From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Verifying that Agents Implement a Communication Language

Michael Wooldridge
Queen Mary & Westfield College
Department of Electronic Engineering
London E1 4NS, United Kingdom
M.J.Wooldridge@gmw.ac.uk

Abstract The importance of conformance testihgsbeen recog-
nised by theacL community (FIPA, 1997, pl). However,
to date, little research has been carried out either on how
verifiable communication languages might be developed, or

In recent years, a number of attempts have been made to de-
velop standardized agent communication languages. A key
issue in such languages is that of conformance testing. That

is, given a program which claims to semantically conform on how existingAcLs might be verified. One exception
to some agent communication standard, how can we deter- is (Wooldridge, 1998), where the issue of conformance test-
mine whether or not it does indeed conform to it? In this ing is discussed from a formal point of view. (Wooldridge,

article, we present an expressive agent communication lan- 1998) points out thatcL semantics are generally developed
guage, and give a semantics for this language in such away jn such as way as to expressnstraintson the senders of
that verifying semantic conformance becomes a realistic pos- messages. For example, the semantics for an “infiptm
sibility. The techniques we develop dr‘?“"’k‘:po” t.holse usedto magsage in somecL might state that the sender of the mes-
give a semantics to reactive systems in theoretical computer : . . P
! . : sage is respecting the semantics of the language if it trul
science. To illustrate the approach, we give an example of a beﬁevesd) Pl'his c%nstraint — that the sendegr bglieves they
simple agent system, and show that it does indeed respect the message lcontent can be viewed amacification Veri
semantics. — - -
fying that an agent respects the semantics okttiethen re-
| ducti duces to a conventional program verification problem: show
ntroduction that the agent sending the message satisfies the specification
Perhaps the biggest single obstacle that stands in the waygiven by theacL semantics.
of the \(wder mdust'r!al take—gp (?f agent techno_logy is the is- (Wooldridge, 1998) notes that this poses the following
sue of interoperability. That is, it must be possible foragents ,qplem foracL conformance testing. The formalisms used
built by different organisations, using different hardware and_ to give a semantics tacLs are typically quantified multi-
software platforms, to communicate, cooperate, and negoti- qqa| |ogics, with modalities for referring to the “mental
ate using commonly agreed communication languages and gate” of agents. In theiPA case, this mental state consists
protocols. This concern has lead to the development of sev- ot peliefs, intentions, and the like. However, we do not cur-

eral standardized agent communication languagess), rently understand how to attributera-like mental states to
includingkQumL (Patil et al., 1992) anéiPA's communica- programs, and so we cannot verify whether or not such pro-
tion language (FIPA, 1997). grams implement “mentalistic” semantics.

As part of these standardisation initiatives, attempts have . .
In this paper, we present an expressi@. that over-

been made to give a precise formal semantics to these comes this problem. The language, (which is intended as

(e.g., (Labrou and Finin, 1997)). Typically, these formal se- ; .
mantics have been developed using techniques adapted fromP proof of concept for the basic approaciri. semantics,

speech act theory (Cohen and Perrault, 1979; Cohen andrather than as a seriousL proposal), contains performa-

Levesque, 1990). If thegecL standardisation initiatives are Ealglsaﬁ'rw:‘rgﬁégfﬁ %frgggc?rwa?g ed rrﬁgir?t.i CISn V%ﬂ%ﬂ%ﬁ erfi-
to succeed, then the issues#gmantic conformance testing guag 9 ' b

. _cially resemble those of (Cohen and Levesque, 1990; Labrou
must be successfully addressed. The conformance testmgc'a S) ' '
probiem can e summarisd a olows (oolardge, 1990) 1 L1, 19T, T [97). Houever e frguage e
We are given prograr, and an agent communication lan- from theoretical computer science (Manna and Pnueli y1992'
guageLc with the semanticg..] c. The aim is to determine P ; '

shether o o respects i Semanifs [whenever 1371 1 e 1995 A oL, 1995, Specteal,
it communicates usingc. We say a progranmplements 9 d P

a communication languagéc if it respects its semantics. tseengt’i)grr]aé lof%'l?’ g:fIiEnTi;). UTEE p\?\%ersubt?sgelnzégtlthge?ii)g
(Syntactic conformance testing is of course trivial.) y Tully GRUETL. quently
our AcL, which we shall callZ.. We then present a gen-

Copyright©1999, American Association for Artificial In- eral computational model of multi-agent systems, and use
telligence (www.aaai.org). All rights reserved. QUETL to give a semantics to this model of multi-agent sys-

tems and our agent communication framework. To illustrate

the approach, we present an agent program that respects the

semantics we give. Finally, note that this papends con-
cerned with giving a semantics tumanspeech acts. We
are only concerned witkoftwareagents.

A Quantified Epistemic Temporal Logic

In this section, we define a quantified epistemic temporal
logic (QUETL). This logic is essentially classical first-order
logic augmented by a set of modal connectives for repre-
senting theemporal orderingof events and an indexed set
of unary modal connectives for representing knewledge
possessed by agents in a systeeTL is thus a quantified
version of the epistemic temporal logics studied in (Halpern
and Vardi, 1989; Fagin et al., 1995).

QUETL provides the following temporal connectives:

¢ the nullary temporal operatostart” is satisfied only at
the beginning of time;

e O¢ is satisfied now ifp is satisfied at the next moment;

o o is satisfied now ifp is satisfied either now or at some
future moment;

e [1¢ is satisfied now ifp is satisfied now and at all future
moments;

e ¢ UY is satisfied now ifp is satisfied at some future mo-
ment, andp is satisfied until then —94/ is a binary con-
nective similar to?l, allowing for the possibility that the
second argument might never be satisfied.

To express the knowledge possessed by each agamtTL
contains a unary modal operat@j. The intended reading
of a formula%¢ is “agenti knows¢” (Fagin et al., 1995).

In addition to these temporal and epistemic operators,
QUETL contains the usual truth-functional connectives of
classical logic, and the usual apparatus of first-order quan-
tification.

Syntax

Formulae oQUETL are constructed from the (denumerable)
setsPred (predicate symbols{;onst(individual constants),
and Var (logical variables). In additionQUETL contains
the truth constanttfue”, the binary connective V" (or),
unary connective*” (not), equality symbol ", universal
quantifier 'v”, and punctuation symbols)”, and “(”, and
“.”, In addition, QUETL contains the unary modal epistemic
connective " (knows), a denumerable sag= {1,...,n}

of agent identifiers(used to index epistemic connectives),
the binary temporal connectivel?” (until), unary temporal
connective 0", and nullary temporal connectigtart. The
syntax ofQUETL is defined by the grammar in Figure 1.

In the interests of simplicity, we asSun@JETL con-
tains no functional terms other than individual constants.
Let Term= Varu Constbe the set of all terms. We use
(with decorationst’, 11, ...) to stand for arbitrary terms. We

assume each predicate symbol is associated with a natural

number called its arity, which determines the number of ar-

guments it takes — it is assumed that predicate symbols are

only applied to the appropriate number of arguments.

(cons} = anyelement oConst
(var) = anyelementoVar
(term) = (cons} | (var)
(pred) = anyelementoPred
(agrid) := anyelementofg
(wffy = true | start
| (pred)({term),...,(term))
| Kagid)(
| ((term) = (term))
| (i) | (wif) v (wf)
| W(var) - (wff)
| Ofwif) | (wif) T (wif)

Figure 1: Syntax oQUETL

Semantics

The temporal model that underpin@eTL is (IN, <), i.e.,
the natural numbers ordered by the usual “less than” rela-
tion. This model is widely used in theoretical computer
science for representing the semantics of concurrent and
distributed systems (Manna and Pnueli, 1992; Manna and
Pnueli, 1995).

A domain D, is a non-empty set. @ is a domain and €
IN, then byDY we mean the set af-tuples oveD. In order
to interpretQUETL, we need various functions that associate
symbols of the language with semantic objects. The first of
these is aninterpretation for predicates

®:PredxIN —»0O(|J DY)
ueiN

which for every predicat® at every timen determines a
set of tuples oveb denoting the extension ¢f atn. (We
assumeb respects the arity of its arguments.) Arerpre-
tation for constantss a functionl : Constx IN — D which
gives the denotation of a constant at some time. Note that
constants araotassumed to be rigid designators: they may
have different denotations at different timesvériable as-
signmenis a functionV : Var — D, which gives the seman-
tic value of every variable. We introduce a derived function
[...Jv,, which gives the denotation of an arbitrary term with
respect to a particular interpretation for constants, variable
assignment, and time:

[t = {

As V andl will generally be understood, reference to them
will usually be suppressed.

Finally, in order to give a semantics to epistemic connec-
tives, we require an indexed set of binary equivalence rela-
tions,~;C IN x IN, one for eachi € Ag (Fagin et al., 1995).

Models forQUETL are(n+ 3)-tuples of the form

if T € Const
if T € Var.

[(T,u)
V()

M= (D,~1,...,~n,l,P)
where:

e Dis adomain;

(M,V,u) = true

(M,V,u) |= start iff u=0

(M,V,u) = P(Tq,...,Tn) iff ([1]]u,___’[[—[n]]u> € ®(P,u)

(M, V,u) = Ko iff (M,V,v) E ¢ forallv e IN such thau ~; v

(M,V,u) E (T1=T) iff [t =[]

(M,V,u) |= —¢ iff (M, V,u) [¢

(M,V,U) = ¢V iff (M,V,u) =6 or (M,V,u) |= g

(M,V,u) |=Vx- ¢ iff (M,VT{x—d},u)l=¢foralldeD

(M,V,u) = O iff (M,V,u+1) =0

(M,V,uy = UY iff 3v € IN such tha(v>u) and(M,V,v) =y,
andvwe IN, if (u<w<v) then(M,V,w) = ¢

Figure 2: Semantics @fUETL

e ~j CIN x IN is a knowledge accessibility relation, one for
each agente Ag;

e | : Constx IN — D interprets constants; and
e ®:PredxIN —O(Uney D") interprets predicates.

As usual, we define the semantics of the language via the
satisfaction relation, =". For QUETL, this relation holds
between triples of the forrfM, V, u), (whereM is a model,
V is a variable assignment, amckE IN is a temporal index
into M), andQuETL-formulae. The rules defining the satis-
faction relation are given in Figure 2 (note that i a func-
tion, thenf T {x— d} denotes the same functionfasxcept
thatx maps tod). Satisfiability and validity foQUETL are
defined in the standard way.

The remaining temporal connectives@fETL are intro-
duced as abbreviations:

) = true Ud
Lo = =00
OWw = oUYV LI

It should be clear thapUETL inherits the expected proof
theoretic properties of its temporal, epistemic, and first-
order fragments.

An Agent Communication Language

We now define our agent communication language,
Like kKQML and theFIPA ACL, this language has two main
parts:

e An “outer” language, which defines a numberpeffor-
mativessuch as “inform”. In speech act terminology, the
outer language is used to define the illocutionary force of

In addition, we will assume that, (unlikeQML and FIPA)
our language isynchronousin the sense of Hoare's Com-
municating Sequential Processes#s) (Hoare, 1978). In-
tuitively, this means that whenever an agemrittempts to
execute one of th&, performatives by sending a message
to some other agent, the intended recipient of the message
must execute a “receive message” action. To represent this,
every agentis assumed to be able to perform a special action
“recv ", indicating that it has received a message. When an
agent attempts to execute a performative, it will block (i.e.,
suspend its activities) until the recipient executesca ac-
tion.

In general, a message ifx- has the fornp;j(¢), where
p is the performativej € Agis the sender of the message
(i.e., the agent that performs the communicative fet)Ag
is the intended recipient, andis the message content, ex-
pressed as a formula of the content language, Q@ETL.
L¢ provides four performatives: see Table 1.

The “inform " performative is the basic mechanism
through which agents communicate information. The in-
tuitive semantics of thanform performative are identical
to that of theripA inform (FIPA, 1997, p25). Thus an
agent will useinform to communicate information to an-
other agent. More formally, an agenthat sends the mes-
sageinform ;(¢) mustcarry the informationp in order to
satisfy the semantics ofc. That is not to say thap must
be presentin an internal database, or ilhais some variable
called$. Rather, we mean thamustknow¢ in the sense of
knowledge theory (Fagin et al., 1995).

Note that the semantics afform refer to theknowl-
edgeof the agent sending the message. Although this is a
kind of “mentalistic” terminology, it should be understood
that knowledge theory provides us with a precise way of

a message (Searle, 1969). The performative of 8 mes- attripyting knowledge to arbitrary programs (Fagin et al.,
sage defines how the content of the message should bejggs) Unlike the mentalistic terminology of, (for example),

interpreted. In addition to the performative, the outer lan-
guage contains some “housekeeping” information such as
the sender and recipient of the message.

e A content languagewhich is used to define the actual
content of the message. lfy, the content language is
actually QUETL itself. QUETL is a powerful, highly ex-
pressive language, which will afford agents much greater
expressive power than (for example) first-order logic.

theFIPA ACL semantics, our semantics are cleaytgunded

in the sense that they have a well-defined interpretation in
terms of the states of programs. We see how this grounding
works in the following section.

The “ask-whether performative is the question-
asking performative of£-. The intuitive semantics of
ask-whether are the same as the semantics of Hiea
“query-if " performative (FIPA, 1997, p30): an agdrex-

”

Performative Informal meaning

Classification

inform () i informsj of ¢

ask-whether i;(¢) iasksj whetherd
commit i (o,) i commits to performing actioa befored
refraini;(a,¢) i will refrain from a while ¢

information passing
information passing
action performing/commissiv
action performing/commissiv

AR

Table 1: Summary of Performatives

ecutes the performatissk-whether ;(¢) in an attempt to
find out fromj whether or not is true. More formally, an
agenti executing the performativask-whether ;(¢) will
respect the semantics af if it does not currently carry the
information thatp, and it does not currently carry the infor-
mation that-¢.

Neither the originalkQML language nor th&iPA ACL
providecommissiveerformatives, which commit an agent

actions. LetAg be the actions that ageintan perform, and
let Ac= UicagAG be the set of all actions.

The memoryof a progranTs is defined by a finite set of
program variablevar, each of which is associated with a
domain (type) from which it can take a value. For simplicity,
we assume that the type of every program variabliNis
Let Pvar = U;cagPVvar be the set of all program variables.
Formally, the memory state of an agerdt any instant is

to a course of action (Searle, 1969). It has been argued thatdefined by a total functioms : Pvar — IN. Let MS =

the provision of such performatives is essential to the pro-
cess of coordination in many multi-agent systems (Cohen
and Levesque, 1995) provides two commissives, called
“commit ” and “refrain " respectively.

An agenti will execute the performativeommit i (a,)
in order to assert to agepthat it guarantees to perform the
action denoted by before the conditior is true. (This
does notassert that eventually will be true.) The sendér
will be respecting the semantics 6f if it carries the infor-
mation that befor@ becomes true, it will perforra.

The “refrain " performative provides agents with a way
of committing never to perform some action. Thus éxe-
cutesrefrain j(a,¢), theni will be respecting the seman-
tics of L if it carries the information that it will not perform
o until after the conditiord becomes true. Notice that there
is a kind of duality betweeoommit andrefrain

Our next step is to define a model of multi-agent systems

Pvar, — IN be the set of all memory states for agent

The effect of an action is to modify the memory state of
the program that executes it. Thus an actioga Ag can be
viewed as a function : M§ — MS.

A program statemerfor an agent € Agis a four tuple:
(¢,C,a,¢"). Here,l € Lab is a control point that marks the
starting point of the statememt,e Lal is the end pointC
is a predicate ovens known as theyuard of the statement,
anda is theaction of the statement. Following the usual
convention, we write the statemefftC,a,¢') as(¢,C —

a, /). We letStmtbe the set of all such statements.

Collecting these components together, a program is a
structurer; = (Lahy, Ag, Pvar;, £°,m$, Stmt) whereLab is
the set of control points of the prograg is the set of
actions that the(g)rogram can perfofvar, is the set of pro-
gram variables(; € Laly is a distinguished member balb;
that marks the point at which the program starts executing,

that is in some sense generic, and to show how agents mod-mg is the initial memory state of the program, and finally,

eled in this framework can be seen to satisfy the informal
semantics discussed above.

A Model of Multi-Agent Systems

In this section, we develop a formal model of multi-agent
systems that, we claim, is sufficiently general, intuitive, and
powerful that it can be considered as a model for multi-agent

systems implemented in most programming languages. The
formal model is based upon a model of concurrent systems

from theoretical computer science, which has been widely
studied for several decades (Manna and Pnueli, 1992).
Formally, a multi-agent system will be considered to be
the parallel composition af programsm, . . ., Ti,. We model
each progranm as a labelled multi-graph (i.e., a graph that

can have more than one arc connecting two nodes). Nodes

in the graph correspond tmntrol points LetLab be the set
of control points for agerit and letLab= {JicagLab be the

set of all labels. Arcs in a program correspond to the execu- 2.
tion of actions by agents. Actions are assumed to be atomic.
The paradigm example of an action would be an assignment

statement. However, the performatives discussed above ar
also actions. Thu@form ;(¢) would be one of agerits

Stmt C Stmtare agent's actual program statements.

Thelocal stateof a progranTg at any instant is uniquely
determined by a paif/i,ms), where/; € Lab is a control
point (i.e., a node in the program’s graph, which intuitively
correspondsto a program counter), amle MS is a mem-
ory state. The set of all such local states for an agésnt
denoteds, i.e.,S§ = Lab x MS.

The setG of all global statesof a multi-agent system
T,...,Th is the cross product of all local stateG:= S x
-+ x §,. We useg,d, ... to stand for members @. If g is
a local state, then we writg(g) to denote agerits control
pointing, andms(g) to denotd’s memory state im.

Now, suppose the systermm,...,Tt, is in stateg =
(st,...,%). Then a statgf = (s,...,s,) will represent an
acceptable transition fromiff some ageni € Aghas a state-
ment(¢,C — a, /') such that

1. C(ms(Q)) (the guard is satisfied);

¢=1¢i(g) and! = ¢(d);

3. 4j(9) = 4(d) forallj #1i;

') =a(ms(g));

ms(g
5. mg(g’) =mg(g) forall j #i.

We writeg~+ ¢’ to denote the fact thaf is an acceptable
transition fromg. A run, or computation of a multi-agent
systenTy, ..., T, is then an infinite sequence of global states

0o o1 a2
—0—0—

such thatyp is the initial state of the system, and for alE
IN we haveg, ~ Qu+1.

Before leaving the model of multi-agent systems, we in-
troduce an indexed set of binary relations over global states.
If g=(s1,...,%) andg = (s,...,s,) are global states, then
we writeg ~; ¢’ if 5 = § (Fagin et al., 1995). We will refer
to ~; as aknowledge accessibility relatidior agent. Intu-
itively, if g ~j d, then stateg andg’ are indistinguishable to
agent, as it has exactly the same information in both. These
relations are the mechanism through which we can attribute
knowledge to programs.

Semantics for Multi-Agent Systems

Models forQUETL and runs of multi-agent systems are very
closely related: both are infinite sequences of states, iso-
morphic to the natural numbers. This is the key to the use
of temporal logic for reasoning about non-terminating pro-
grams (Manna and Pnueli, 1992). The idea is that, given
a multi-agent systermy, ..., T, we can systematically de-
rive a QUETL formula M (Ty,..., T,), which characterizes
the behaviour of the system, in the sense that egemTL
model which validate$/ (T, ..., T,) corresponds to one of
the possible runs dfy, ..., T, The formulaM (T, ...,)

is known as theheoryof the systenTy,...,T,. In order to
demonstrate thaty, ..., T, satisfies specificatiof, it suf-
fices to show thatM (T, ..., T,) + ¢, i.e., thatd is a the-
orem of the theoryM (T, ...,). Formally, the semantic
function M can be understood as a mapping

M : Multi-agent system- QUETL-formula

The procedure for generating the temporal semantics of a
multi-agent system is well-documented, see e.g., (Manna
and Pnueli, 1992). Here, we will simply sketch out the key
aspects of the process.

The basic idea is to use two domain predicatgs, . .)
anddo(...). The predicatat(¢) is used to indicate that
agent is currently at locatiorf € Laby. The predicateg ()
is used to indicate that the agemow performs the action
a € Ag. Formally, let

0o 351 a2
—0—0—

be a computation of the system,..., T, and letM be a
QUETL model. Then:

(M,V,u) = at(e) i
(M,V,u) E=dao(a) iff

We also require that the; relations inM correspond to

Gi(gu) =¢
o =ayanda € Ag

those obtained from the run using the techniques described

earlier.
It is convenient to introduce a propositioaxt which ex-
presses the fact that agems the next one to act.

next = Ja-do(a)

Semantics for Agent Communication

Our task is now to give a semantics for the agent communi-
cation framework introduced above. First, we must ensure
that communication is truly synchronous: every message
send action is matched on the recipient’s part by a corre-
sponding receive action, and that between the message send
and the message receive, the sender executes no other ac-
tions. Formally, we have

do(a) = (—next) Udg(rev) 1)

wherea is one of the performative actions introduced above,

of whichi is the sender anfis the recipient. Note that (1)

is aliveness propertyManna and Pnueli, 1992).
Corresponding to this liveness property, we hagafety

propertywhich states that an agent cannot executeca

instruction unless it is preceded by a corresponding message

send operation:

(—dg(recv)) = (—dg(recv)) Udo(a) (2)

wherea is once again a performative in whichs the sender
andj is the recipient.

We now move on to the performatives proper. First, we
give a semantics for thiaform performative. Recall that
an agent executingform ;(¢) must know.

dai(inform i (9)) = %i(9) 3)
(Strictly speaking, this axiom is a cheat, since the argument
to thedaq (.. .) predicate contains a formula QUETL. How-
ever, as long as we are careful not to quantify over such
nested formula, it will cause no problems — the argument to
da(...) can simply be understood agy@@ETL constant that
denotes an action.)

Corresponding to this constraint on the sender of the
inform , we have a “rational effect” constraint, which speci-
fies the behaviour of the system if the communicative act is
successful (FIPA, 1997). Note that the recipient of a mes-
sage isnot required to respect the rational effect condition;
instead, it is merely intended to characterise an “ideal” situ-
ation.

doi(inform i(9)) = GKjd 4)
If successful, therefore, an inform message will lead to the
recipient of the message knowing the content.
An agent executingsk-whether ;j(¢)) must not know
whether or —¢.

da (ask-whether i(9)) = —(%idV K—-¢) (5)

The rational effect of a messaggk-whether ;(¢) will lead
toj informingi either thatd, or that—¢, or that it does not
know eitherp or —¢.

da (ask-whether ;(¢)) = &dg(inform i ()
where = ¢, ory = —¢, or = (X vV X-6).

An agent executingommit j(a,$) must know that it will
performa before conditiord is true.

(6)

little attention has been paid to this problem. In this paper,
we have demonstrated that semantic conformance testing for

dai (commit i j(a,$)) = K—~((—da(a)) Wé) (7) anAcL is possible, if the semantics of that language have a
. . computational interpretation. We have presented a simple
Note that the use of?’ allows for the possibility tha is but, we argue, usefuicL, containing several performatives

neversatisfied, and hence thatis never executed. The ra- whose intuitive interpretation closely resembles that of their
tional effect ofcommit is simply to make the recipientaware FipA counterparts. In addition, we have defined the seman-
of the commitment. tics of thisacL using a quantified epistemic temporal logic
QUETL, demonstrated how this logic can be used to reason
about multi-agent systems, and finally, given a simple agent
doi (commit j(a,9)) = K- ((—do(a)) W) (8) system that respects the semantics of our language.

Finally, an agent performingefrain jj(a,¢) must know References
that it will not doa until ¢ becomes true. _ _ _
Cohen, P. R. and Levesque, H. J. (1990). Rational interaction as
; N - the basis for communication. In Cohen, P. R., Morgan, J., and
dq(refram bl (O(,(IJ)) = K(dq(a) Wd)) ©) Pollack, M. E., editorsintentions in Communicatigrpages
As with commit , the rational effect is to make the recipient 221-256. The MIT Press: Cambridge, MA.
aware of the commitment. Cohen, P. R. and Levesque, H. J. (1995). Communicative actions

for artificial agents. IrProceedings of the First International
. Conference on Multi-Agent Systems (ICMAS:-@B)ges 65—
doi(refrain ij(at,9)) = GKj(~da(a) W) (10) 72, San Francisco, CA.
Cohen, P. R. and Perrault, C. R. (1979). Elements of a plan based
theory of speech act€ognitive Scienge3:177-212.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1998¢a-
soning About Knowledgerhe MIT Press: Cambridge, MA.

FIPA (1997). Specification part 2 — Agent communication lan-
guage. The text refers to the specification dated 23 October

An Example

To illustrate the communication language and its semantics,
we present a small example. Consider the following pro-
gram (it is straightforward to derive the formal program from
the text given below):

0: x:=5 1997.
1: if x=>5thengoto 3 Halpern, J. Y. and Vardi, M. Y. (1989). The complexity of reason-
2: lnform i (X_?é 5) ing about knowledge and time. |. Lower boundmurnal of
3: refrain jj(inform i;(x>6),(x=7)) Computer and System Sciencgg:195-237.
4 'f_ x>6thengoto 7 Hoare, C. A. R. (1978). Communicating sequential processes.
2 X t: X4+ 1 Communications of the ACM1:666—677.
: goto - . .
70 inform (x> 6) Labrou, Y. and Finin, T. (1997). Semantics and conversations for

an agent communication language. Pmoceedings of the
Fifteenth International Joint Conference on Atrtificial Intel-

We claim that this program respects the semantics de- ligence (IJCAI-97)pages 584-591, Nagoya, Japan.
fined above. The proof is straightforward, although some- Manna, Z. and Pnueli, A. (1992Yhe Temporal Logic of Reactive
what lengthy. The basic idea is to use temporal reasoning to and Concurrent SystemSpringer-Verlag: Berlin, Germany.

derive the theory of the program, using conventional tech- anna, z. and Pnueli, A. (1995Jemporal Verification of Reactive
n|qUeS (Manna and Pnue“, 1992) We then use some Slmp|e Systems J— Safetﬁpringer-Veﬂag: Ber”n’ Germany.

epistemic rules, such as Patil, R. S., Fikes, R. E., Patel-Schneider, P. F., McKay, D., Finin,
o iy T., Gruber, T., and Neches, R. (1992). The DARPA knowl-
(xi =n) = K(xi =n) edge sharing effort: Progress report. In Rich, C., Swartout,
(if xi is one ofi's program variables, then knows the W., and Nebel, B., editorroceedings of Knowledge Repre-
value ofx;), to derive an epistemic temporal theory of the sentation and Reasoning (KR&R-9ppges 777-788.
program. Verifying conformance involves proving that the Searle, J. R. (1969)Speech Acts: An Essay in the Philosophy of

axioms defining the semantics of the performatives follow Language Cambridge University Press: Cambridge, Eng-
from this theory. The proof is done using the proof theory land.
of QUETL, which combines that of linear discrete temporal Wooldridge, M. (1998). Verifiable semantics for agent communi-
logic, epistemic logic, and first-order logic. cation languages. IRroceedings of the Third International
Conference on Multi-Agent Systems (ICMAS-p8pes 349—
Conclusions 365, Paris, France.

Conformance testing is a critical issue for agent communica-
tion languages that aspire to status as international standards.
If there is no practical method via which the conformance
(or otherwise) to a particulaxcL may be verified, then this

ACL is unlikely to be accepted into the international soft-
ware engineering community. Despite this, comparatively

