
Verifying that Agents Implement a Communication Language

Michael Wooldridge
Queen Mary & Westfield College

Department of Electronic Engineering
London E1 4NS, United Kingdom

M.J.Wooldridge@qmw.ac.uk

Abstract

In recent years, a number of attempts have been made to de-
velop standardized agent communication languages. A key
issue in such languages is that of conformance testing. That
is, given a program which claims to semantically conform
to some agent communication standard, how can we deter-
mine whether or not it does indeed conform to it? In this
article, we present an expressive agent communication lan-
guage, and give a semantics for this language in such a way
that verifying semantic conformance becomes a realistic pos-
sibility. The techniques we develop draw upon those used to
give a semantics to reactive systems in theoretical computer
science. To illustrate the approach, we give an example of a
simple agent system, and show that it does indeed respect the
semantics.

Introduction
Perhaps the biggest single obstacle that stands in the way
of the wider industrial take-up of agent technology is the is-
sue of interoperability. That is, it must be possible for agents
built by different organisations, using different hardware and
software platforms, to communicate, cooperate, and negoti-
ate using commonly agreed communication languages and
protocols. This concern has lead to the development of sev-
eral standardized agent communication languages (ACLs),
includingKQML (Patil et al., 1992) andFIPA’s communica-
tion language (FIPA, 1997).

As part of these standardisation initiatives, attempts have
been made to give a precise formal semantics to theseACLs
(e.g., (Labrou and Finin, 1997)). Typically, these formal se-
mantics have been developed using techniques adapted from
speech act theory (Cohen and Perrault, 1979; Cohen and
Levesque, 1990). If theseACL standardisation initiatives are
to succeed, then the issue ofsemantic conformance testing
must be successfully addressed. The conformance testing
problem can be summarised as follows (Wooldridge, 1998):
We are given programπi , and an agent communication lan-
guageLC with the semantics[[: : :]]C . The aim is to determine
whether or notπi respects the semantics[[: : :]]C whenever
it communicates usingLC . We say a programimplements
a communication languageLC if it respects its semantics.
(Syntactic conformance testing is of course trivial.)

Copyright c
1999, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

The importance of conformance testinghasbeen recog-
nised by theACL community (FIPA, 1997, p1). However,
to date, little research has been carried out either on how
verifiable communication languages might be developed, or
on how existingACLs might be verified. One exception
is (Wooldridge, 1998), where the issue of conformance test-
ing is discussed from a formal point of view. (Wooldridge,
1998) points out thatACL semantics are generally developed
in such as way as to expressconstraintson the senders of
messages. For example, the semantics for an “informϕ”
message in someACL might state that the sender of the mes-
sage is respecting the semantics of the language if it truly
believesϕ. This constraint — that the sender believes the
message content — can be viewed as aspecification. Veri-
fying that an agent respects the semantics of theACL then re-
duces to a conventional program verification problem: show
that the agent sending the message satisfies the specification
given by theACL semantics.

(Wooldridge, 1998) notes that this poses the following
problem forACL conformance testing. The formalisms used
to give a semantics toACLs are typically quantified multi-
modal logics, with modalities for referring to the “mental
state” of agents. In theFIPA case, this mental state consists
of beliefs, intentions, and the like. However, we do not cur-
rently understand how to attributeFIPA-like mental states to
programs, and so we cannot verify whether or not such pro-
grams implement “mentalistic” semantics.

In this paper, we present an expressiveACL that over-
comes this problem. The language, (which is intended as
a proof of concept for the basic approach toACL semantics,
rather than as a seriousACL proposal), contains performa-
tives similar to those of bothKQML andFIPA. In addition,
the language has a rigorous formal semantics, which superfi-
cially resemble those of (Cohen and Levesque, 1990; Labrou
and Finin, 1997; FIPA, 1997). However, the language se-
mantics are based on the semantics of concurrent systems
from theoretical computer science (Manna and Pnueli, 1992;
Manna and Pnueli, 1995; Fagin et al., 1995). Specifically,
the semantics are given in terms of a quantified epistemic
temporal logic, (QUETL). The paper begins in the next
section by fully definingQUETL. We subsequently define
our ACL, which we shall callLC . We then present a gen-
eral computational model of multi-agent systems, and use
QUETL to give a semantics to this model of multi-agent sys-

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

tems and our agent communication framework. To illustrate
the approach, we present an agent program that respects the
semantics we give. Finally, note that this paper isnot con-
cerned with giving a semantics tohumanspeech acts. We
are only concerned withsoftwareagents.

A Quantified Epistemic Temporal Logic
In this section, we define a quantified epistemic temporal
logic (QUETL). This logic is essentially classical first-order
logic augmented by a set of modal connectives for repre-
senting thetemporal orderingof events and an indexed set
of unary modal connectives for representing theknowledge
possessed by agents in a system.QUETL is thus a quantified
version of the epistemic temporal logics studied in (Halpern
and Vardi, 1989; Fagin et al., 1995).

QUETL provides the following temporal connectives:

� the nullary temporal operator “start” is satisfied only at
the beginning of time;

� gϕ is satisfied now ifϕ is satisfied at the next moment;

� }ϕ is satisfied now ifϕ is satisfied either now or at some
future moment;

� ϕ is satisfied now ifϕ is satisfied now and at all future
moments;

� ϕU ψ is satisfied now ifψ is satisfied at some future mo-
ment, andϕ is satisfied until then —W is a binary con-
nective similar toU , allowing for the possibility that the
second argument might never be satisfied.

To express the knowledge possessed by each agenti, QUETL
contains a unary modal operatorKi. The intended reading
of a formulaKiϕ is “agenti knowsϕ” (Fagin et al., 1995).

In addition to these temporal and epistemic operators,
QUETL contains the usual truth-functional connectives of
classical logic, and the usual apparatus of first-order quan-
tification.

Syntax
Formulae ofQUETL are constructed from the (denumerable)
setsPred (predicate symbols),Const(individual constants),
and Var (logical variables). In addition,QUETL contains
the truth constant “true”, the binary connective “_” (or),
unary connective “:” (not), equality symbol “=”, universal
quantifier “8”, and punctuation symbols “) ”, and “(”, and
“ �”. In addition,QUETL contains the unary modal epistemic
connective “K ” (knows), a denumerable setAg= f1; : : : ;ng
of agent identifiers, (used to index epistemic connectives),
the binary temporal connective “U ” (until), unary temporal
connective “g”, and nullary temporal connectivestart. The
syntax ofQUETL is defined by the grammar in Figure 1.

In the interests of simplicity, we assumeQUETL con-
tains no functional terms other than individual constants.
Let Term= Var[Constbe the set of all terms. We useτ
(with decorations:τ0;τ1; : : :) to stand for arbitrary terms. We
assume each predicate symbol is associated with a natural
number called its arity, which determines the number of ar-
guments it takes — it is assumed that predicate symbols are
only applied to the appropriate number of arguments.

hconsti ::= any element ofConst
hvari ::= any element ofVar
htermi ::= hconsti j hvari
hpredi ::= any element ofPred
hag-idi ::= any element ofAg
hwffi ::= true j start

j hpredi(htermi; : : : ;htermi)
j Khag-idihwffi
j (htermi= htermi)
j :hwffi j hwffi_ hwffi
j 8hvari � hwffi
j ghwffi j hwffiU hwffi

Figure 1: Syntax ofQUETL

Semantics
The temporal model that underpinsQUETL is (IN;�), i.e.,
the natural numbers ordered by the usual “less than” rela-
tion. This model is widely used in theoretical computer
science for representing the semantics of concurrent and
distributed systems (Manna and Pnueli, 1992; Manna and
Pnueli, 1995).

A domain, D, is a non-empty set. IfD is a domain andu2
IN, then byDu we mean the set ofu-tuples overD. In order
to interpretQUETL, we need various functions that associate
symbols of the language with semantic objects. The first of
these is aninterpretation for predicates

Φ : Pred� IN !℘(
[

u2IN

Du)

which for every predicateP at every timen determines a
set of tuples overD denoting the extension ofP at n. (We
assumeΦ respects the arity of its arguments.) Aninterpre-
tation for constantsis a functionI : Const� IN ! D which
gives the denotation of a constant at some time. Note that
constants arenot assumed to be rigid designators: they may
have different denotations at different times. Avariable as-
signmentis a functionV : Var!D, which gives the seman-
tic value of every variable. We introduce a derived function
[[: : :]]V;I , which gives the denotation of an arbitrary term with
respect to a particular interpretation for constants, variable
assignment, and time:

[[τ]]uV;I =̂

�
I(τ;u) if τ 2 Const
V(τ) if τ 2 Var.

As V andI will generally be understood, reference to them
will usually be suppressed.

Finally, in order to give a semantics to epistemic connec-
tives, we require an indexed set of binary equivalence rela-
tions,�i� IN� IN, one for eachi 2 Ag (Fagin et al., 1995).

Models forQUETL are(n+3)-tuples of the form

M = hD;�1; : : : ;�n; I ;Φi

where:

� D is a domain;

hM;V;ui j= true
hM;V;ui j= start iff u= 0
hM;V;ui j= P(τ1; : : : ;τn) iff h[[τ1]]

u; : : : ; [[τn]]
ui 2Φ(P;u)

hM;V;ui j= Kiϕ iff hM;V;vi j= ϕ for all v2 IN such thatu�i v
hM;V;ui j= (τ = τ0) iff [[τ]]u = [[τ0]]u
hM;V;ui j= :ϕ iff hM;V;ui 6j= ϕ
hM;V;ui j= ϕ_ψ iff hM;V;ui j= ϕ or hM;V;ui j= ψ
hM;V;ui j= 8x �ϕ iff hM;V †fx 7! dg;ui j= ϕ for all d 2D
hM;V;ui j= gϕ iff hM;V;u+1i j= ϕ
hM;V;ui j= ϕU ψ iff 9v2 IN such that(v� u) andhM;V;vi j= ψ;

and8w2 IN; if (u�w< v) thenhM;V;wi j= ϕ

Figure 2: Semantics ofQUETL

� �i � IN� IN is a knowledge accessibility relation, one for
each agenti 2 Ag;

� I : Const� IN ! D interprets constants; and

� Φ : Pred� IN !℘(
S

n2IN Dn) interprets predicates.

As usual, we define the semantics of the language via the
satisfaction relation, “j=”. For QUETL, this relation holds
between triples of the formhM;V;ui, (whereM is a model,
V is a variable assignment, andu 2 IN is a temporal index
into M), andQUETL-formulae. The rules defining the satis-
faction relation are given in Figure 2 (note that iff is a func-
tion, thenf †fx 7! dg denotes the same function asf except
thatx maps tod). Satisfiability and validity forQUETL are
defined in the standard way.

The remaining temporal connectives ofQUETL are intro-
duced as abbreviations:

}ϕ =̂ true U ϕ
ϕ =̂ :}:ϕ

ϕW ψ =̂ ϕU ψ_ ϕ

It should be clear thatQUETL inherits the expected proof
theoretic properties of its temporal, epistemic, and first-
order fragments.

An Agent Communication Language
We now define our agent communication language,LC.
Like KQML and theFIPA ACL, this language has two main
parts:

� An “outer” language, which defines a number ofperfor-
mativessuch as “inform”. In speech act terminology, the
outer language is used to define the illocutionary force of
a message (Searle, 1969). The performative of a mes-
sage defines how the content of the message should be
interpreted. In addition to the performative, the outer lan-
guage contains some “housekeeping” information such as
the sender and recipient of the message.

� A content language, which is used to define the actual
content of the message. InLC , the content language is
actually QUETL itself. QUETL is a powerful, highly ex-
pressive language, which will afford agents much greater
expressive power than (for example) first-order logic.

In addition, we will assume that, (unlikeKQML and FIPA)
our language issynchronous, in the sense of Hoare’s Com-
municating Sequential Processes (CSPs) (Hoare, 1978). In-
tuitively, this means that whenever an agenti attempts to
execute one of theLC performatives by sending a message
to some other agent, the intended recipient of the message
must execute a “receive message” action. To represent this,
every agent is assumed to be able to perform a special action
“ recv ”, indicating that it has received a message. When an
agent attempts to execute a performative, it will block (i.e.,
suspend its activities) until the recipient executes arecv ac-
tion.

In general, a message inLC has the formpi;j(ϕ), where
p is the performative,i 2 Ag is the sender of the message
(i.e., the agent that performs the communicative act),j 2 Ag
is the intended recipient, andϕ is the message content, ex-
pressed as a formula of the content language, i.e.,QUETL.
LC provides four performatives: see Table 1.

The “inform ” performative is the basic mechanism
through which agents communicate information. The in-
tuitive semantics of theinform performative are identical
to that of theFIPA inform (FIPA, 1997, p25). Thus an
agent will useinform to communicate information to an-
other agent. More formally, an agenti that sends the mes-
sageinform i;j(ϕ) mustcarry the informationϕ in order to
satisfy the semantics ofLC . That is not to say thatϕ must
be present in an internal database, or thati has some variable
calledϕ. Rather, we mean thati mustknowϕ in the sense of
knowledge theory (Fagin et al., 1995).

Note that the semantics ofinform refer to theknowl-
edgeof the agent sending the message. Although this is a
kind of “mentalistic” terminology, it should be understood
that knowledge theory provides us with a precise way of
attributing knowledge to arbitrary programs (Fagin et al.,
1995). Unlike the mentalistic terminology of, (for example),
theFIPA ACL semantics, our semantics are clearlygrounded
in the sense that they have a well-defined interpretation in
terms of the states of programs. We see how this grounding
works in the following section.

The “ask-whether ” performative is the question-
asking performative ofLC . The intuitive semantics of
ask-whether are the same as the semantics of theFIPA
“query-if ” performative (FIPA, 1997, p30): an agenti ex-

Performative Informal meaning Classification
inform i;j(ϕ) i informsj of ϕ information passing
ask-whether i;j(ϕ) i asksj whetherϕ information passing
commit i;j(α;ϕ) i commits to performing actionα beforeϕ action performing/commissive
refrain i;j(α;ϕ) i will refrain from α while ϕ action performing/commissive

Table 1: Summary of Performatives

ecutes the performativeask-whether i;j(ϕ) in an attempt to
find out fromj whether or notϕ is true. More formally, an
agenti executing the performativeask-whether i;j(ϕ) will
respect the semantics ofLC if it does not currently carry the
information thatϕ, and it does not currently carry the infor-
mation that:ϕ.

Neither the originalKQML language nor theFIPA ACL
providecommissiveperformatives, which commit an agent
to a course of action (Searle, 1969). It has been argued that
the provision of such performatives is essential to the pro-
cess of coordination in many multi-agent systems (Cohen
and Levesque, 1995).LC provides two commissives, called
“commit ” and “refrain ” respectively.

An agenti will execute the performativecommit i;j(α;ϕ)
in order to assert to agentj that it guarantees to perform the
action denoted byα before the conditionϕ is true. (This
does notassert that eventuallyϕ will be true.) The senderi
will be respecting the semantics ofLC if it carries the infor-
mation that beforeϕ becomes true, it will performα.

The “refrain ” performative provides agents with a way
of committing never to perform some action. Thus ifi exe-
cutesrefrain i;j(α;ϕ), theni will be respecting the seman-
tics ofLC if it carries the information that it will not perform
α until after the conditionϕ becomes true. Notice that there
is a kind of duality betweencommit andrefrain .

Our next step is to define a model of multi-agent systems
that is in some sense generic, and to show how agents mod-
eled in this framework can be seen to satisfy the informal
semantics discussed above.

A Model of Multi-Agent Systems
In this section, we develop a formal model of multi-agent
systems that, we claim, is sufficiently general, intuitive, and
powerful that it can be considered as a model for multi-agent
systems implemented in most programming languages. The
formal model is based upon a model of concurrent systems
from theoretical computer science, which has been widely
studied for several decades (Manna and Pnueli, 1992).

Formally, a multi-agent system will be considered to be
the parallel composition ofn programsπ1; : : : ;πn. We model
each programπi as a labelled multi-graph (i.e., a graph that
can have more than one arc connecting two nodes). Nodes
in the graph correspond tocontrol points. LetLabi be the set
of control points for agenti, and letLab=

S
i2AgLabi be the

set of all labels. Arcs in a program correspond to the execu-
tion of actions by agents. Actions are assumed to be atomic.
The paradigm example of an action would be an assignment
statement. However, the performatives discussed above are
also actions. Thusinform i;j(ϕ) would be one of agenti’s

actions. LetAci be the actions that agenti can perform, and
let Ac=

S
i2AgAci be the set of all actions.

Thememoryof a programπi is defined by a finite set of
program variables,Pvari , each of which is associated with a
domain (type) from which it can take a value. For simplicity,
we assume that the type of every program variable isIN.
Let Pvar=

S
i2AgPvari be the set of all program variables.

Formally, the memory state of an agenti at any instant is
defined by a total functionmsi : Pvari ! IN. Let MSi =
Pvari ! IN be the set of all memory states for agenti.

The effect of an action is to modify the memory state of
the program that executes it. Thus an actionα 2 Aci can be
viewed as a functionα : MSi !MSi .

A program statementfor an agenti 2 Ag is a four tuple:
(`;C;α; `0). Here,` 2 Labi is a control point that marks the
starting point of the statement,`0 2 Labi is the end point,C
is a predicate overmsi known as theguardof the statement,
andα is theaction of the statement. Following the usual
convention, we write the statement(`;C;α; `0) as(`;C�!
α; `0). We letStmtbe the set of all such statements.

Collecting these components together, a program is a
structureπi = (Labi;Aci ;Pvari ; `0

i ;ms0i ;Stmti) whereLabi is
the set of control points of the program,Aci is the set of
actions that the program can perform,Pvari is the set of pro-
gram variables,̀0i 2 Labi is a distinguished member ofLabi
that marks the point at which the program starts executing,
ms0i is the initial memory state of the program, and finally,
Stmti � Stmtare agenti’s actual program statements.

The local stateof a programπi at any instant is uniquely
determined by a pair(`i ;msi), where`i 2 Labi is a control
point (i.e., a node in the program’s graph, which intuitively
corresponds to a program counter), andmsi 2MSi is a mem-
ory state. The set of all such local states for an agenti is
denotedSi , i.e.,Si = Labi �MSi.

The setG of all global statesof a multi-agent system
π1; : : : ;πn is the cross product of all local states:G = S1�
�� ��Sn. We useg;g0; : : : to stand for members ofG. If g is
a local state, then we writèi(g) to denote agenti’s control
point ing, andmsi(g) to denotei’s memory state ing.

Now, suppose the systemπ1; : : : ;πn is in state g =
(s1; : : : ;sn). Then a stateg0 = (s01; : : : ;s

0
n) will represent an

acceptable transition fromg iff some agenti 2Aghas a state-
ment(`;C�! α; `0) such that

1. C(msi(g)) (the guard is satisfied);

2. `= `i(g) and`0 = `i(g0);

3. `j(g) = `j(g0) for all j 6= i;

4. msi(g0) = α(msi(g));

5. msj(g0) = msj(g) for all j 6= i.

We writeg; g0 to denote the fact thatg0 is an acceptable
transition fromg. A run, or computation of a multi-agent
systemπ1; : : : ;πn is then an infinite sequence of global states

g0
α0�! g1

α1�! g2
α2�! �� �

such thatg0 is the initial state of the system, and for allu2
IN we havegu; gu+1.

Before leaving the model of multi-agent systems, we in-
troduce an indexed set of binary relations over global states.
If g= (s1; : : : ;sn) andg0 = (s01; : : : ;s

0
n) are global states, then

we writeg�i g0 if si = s0i (Fagin et al., 1995). We will refer
to�i as aknowledge accessibility relationfor agenti. Intu-
itively, if g�i g0, then statesg andg0 are indistinguishable to
agenti, as it has exactly the same information in both. These
relations are the mechanism through which we can attribute
knowledge to programs.

Semantics for Multi-Agent Systems
Models forQUETL and runs of multi-agent systems are very
closely related: both are infinite sequences of states, iso-
morphic to the natural numbers. This is the key to the use
of temporal logic for reasoning about non-terminating pro-
grams (Manna and Pnueli, 1992). The idea is that, given
a multi-agent systemπ1; : : : ;πn, we can systematically de-
rive a QUETL formula M (π1; : : : ;πn), which characterizes
the behaviour of the system, in the sense that everyQUETL
model which validatesM (π1; : : : ;πn) corresponds to one of
the possible runs ofπ1; : : : ;πn. The formulaM (π1; : : : ;πn)
is known as thetheoryof the systemπ1; : : : ;πn. In order to
demonstrate thatπ1; : : : ;πn satisfies specificationϕ, it suf-
fices to show thatM (π1; : : : ;πn) ` ϕ, i.e., thatϕ is a the-
orem of the theoryM (π1; : : : ;πn). Formally, the semantic
functionM can be understood as a mapping

M : Multi-agent system! QUETL-formula:

The procedure for generating the temporal semantics of a
multi-agent system is well-documented, see e.g., (Manna
and Pnueli, 1992). Here, we will simply sketch out the key
aspects of the process.

The basic idea is to use two domain predicates,ati(: : :)
and doi(: : :). The predicateati(`) is used to indicate that
agenti is currently at locatioǹ2 Labi . The predicatedoi(α)
is used to indicate that the agenti now performs the action
α 2 Aci. Formally, let

g0
α0�! g1

α1�! g2
α2�! �� �

be a computation of the systemπ1; : : : ;πn, and letM be a
QUETL model. Then:

hM;V;ui j= ati(`) iff `i(gu) = `
hM;V;ui j= doi(α) iff α = αu andα 2 Aci

We also require that the�i relations inM correspond to
those obtained from the run using the techniques described
earlier.

It is convenient to introduce a propositionnexti which ex-
presses the fact that agenti is the next one to act.

nexti =̂ 9α �doi(α)

Semantics for Agent Communication
Our task is now to give a semantics for the agent communi-
cation framework introduced above. First, we must ensure
that communication is truly synchronous: every message
send action is matched on the recipient’s part by a corre-
sponding receive action, and that between the message send
and the message receive, the sender executes no other ac-
tions. Formally, we have

doi(α)) (:nexti)U doj(rcv) (1)

whereα is one of the performative actions introduced above,
of which i is the sender andj is the recipient. Note that (1)
is a liveness property(Manna and Pnueli, 1992).

Corresponding to this liveness property, we have asafety
propertywhich states that an agent cannot execute arecv
instruction unless it is preceded by a corresponding message
send operation:

(:doj(recv))) (:doj(recv))U doi(α) (2)

whereα is once again a performative in whichi is the sender
andj is the recipient.

We now move on to the performatives proper. First, we
give a semantics for theinform performative. Recall that
an agent executinginform i;j(ϕ) must knowϕ.

doi(inform i;j(ϕ))) Ki(ϕ) (3)

(Strictly speaking, this axiom is a cheat, since the argument
to thedoi(: : :) predicate contains a formula ofQUETL. How-
ever, as long as we are careful not to quantify over such
nested formula, it will cause no problems — the argument to
doi(: : :) can simply be understood as aQUETL constant that
denotes an action.)

Corresponding to this constraint on the sender of the
inform , we have a “rational effect” constraint, which speci-
fies the behaviour of the system if the communicative act is
successful (FIPA, 1997). Note that the recipient of a mes-
sage isnot required to respect the rational effect condition;
instead, it is merely intended to characterise an “ideal” situ-
ation.

doi(inform i;j(ϕ)))}Kjϕ (4)

If successful, therefore, an inform message will lead to the
recipient of the message knowing the content.

An agent executingask-whether i;j(ϕ)) must not know
whetherϕ or:ϕ.

doi(ask-whether i;j(ϕ))):(Kiϕ_Ki:ϕ) (5)

The rational effect of a messageask-whether i;j(ϕ) will lead
to j informing i either thatϕ, or that:ϕ, or that it does not
know eitherϕ or:ϕ.

doi(ask-whether i;j(ϕ)))}doj(inform j;i(ψ)) (6)

whereψ = ϕ, or ψ = :ϕ, or ψ = :(Kjϕ_Kj:ϕ).
An agent executingcommit i;j(α;ϕ) must know that it will

performα before conditionϕ is true.

doi(commit i;j(α;ϕ))) Ki:((:doi(α))W ϕ) (7)

Note that the use ofW allows for the possibility thatϕ is
neversatisfied, and hence thatα is never executed. The ra-
tional effect ofcommit is simply to make the recipient aware
of the commitment.

doi(commit i;j(α;ϕ)))}Kj:((:doi(α))W ϕ) (8)

Finally, an agent performingrefrain i;j(α;ϕ) must know
that it will not doα until ϕ becomes true.

doi(refrain i;j(α;ϕ))) Ki(:doi(α)W ϕ) (9)

As with commit , the rational effect is to make the recipient
aware of the commitment.

doi(refrain i;j(α;ϕ)))}Kj(:doi(α)W ϕ) (10)

An Example
To illustrate the communication language and its semantics,
we present a small example. Consider the following pro-
gram (it is straightforward to derive the formal program from
the text given below):

0 : x := 5
1 : if x= 5 then goto 3
2 : inform i;j(x 6= 5)
3 : refrain i;j(inform i;j(x> 6);(x= 7))
4 : if x> 6 then goto 7
5 : x := x+1
6 : goto 4
7 : inform i;j(x> 6)

We claim that this program respects the semantics de-
fined above. The proof is straightforward, although some-
what lengthy. The basic idea is to use temporal reasoning to
derive the theory of the program, using conventional tech-
niques (Manna and Pnueli, 1992). We then use some simple
epistemic rules, such as

(x i = n))Ki(x i = n)

(if x i is one of i’s program variables, theni knows the
value ofx i), to derive an epistemic temporal theory of the
program. Verifying conformance involves proving that the
axioms defining the semantics of the performatives follow
from this theory. The proof is done using the proof theory
of QUETL, which combines that of linear discrete temporal
logic, epistemic logic, and first-order logic.

Conclusions
Conformance testing is a critical issue for agent communica-
tion languages that aspire to status as international standards.
If there is no practical method via which the conformance
(or otherwise) to a particularACL may be verified, then this
ACL is unlikely to be accepted into the international soft-
ware engineering community. Despite this, comparatively

little attention has been paid to this problem. In this paper,
we have demonstrated that semantic conformance testing for
anACL is possible, if the semantics of that language have a
computational interpretation. We have presented a simple
but, we argue, usefulACL, containing several performatives
whose intuitive interpretation closely resembles that of their
FIPA counterparts. In addition, we have defined the seman-
tics of thisACL using a quantified epistemic temporal logic
QUETL, demonstrated how this logic can be used to reason
about multi-agent systems, and finally, given a simple agent
system that respects the semantics of our language.

References
Cohen, P. R. and Levesque, H. J. (1990). Rational interaction as

the basis for communication. In Cohen, P. R., Morgan, J., and
Pollack, M. E., editors,Intentions in Communication, pages
221–256. The MIT Press: Cambridge, MA.

Cohen, P. R. and Levesque, H. J. (1995). Communicative actions
for artificial agents. InProceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), pages 65–
72, San Francisco, CA.

Cohen, P. R. and Perrault, C. R. (1979). Elements of a plan based
theory of speech acts.Cognitive Science, 3:177–212.

Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. (1995).Rea-
soning About Knowledge. The MIT Press: Cambridge, MA.

FIPA (1997). Specification part 2 — Agent communication lan-
guage. The text refers to the specification dated 23 October
1997.

Halpern, J. Y. and Vardi, M. Y. (1989). The complexity of reason-
ing about knowledge and time. I. Lower bounds.Journal of
Computer and System Sciences, 38:195–237.

Hoare, C. A. R. (1978). Communicating sequential processes.
Communications of the ACM, 21:666–677.

Labrou, Y. and Finin, T. (1997). Semantics and conversations for
an agent communication language. InProceedings of the
Fifteenth International Joint Conference on Artificial Intel-
ligence (IJCAI-97), pages 584–591, Nagoya, Japan.

Manna, Z. and Pnueli, A. (1992).The Temporal Logic of Reactive
and Concurrent Systems. Springer-Verlag: Berlin, Germany.

Manna, Z. and Pnueli, A. (1995).Temporal Verification of Reactive
Systems — Safety. Springer-Verlag: Berlin, Germany.

Patil, R. S., Fikes, R. E., Patel-Schneider, P. F., McKay, D., Finin,
T., Gruber, T., and Neches, R. (1992). The DARPA knowl-
edge sharing effort: Progress report. In Rich, C., Swartout,
W., and Nebel, B., editors,Proceedings of Knowledge Repre-
sentation and Reasoning (KR&R-92), pages 777–788.

Searle, J. R. (1969).Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press: Cambridge, Eng-
land.

Wooldridge, M. (1998). Verifiable semantics for agent communi-
cation languages. InProceedings of the Third International
Conference on Multi-Agent Systems (ICMAS-98), pages 349–
365, Paris, France.

