibrium at such a time 
Recall fFgFFFGraFand fl from the proof of Thrm. 3.1.

Agent 1 will accept an agreement if she gets a share
x >_ alFwhere al is her acceptance threshold. That



threshold depends on her type. Since we are analyzing
a mixed strategy equilibriumFthe threshold can also
depend on randomization. We therefore say that al is
randomly chosen for time t from a probability density
function m(al). SimilarlyFagent 2 will accept an agree-
ment if she has to offer 1 a share of x _< a2 where a2 is
agent 2’s offering threshold. We say that a2 is chosen
for time t from a probability density function n(a2).

Without loss of generalityFwe assume that there is
positive probability that the agreement is made in the
range x _> ½. This implies that there is positive proba-

1bility that a2 > ~.
Let a__L be the smallest al in the support of m (alter-

natively let a.31 be the infimum of m). The assumption
that there is positive probability of an agreement other
than (1,0) or (0, 1) means that all = 1 - e for 
~>0.

Because the strategies are in equilibriumFm and n
must be best responses to each other. For n to be a
best responseFeach thresholdFa2Fin the support of n
has to give agent 2 at least the same payoff as she would
get by going to the waiting game. Focusing on those a2
for which a2 >_ ½ this means

1 > E[Tr~,it ] =
fo(dl)ddl = F(d2)- F(t) = 

2-
(8)

Sord2 < a(½).
NowFin equilibriumFevery strategy in the support of

m has to give agent 1 at least the same payoff that she
would get by going to the waiting game. There are two
cases. FirstPif dl > a(½)Fagent 1 knows that she will
win the waiting game with probability oneFso the split
(x, 1 - x) could not occur in equilibrium. The second
case occurs when dl < o~(½). Agent 1 can use the fact
that d2 < a(1) to update her beliefs about agent 2’s
deadline:

gl(d2) 0 ifd2>a(1). OtherwiseF

1 d’d’ L g0(2)gl(d2) -= YOt 2)’ a,a,
f, ’~’ g0(d2)

fl(½) go(d2)= g0(d2) [1+ .(,) ] (9)
¯ L ~ g0(d2))

_>2 because a(~’)< median(go)

Based on these updated beliefsFthe support of m can
include a_L only if

a~ = 1-c >_ gl(dDad2 >_ 2[a(dl) - a(0] = 2a(aa)
(10)

In other wordsFagent l’s typeFdlFcannot be too high.
SpecificallyFthis can be written as dI _< J~(~-’~).

In equilihriumFevery strategy in the support of n has
to give agent 2 at least the same payoff that she would

get by going to the waiting gameFwhieh equals her sub-
jective probability of winning the waiting game. There
are two cases. FirstFif d2 > fl(L~)Fagent 2 knows that
she will win the waiting game with probability oneFso
the split (x, 1 - x) could not occur. The second case

occurs when d2 < fl(L~A). Agent 2 can use ~he fact
that dl < fl(L~) to update her beliefs about agent l’s
deadline:

fl(dl) -= 0 if dl > fl(~-~). OtherwiseF

/,1 S0(dl)
fl(dl) = fo(dl)ft#(.~_.Z)fo(dl)

--~ fo(dl) I1 -F /;l(~’z) fo(dl) 

_>2 because #(~)< medianUo)
Based on these updated beliefsI’and focusing on those
a2 for which a2 > ½ we can rule out high values of d2
(otherwise agent 2 would be better off by waiting):

1

~d~-~ > E[Tr*2 vait] -= fl(dl)ddl > 2F(d2) (12)

i.e. de < a(¼)).
This process of belief update and acceptance thresh-

old resetting continues to alternate between agents. Af-
ter r rounds of this alternationF all types have been
eliminated except those that satisfy dl _< 1-cfl(2~+, ) and
d2 <__ a(~J+~). This process can continue for an unlim-
ited number of stepsFrFso the upper bounds approach
zero. Therefore the equilibrium cannot exist if dl > 0
or d2 > 0. Contradiction. []

5 Incorporating discounting
Time discounting is a standard way of modeling set-
tings where the value of the good decreases over timeF
e.g. due to inflation or due to perishing. In the previous
sections we assumed that agents do not discount time.
HoweverFwe now show that our results are robust to
the case where agents do discount time in addition to
having firm deadlines. Let 61 be the discount factor of
agent 1Fand 62 be the discount factor of agent 2. The
utility of agent i from an agreement where he receives
ashare x at timet < di is then 6ix. We denote by
F(a, b, 61,62) the bargaining game where aFbP61Fand
62 are common knowledge. We now prove that our pre-
vious result for P(a, b) holds also for a large range 
parameters in F(a, b, 61, 62). SoFinterestinglyFthe bar-
gaining power of an agent does not change with her
discount factorFin contrast to the results of most other
bargaining games. In other wordsFthe deadline effect
completely suppresses the discounting effect. This crisp
result is important in its own right for the design of au-
tomated negotiating agentsFand it also motivates the
study of deadline-based models as opposed to focusing
only on discounting-based ones.



Proposition 5.1 For any 61,62,0 < 61 <_ 1,0 < 62 _<
1, there exists a sequential equilibrium of F(a, b, 51, 52)
where the agent with the latest deadline receives the
whole surplus exactly at the earlier deadline.

Proof. The equilibrium strategies and proof of se-
quential equilibrium are identical to those in the proof
of Proposition 3.1 with the difference that the thresh-
old is no longer di but 6~di. Also the posteriors are now
defined only until 5t and not 1. []

Theorem 5.1 If 6162 > 3, there does not exist a
Bayes-Nash equilibrium of F(a,b, 51,52), (in pure or
mixed strategies) where agents agree to a split other
than (1, 0) or (0, 
Proof. We prove the case for pure strategy equilib-
rium. The extension for mixed strategy equilibrium is
identical to that in Theorem 4.1. The proof is a variant
of the proof in Theorem 3.1Fand we keep the notation
from there.

AssumeF for contradictionF that there exist types
dl > 0 and d2 > 0 and a pure strategy Bayes-Nash
equilibrium (sl, s2) where the agents agree to a split 
the total surplus available at time tFaccording to pro-
portions (rl, 7r2) = (x, 1 - x)Fwhere x E (0, 1) at 
t > 0. We assumeFwithout loss of generalityFthat agent
1 receives at least one halfFi.e, x > 3" We can therefore
write x = ½+ cFwhere ½ > c > 0.

In equilibriumFagent 2 will’accept 1 - x only if she
does not expect to receive more by unilaterally moving
to the waiting game. The expected payoff from the
waiting game is now agent 2’s subjective probability
that d2 < dlF multiplied by the discounted value of
winning. Hence agent 2 would accept only if

ftd2
j(d26~(1--e) >_ 6dlfo(dt)ddl >_ fo(di)ddl (13)

Dividing both sides by 5~Fwe get:

_ 5~-’r/d~
1
-~ - c >

fo(dl)ddl = 51-tF(d2) ~ 62F(d2)

(14)

In other words: d2 ( o~(~-~)

NowFagent 1 can use this to update her beliefs about
agent 2’s deadline in the same way as in equation (4)F
with the difference that now gt >_ 25ago. Since 62 > 0.5
(by the assumption that 6152 > 0.5)Fwe know that
gl > go (when gl is not zero).

Based on these updated beliefsFagent 1 would accept
only if

6t(-~Te ) > 6f2gt(d2)dd2 > 61 gl(d2)dd2 (15)

Dividing both sides by 6~ and using the updated be-
liefsFglPwe can now rule out "high" types of agent 1.

FormallyFdl < fl(~).
Once moreI’belief updating by agent 2 (in the same

way as in (6)) yields fl > 26251fo. Since 5152 > 0.5 we

get that fl > f0 (when it is not zero). Based on these
updated beliefsFagent 2 would accept only if

St(i--e)>_ jd25dl f1(dl)dd1>_ 523(d2fo(d1)dd1 (16)

Dividing by 6t and using the updated beliefsPfl we can
2_e !_¢

rule out the following types: d2 < a(~) < a( 26~ 
This process of belief update and acceptance threshold
resetting continues to alternate between agents. Af-
ter r rounds of this alternationF all types have been

< ~) andeliminated except those that satisfy dl _ fi((z0a)~-
a-+c

d2 < o~(~). This process can continue for an unlim-
ited number of stepsPrPso the upper bounds approach
zero. Therefore the equilibrium cannot exist if dl > 0
or d2 > 0. Contradiction. n

For exampleFif the annual interest rate is 10%Fthe
discount factor would be 6 = ~ ,,~ 0.909 per year.
For the conditions of Theorem 5.1 to be violatedFat
least one agent’s discount factor would have to be
5i _< 3’ This would mean that the unit of time from
which its deadline is drawn would have to be no shorter
than 7 years because 1 < (]_~0.1)7. Since most deadline

bargaining situations will certainly have shorter dead-
lines than 7 yearsFTheorem 5.1 shows that "sit-and-
wait" is the only rational strategy. SoFin practiceFthe
effect of deadlines suppresses that of discount factors.
This is even more commonly true in automated negotia-
tion because that is most likely going to be used mainly
for fast negotiation at the operative decision making
level instead of strategic long-term negotiation.

6 Robustness to risk attitudes
We now generalize our results to agents that are not
necessarily risk neutral. Usually in bargaining games
the equilibrium split of the surplus depends on the
agents’ risk attitudes. HoweverFwe show that this does
not happen in our setting. This is surprising at first
since a risk averse agent generally prefers a smaller but
safe share to the risky option of the waiting game even
if she expects to win it with high probability. HoweverF
we show that the type-elimination effect described in
the theorems so far is still present and dominates any
concessions which may be consistent with risk aversion.

Let the agents’ risk attitudes be captured by utility
functionsFui where i = 1, 2. Without loss of generality
we let ui(0) = 0 and ui(1) = 1 for both agents.
Proposition 6.1 There exists a sequential equilibrium
of F(a, b, ul, u2), where the agent with the latest dead-
line receives the whole surplus exactly at the earlier
deadline.

Proof. The equilibrium strategies and proof of se-
quential equilibrium are identical to those in the proof
of Proposition 3.1 with the difference that the threshold
is no longer di but ui(di). []

The following definition is used to state our main
result for the case of different risk attitudes.



Definition. 6.1 The maximum risk aversion of agent
i is

Pi =- max ui(x) (17)
x X

We can now show that our impossibility result applies
to a large range of risk attitudes of the agents:

Theorem 6.1 If piP2 < 2, there does not ex-
ist a Bayes-Nash equilibrium (pure or mixed) 
F(a, b, ul, u2), where agents agree to a split other than
(1, O) or (0, 1).
Proof. We prove the case for pure strategy equilib-
rium. The extension to mixed strategies is identical to
that in Theorem 4.1. We keep the notations from The-
orem 3.1. AssmneFfor contradictionFthat there exist
types dl > 0 and d2 > 0 and a pure strategy Bayes-
Nash equilibrium (Sl,S2) where the agents agree to a
split (7rl, ~r2) = (x, 1- x)Fwhere x E (0, 1) at time t 
AssumeFwithout loss of generalityI~hat agent i receives
at least halfI’i.e, x >_ ½. Thus we can write x = ½ + cD
where ½ > c _> 0. In equilibriumFagent 2 accepts 1 - x
only if she does not expect to receive more by unilater-
ally moving to the waiting game. The expected payoff
from the waiting game is agent 2’s subjective probabil-
ity that d2 < dl. SoFagent 2 would accept only if

P2(~1 -- ~) ~ U2(~---1 -- ~) ~___ fo(dl)ddl = F(d2) (18)

In other wordsFd2 _< a(p2(½ - e)). NowPagent 1 
use this to update her beliefs about agent 2’s deadline
in the same way as in equation (4)Fwith the difference
that now gl _> 2g0. Since (by assumption) P2 < 

then gl > go (when gl is not zero). Based on these
updated beliefsPagent 1 would accept only if:

~1(~~ + e) >_ gl(d2)dd2 (19)

Using Pl and the updated beliefsrglrwe can rule out
"high" types of agent 1. FormallyI’d~ _< ~(p~p~(½ + e)).

Once morerbelief updating by agent 2 (in the same
way as in (6)) yields f~ > e--~-p~/0. Since P2Pi < 2 we 
fl > f0 (when fl is not zero). Based on these updated
beliefsI’agent 2 would accept only if

u2(1-E) >_ Jd2fl(dl)ddl (20)

Using P2 and the updated beliefsFflFwe can rule out
the following types: d2 < O~(p22p1 (l--c)) ~ Cr(P2(½--~)).

This process of belief update and acceptance threshold
resetting continues to alternate between agents. After
r rounds of this alternationPall types have been elimi-

flip. r ihated except those that satisfy di _< ~ l~ - c)) and
r 1d2 < or(p2(7 - e)). This process can continue for 

unlimited number of stepsPrFso the upper bounds ap-
proach zero. Therefore the equilibrium cannot exist if
di > 0 or d2 > 0. Contradiction. []

7 Designing bargaining agents
Our motivation for studying bargaining with deadlines
stems from our desire to construct software agents that
will optimally negotiate on behalf of the real world par-
ties that they represent. That will put experienced and
poor human negotiators on an equal footingFand save
human negotiation effort.

Deadlines are widely advocated and used in auto-
mated electronic commerce to capture time preference.
For example when a user delegates priceline.com to find
an inexpensive airline flight on the webFthe user gives
it one hour to complete (while priceline.com uses an
agent with a deadlineFthe setting is a form of auctionF
not bargaining). Users easily understand deadlinesFand
it is simple to specify a deadline to an agent.

Our results show that in distributive bargaining set-
tings with two agents with deadlinesFit is not rational
for either agent to make or accept offers. But what
if a rational software agent receives an offer from the
other party? This means that the other party is irra-
tionalDand could perhaps be exploited. HoweverFthe
type-elimination argument from the proofs above ap-
plies here tooF and it is not rational for the software
agent to accept the offerF no matter how good it is.
To exploit the other partyF the agent would have to
have an opponent model to model the other party’s ir-
rationality. While game theory allows us to give precise
prescriptions for rational playFit is mostly silent about
irrationalityFand how to exploit it.

Another classic motivation for automated negotia-
tion is that computerized agents can negotiate faster.
HoweverPin distributive bargaining settings where the
agents have deadlinesFthis argument does not hold be-
cause in such settingsFrational software agents would
sit-and-wait until one of the deadlines is reached. From
an implementation perspective this suggests the use of
daemons that trigger right before the deadline instead
of agents that use computation before the deadline.

FinallyFour results suggest that a user will be in a
much stronger bargaining position by inputting time
preferences to her agent in terms of a time discount
function instead of a deadlineDeven if the discounting
is significant. To facilitate thisFsoftware agent ven-
dors should provide user interfaces to their agents that
allow easy human-understandable specification of time
discounting functions instead of inputting a deadline.

8 Designing bargaining protocols
The following mechanism implementsF in dominant
strategiesF the equilibrium of the deadline bargaining
game described above. FirstFagents report their dead-
linesI’diFto the protocol--possibly insincerely ( di £ di).
The protocol then assigns the whole dollar to the agent
with the highest diFbut this only takes place at time
t = J_iFi.e. at the earlier reported deadline. Truth-
telling is a dominant strategy in this mechanism. By
reporting di< di agent i’s probability of winning is re-
duced. By reporting di> diFagent i increase its proba-



bility of winningFbut only in cases where d-i > diFi.e.
when i misses its deadline. ThereforeFreporting di = di
is a dominant strategy.

This mechanism is efficient in several ways. FirstP
it minimizes counterspeculation. In equilibria that are
based on refinements of the Nash equilibrium--such as
Bayes-Nash or sequential equilibrium--an agent’s best
strategy depends on what others will do. This requires
speculation about the others’ strategiesFwhich can be
speculated by considering the others’ typesFtheir ratio-
nalityFwhat they think of the former agentFwhat they
think the former agent thinks about themFetc, ad in-
finilum. On the other handFin a dominant strategy
mechanism an agent’s strategy is optimal no matter
what others do. ThereforePcounterspeculation is not
useful. The agent need not waste time in counterspecu-
lation which can be intractable or even noncomputable.
In additionPit is easier to program an agent that ex-
ecutes a given dominant strategy than an agent that
counterspeculates. SecondF dominant strategy mech-
anisms are robust against irrational agents since their
actions do not affect how others should behave. FinallyF
the mechanism minimizes communication: each agent
only sends one message.

Howeverl~he mechanism is not Pareto efficient if time
is being discountedFbecause the agreement is delayed
as it was in the original free-form bargaining game. In
such settingsFany mechanism that results in an imme-
diate agreement is Pareto efficientFe.g, a protocol that
forces a 50:50 split up front. This protocol is efficient
in all respects discussed above. It might seem like a
good solution to the problem raised by our impossibil-
ity results. HoweverFagents in e-commerce applications
usually can choose whether to use a protocol or not. If
agents know their types before they choose the protocol
they want to useFan adverse selection problem arises.
To see whyFassume that types are normally distributed.
This is assumed for simplicity of presentation and is
not crucial. Agents with deadlines above 1/2 will not
participate in such a protocol because they can expect
to do better in a free-form bargaining setting. But if
only agents with deadlines below 1/2 participateFagents
with deadlines between 1/4 and 1/2 should not partici-
pate. NextFagents with deadlines between 1/8 and 1/4
would not participateFand so on. In equilibriumPno
agent would participate. This argument does not rely
on a 50:50 split. The adverse selection problem will
affect any protocol that does not implement Nash (or
stronger) equilibrium outcomes.

9 Conclusions

Automated agents have been suggested as a way to fa-
cilitate increasingly efficient negotiation. In settings
where the bargaining setF i.e. set of individually ra-
tional Pareto efficient dealsF is difficult to construct
for example due to a combinatorial number of possible
deals (Sandholm 1993) or the computational complexity
of evaluating any given deal (Sandholm & Lesser 1997)F
the computational speed of automated agents can sig-

nificantly enhance negotiation. Additional efficiency
can stem from the fact that computational agents can
negotiate with large numbers of other agents quickly
and virtually with no negotiation overhead. HoweverP
this paper showed that in one-to-one negotiation where
the optimal deal in the bargaining set has been iden-
tified and evaluatedFand distributing the profits is the
issuePan agent’s power does not stem from speedFbnt
on the contraryFfrom the ability to wait.

We showed that in one-to-one bargaining with dead-
linesFthe only sequential equilibrium is one where the
agents wait until the first deadline is reached. This is in
line with some human experiments where adding dead-
lines introduced significant delays in reaching agree-
ment (l~othFMurnighanF& Schoumaker 1988). We also
showed that deadline effects ahnost always completely
suppress time discounting effects. Impossibility of an
interim agreement also applies to most types of risk
attitudes of the agents. The results show that for dead-
line bargaining settings it is trivial to design the optimal
agent: it should simply wait until it reaches its dead-
line or the other party concedes. On the other handP
a user is better off by giving her agent a time discount
function instead of a deadline since a deadline puts her
agent in a weak bargaining position. FinMlyFwe dis-
cussed mechanism designF and presented an effective
protocol that implements the outcome of the free-form
bargaining game in dominant strategy equilibrium.
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