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Abstract

We present general-purpose methods for recognizing
certain types of structure in HTML documents. The
methods are implemented using WHIRL, a “soft” logic
that incorporates a notion of textual similarity devel-
oped in the information retrieval community. In an
experimental evaluation on 82 Web pages, the struc-
ture ranked first by our method is “meaningful”—i.e.,
a structure that was used in a hand-coded “wrapper”,
or extraction program, for the page—nearly 70% of the
time. This improves on a value of 50% obtained by an
earlier method. With appropriate background infor-
mation, the structure-recognition methods we describe
can also be used to learn a wrapper from examples,
or for maintaining a wrapper as a Web page changes
format. In these settings, the top-ranked structure is
meaningful nearly 85% of the time.

Introduction

Web-based information integration systems allow a user
to query structured information that has been extracted
from the Web (Levy, Rajaraman, & Ordille 1996;
Garcia-Molina et al. 1995; Knoblock et al. 1998;
Genesereth, Keller, & Dushka 1997; Lacroix, Sahuguet,
& Chandrasekar 1998; Mecca et al. 1998; Tomasic et
al. 1997). In most such systems, a different wrap-
per must be written for each Web site that is ac-
cessed. A wrapper is a special-purpose program that
extracts information from Web pages written in a spe-
cific format. Because data can be presented in many
different formats, and because Web pages frequently
change, building and maintaining wrappers is time-
consuming and tedious. To reduce the cost of build-
ing wrappers, some researchers have proposed special
languages for writing wrappers (Hammer et al. 1997;
Cohen 1998b), or semi-automated tools for wrapper
construction (Ashish & Knoblock 1997). Others have
implemented systems that allow wrappers to be trained
from examples (Kushmerick, Weld, & Doorenbos 1997;
Hsu 1998; Muslea, Minton, & Knoblock 1998). Data
exchange standards like XML have also been proposed,
although as yet none are in widespread use.

Here, we explore another approach to this problem:
developing general-purpose methods for automatically
recognizing structure in HTML documents. Our ul-
timate goal is to extract structured information from
Web pages without any page-specific programming or
training.
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Figure 1: Nonsense text with a meaningful structure.

To motivate this approach, consider Figure 1. To
a human reader, this text is perceived as containing a
list of three items, each containing the italized name of
a university department, with the university name un-
derlined. This apparently meaningful structure is rec-
ognized without previous knowledge or training, even
though the text is ungrammatical nonsense and the uni-
versity names are imaginary. This suggests that peo-
ple employ general-purpose, page-independent strate-
gies for recognizing structure in documents. Incor-
porating similar strategies into a system that auto-
matically (or semi-automatically) constructs wrappers
would clearly be valuable.

Below we show that effective structure recognition
methods for certain restricted types of list structures
can be encoded compactly and naturally, given appro-
priate tools. In particular, we will present several meth-
ods that can be concisely implemented in WHIRL (Co-
hen 1998a), a “soft” logic that includes both “soft”
universal quantification, and a notion of textual sim-
ilarity developed in the information retrieval (IR) com-
munity. The structure-recognition methods we present
are based on natural heuristics, such as detecting repe-
tition of sequences of markup commands, and detecting
repeated patterns of “familiar-looking” strings.

The methods can be used in a page-independent man-
ner: given an HTML page, but no additional informa-
tion about it, the methods produce a ranked list of pro-
posed “structures” found in the page. This ranking is
generally quite useful: in an experimental evaluation
on 82 Web pages associated with real extraction prob-
lems, the top-ranked structure is “meaningful” (as de-



HTML source for a simple list:
<html><head>...</head>
<body>

<table> <tr>
<td>G. R. Emlin, Lucent</td>
<td>Harry Q. Bovik, Cranberry U</td></tr>

HTML source for a simple hotlist:

<html><head>... </head>

<body><h1>Publications for Pheobe Mind</h1>

<h1>Editorial Board Members</h1> <ul>

<li>Optimization of fuzzy neural networks using

distributed parallel case-based genetic knowledge discovery
(<a href=“buzz.pdf” >PDF< /a>)</li>

<tr> <li>A linear-time version of GSAT

<td>Bat Gangley, UC/Bovine</td>
<td>Pheobe L. Mind, Lough Tech</td>

(<a href="“peqnp.ps” >postscript</a>)</li>

Extracted data:

Extracted data:

Optimization . .. (PDF)

buzz.pdf

G. R. Emlin, Lucent

A linear-time version of ...

Harry Q. Bovik, Cranberry U

peqnp.ps

Figure 2: A simple list, a simple hotlist, and the data that would be extracted from each.

fined below) nearly 70% of the time. This improves on
an earlier method (Cohen & Fan 1999), which proposes
meaningful structures about 50% of the time on the
same data.

By providing different types of additional informa-
tion, about a page, the same methods can also be used
for page-specific wrapper learning as proposed by Kush-
meric et al (1997), or for updating a wrapper after the
format of a wrapped page has changed. When used
for page-specific learning or wrapper update, the top-
ranked structure is meaningful nearly 85% of the time.

Background
Benchmark problems

We begin by clarifying the structure-recognition prob-
lem, with the aim of stating a task precise enough to
allow quantitative evaluation of performance. Defer-
ring for now the question of what a “structure” is, we
propose to rate the “structures” identified by our meth-
ods as either meaningful or not meaningful. Ideally, a
structure in a Web page would be rated as meaningful iff
it contains structured information that could plausibly
be extracted from the page. Concretely, in our exper-
iments, we will use pages that were actually wrapped
by an information integration system, and consider a
structure as meaningful iff it corresponds to information
actually extracted by an existing, hand-coded wrapper
for that page.

In this paper, we will restrict ourselves to wrappers
in two narrow classes (and therefore, to a narrow class
of potential structures). We call these wrapper classes
simple lists and simple hotlists. In a page containing a
simple list, the information extracted is a one-column
relation containing a set of strings s1, ..., sn, and each
s; is all the text that falls below some node n; in the
HTML parse tree for the page. In a simple hotlist, the
extracted information is a two-column relation, contain-
ing a set of pairs (s1,u1), ..., (Sn,un); each s; is all the
text that falls below some node n; in the HTML parse
tree; and each u; is a URL that is associated with some
HTML anchor element a; that appears somewhere in-

side n;. Figure 2 shows the HTML source for a simple
list and a simple hotlist, and the data that is extracted
from each.

This restriction is based on our experience with a
working information integration system (Cohen 1998b).
Of 111 different wrapper programs written for this sys-
tem, 82 (or nearly 75%) were based on simple lists or
simple hotlists, as defined above.! We will use this cor-
pus of problems in the experiments described below.

The vector space representation for text

Our ability to perceive structure in the text of Figure 1
is arguably enhanced by the regular appearance of sub-
strings that are recognizable as (fictitious) university
names. These strings are recognizable because they
“look like” the names of real universities. Implement-
ing such heuristics requires a precise notion of similarity
for text, and one such notion is provided by the vector
space model of text.

In the vector space model, a piece of text is repre-
sented as a document vector (Salton 1989). We as-
sume a vocabulary T of terms; in this paper, terms
are word stems produced by the Porter stemming algo-
rithm (Porter 1980). A document vector is a vector of
real numbers ¥ € RIT!, each component of which corre-
sponds to a term t € T'. We will denote the component
of ¥ which corresponds to ¢ € T' by v, and employ the
TF-IDF weighting scheme (Salton 1989): for a docu-
ment vector ¥ appearing in a collection C, we let v; be
zero if the term ¢ does not occur in text represented by
¥, and otherwise let v; = (log(TF ;) + 1) - log(IDFy).
In this formula, TFjy; is the number of times that
term ¢ occurs in the document represented by ¥, and

IDF; = 'Ja,c—j'-, where C; is the set of documents in C
that contain ¢.

'We say “based on” because some lists also included pre-
processing or filtering steps. We note also that the relative
simplicity of wrappers is due in part to special properties
of the information integration system. Further discussion of
this dataset can be found elsewhere (Cohen & Fan 1999).



In the vector space model, the similarity of two
document vectors ¥ and W is given by the formula
SIM(9,%) = Y} er n;l’ﬁ—ﬁ%n Notice that SIM (7,
is always between zero and one, and that similarity is
large only when the two vectors share many “impor-
tant” (highly weighted) terms.

The WHIRL logic

Overview. WHIRL is a logic in which the fundamen-
tal items that are manipulated are not atomic values,
but entities that correspond to fragments of text. Each
fragment is represented internally as a document vector,
as defined above; this means the similarity between any
two items can be computed. In brief, WHIRL is non-
recursive, function-free Prolog, with the addition of a
built-in similarity predicate; rather than being true or
false, a similarity literal is associated with a real-valued
“score” between 0 and 1; and scores are combined as if
they were independent probabilities.

As an example of a WHIRL query, let us suppose that
the information extracted from the simple list of Fig-
ure 2 is stored as a predicate ed_board(X). Suppose also
that the information extracted from the hotlist of Fig-
ure 2, together with a number of similar bibliography
hotlists, has been stored in a predicate paper(Y,Z,U),
where Y is an author name, Z a paper title, and U a
paper URL. For instance, the following facts may have
been extracted and stored: ed_board(“Pheobe L. Mind,
Lough Tech”), and paper(“Pheobe Mind”, “A linear-
time version of GSAT”, “hitp://. .. /peqnp.ps”). Using
WHIRL’s similarity predicate “~”, the following query
might be used to find papers written by editorial board
members:

+ ed_board(X) A paper(Y,Z,U) A X~ Y

The answer to this query would be a list of substitutions
8, each with an associated score. Substitutions that
bind X and Y to similar documents would be scored
higher. One high-scoring substitution might bind X
to “Pheobe L. Mind, Lough Tech” and Y to “Pheobe
Mind”.

Below we will give a formal summary of WHIRL. A
complete description is given elsewhere (Cohen 1998a).

WHIRL semantics. Like a conventional deductive
database (DDB) program, a WHIRL program consists
of two parts: an extensional database (EDB), and an
intensional datebase (IDB). The IDB is a non-recursive
set of function-free definite clauses. The EDB is a col-
lection of ground atomic facts, each associated with a
numeric score in the range (0,1]. In addition to the
types of literals normally allowed in a DDB, clauses in
the IDB can also contain similarity literals of the form
X ~Y, where X and Y are variables. A WHIRL pred-
icate definition is called a view. We will assume below
views are flat—that is, that each clause body in the
view contains only literals associated with predicates
defined in the EDB. Since WHIRL does not support
recursion, views that are not flat can be “fattened”
(unfolded) by repeated resolution.

In a conventional DDB, the answer to a conjunctive
query would be the set of ground substitutions that
make the query true. In WHIRL, the notion of provabil-
ity will be replaced with a “soft” notion of score, which
we will now define. Let 8 be a ground substitution for
B. ¥ B = p(Xi,...,X,) corresponds to a predicate
defined in the EDB, then SCORE(B,f) = s if B is a
fact in the EDB with score s, and SCORE(B,6) =0
otherwise. If B is a similarity literal X ~ Y, then
SCORE(B,0) = SIM (&,%), where £ = X6 and ¥ = Y0.
If B=B; A...A By is a conjunction of literals, then
SCORE(B,0) = [[., SCORE(B;,6). Finally, con-
sider a WHIRL view, defined as a set of clauses of
the form A; < Body;. For a ground atom a that is
an instance of one or more A;’s, we define the sup-
port of a, SUPPORT(a), to be the set of all pairs
(0, Body,) such that A;0c = a, Body;o is ground, and
SCORE(Body;,0) > 0. We define the score of an atom
a (for this view) to be

1- 11
(0,Body;)€SUPPORT(a)
This definition follows from the usual semantics of logic
programs, together with the observation that if e; and
e are independent events, then Prob(e; Ves) = 1 —
(1 — Prob(e1))(1 — Prob(es)).

The operations most commonly performed in
WHIRL are to define and materialize views. To ma-
terialize a view, WHIRL finds a set of ground atoms
a with non-zero score s, for that view, and adds them
to the EDB. Since in most cases, only high-scoring an-
swers will be of interest, the materialization operator
takes two parameters: r, an upper bound on the num-
ber of answers that are generated, and ¢, a lower bound
on the score of answers that are generated.

Although the procedure used for combining scores in
WHIRL is naive, inference in WHIRL can be imple-
mented quite efficiently. This is particularly true if €
is large or r is small, and if certain approximations are
allowed (Cohen 1998a).

The “many” construct. The structure-recognition
methods we will present require a recent extension to
the WHIRL logic: a “soft” version of universal quantifi-
cation. This operator is written many(Template, Test)
where the Test is an ordinary conjunction of liter-
als, and the Template is a single literal of the form
p(Y1,...,Y},), where p is an EDB predicate and the ¥;’s
are all distinct; also, the Y;’s may appear only in Zest.
The score of a “many” clause is the weighted average
score of the Test conjunction on items that match the
Template. More formally, for a substitution 8 and a
conjunction W,

SCORE(many(p(Yy,..., Yi), Test),0) =
3 % . SCORE(Test, (0 0 { Vi = a;}:))
(8,81,0s@0 ) EP

where P is the set of all tuples (s, a1,...,a;) such that
plai,...,ax) is a fact in the EDB with score s; S is the

(1 ~ SCORE(Body;,0))



sum of all such scores s; and {¥; = a;}; denotes the
substitution {Y; = a1,...,Ys = ax}.

As an example, the following WHIRL query is a re-
quest for editorial board members that have written
“many” papers on neural networks.

q(X) « ed_board(X) A
many(papers(Y,z, W),
( X~Y A Z~ “neural networks”) ).

Recognizing structure with WHIRL
Encoding HTML pages and wrappers

We will now give a detailed description of how
structure-recognition methods can be encoded in
WHIRL. We begin with a description of the encoding
used for an HTML page.

To encode an HTML page in WHIRL, the page is
first parsed. The HTML parse tree is then represented
with the following EDB predicates.

o elt(1d, Tag, Text, Position) is true if Id is the identifier
for a parse tree node, n, Tag is the HTML tag asso-
ciated with n, Tezt is all of the text appearing in the
subtree rooted at n, and Position is the sequence of
tags encountered in traversing the path from the root
to n. The value of Position is encoded as a a docu-
ment containing a single term tp,s, which represents
the sequence, e.g., tpos="htmi_body_ul_li”.

o attr(Id,AName,AValue) is true if Id is the identifier
for node n, AName is the name of an HTML attribute
associated with n, and AValue is the value of that
attribute.

o path(Fromld,Told,Tags) is true if Tags is the se-
quence of HTML tags encountered on the path be-
tween nodes Fromld and Told. This path includes
both endpoints, and is defined if FromId=Told.

As an example, wrappers for the pages in Figure 2 can
be written using these predicates as follows.

pagel (NameAffil) «
elt(., ., NameAffil, “html_body_table_tr_td”).
page2(Title,Url) +
elt(ContextElt, ., Title, “html_body_ul li”)
A path(ContextElt, AnchorElt, “li_a”)
A attr(AnchorElt, “href”, Url).

Next, we need to introduce an appropriate encod-
ing of “structures” (and in so doing, make this notion
precise.) Most simple lists and hotlists in our bench-
mark collection can be wrapped with some variant of
either the page! or page2 view, in which the constant
strings (e.g., “html_body_ul li’ and “li.a”) are replaced
with different values. Many of the remaining pages can
be wrapped by views consisting of a disjunction of such
clauses.

We thus introduce a new construct to formally repre-
sent the informal idea of a “structure” in a structured
document: a wrapper piece. In the most general set-
ting, a wrapper piece consists of a clause template (e.g.,
a generic version of page2 above), and a set of template

parameters (e.g., the pair of constants “himl_body_ul_li”
and “li_e”). In the experiments below, we consider
only two clause templates—the ones suggested by the
examples above—and also assume that the recognizer
knows, for each page, if it should look for list structures
or hotlist structures. In this case, the clause template
need not be explicitly represented; a wrapper piece for
a page? variant can be represented simply as a pair
of constants (e.g., “html_body_ul_li” and “li_a”), and a
wrapper piece for a pagel variant can be represented as
a single constant (e.g., html_body_table_tr_td).

For brevity, we will confine the discussion below to
methods that recognize simple hotlist structures analo-
gous to page2, and will assume that structures are en-
coded by a pair of constants Pathl and Path2. However,
most of the methods we will present have direct analogs
that recognize simple lists.

Enumerating and ranking wrappers

We will now describe three structure-recognition meth-
ods based on these encodings. We begin with some ba-
sic building blocks. Assuming that some page of inter-
est has been encoded in WHIRL’s EDB, materializing
the WHIRL view possible_piece, shown in Figure 3, will
generate all wrapper pieces that would extract at least
one item from the page. The eztracted_by view deter-
mines which items are extracted by each wrapper piece,
and hence acts as an interpreter for wrapper pieces.

Using these views in conjunction with WHIRL’s soft
universal quantification, one can compactly state a
number of plausible recognition heuristics. One heuris-
tic is to prefer wrapper pieces that extract many items;
this trivial but useful heuristic is encoded in the fruit-
ful_piece view. Recall that materializing a WHIRL view
results in a set of new atoms, each with an associated
score. The fruitful_piece view can thus be used to gen-
erate a ranked list of proposed “structures” by simply
presenting all fruitful_piece facts to the user in decreas-
ing order by score.

Another structure-recognition method is suggested
by the observation that in most hotlists, the text as-
sociated with the anchor is a good description of the
associated object. This suggests the anchorlike_piece
view, which adds to the fruitful_piece view an additional
“soft” requirement that the text Tezt! extracted by the
wrapper piece be similar to the text Tezt2 associated
with the anchor element.

A final structure-recognition method is shown in the
Figure as the R_like_piece view. This view is a copy of
fruitful_piece in which the requirement that many items
are extracted is replaced by a requirement that many
“R like” items are extracted, where an item is “R like”
if it is similar to some second item X that is stored in
the EDB relation R. The “soft” semantics of the many
construct imply that more credit is given to extracting
items that match an item in R closely, and less credit
is given for weaker matches. As an example, suppose
that R contains a list of all accredited universities in the
US. In this case, the R_like_piece would prefer wrapper



fruitful_piece(Pathl,Path2) +

possible_ptece(Pathl,Path2) A

many( estracted_by(Pathla,Path2a,.,-),

(Pathla=Pathl A Path2a=Pathg) ).

possible_piece(Path1,Path2) +

elt(TextEl, _, -, Pathl)

A elt(AnchorElt, _, “a”, _)

A attr(AnchorElt, “href”, .)

A path(TextElt, AnchorBlt, Path2).
extracted_by(Pathl,Path2, TextElt, AnchorElt)

elt(TextElL, _, -, Pathi)

A path(TeztElt, AnchorElt, Path2).

anchorlike_piece(Pathl,Path2) +
possible_piece(Path1,Path2) A
many( eztracted_by(Pathla,Path2a, TEW, AEl),
(Pathla=Pathl A Path2a=Path2
A eli(TElt,_, Textl, ) A elt(AElt,_, Text2,. ) A Tezti~Text2 ).

R_like_piece(Pathl,Path2) +
possible_piece(Pathl,Path2) A
many( R_eztracted_by(Pathla,Path2a,-,.),
(Pathla=Pathl A Path2a=Path2) ).
R_egtracted_by(Pathl,Path2, TextEit, AnchorElt) +
elt(TextElt, _, Text, Pathl)

A path(TextElt, AnchorElt, Path2)
A R(X) A Test~X.

Figure 3: WHIRL programs for recognizing plausible structures in an HTML page. (See text for explanation.)
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Figure 4: Performance of ranking heuristics that use little
or no page-specific information.
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pieces that extract many items that are similar to some
known university name; this might be useful in process-
ing pages like the one shown in Figure 1.
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Figure 6: Performance of ranking heuristics that use text
extracted from an previous version of the page.

Experiments

Ranking programs with (almost) no
page-specific information

We will now evaluate the three structure-recognition
methods shown in Figure 3. We took the set of 82
hand-coded list and hotlist wrappers described above,
and paired each hand-coded wrapper with a single Web
page that was correctly wrapped. We then analyzed the
hand-coded wrapper programs, and determined which
wrapper pieces they contained. The result of this pre-
processing was a list of 82 Web pages, each of which is
associated with a set of “meaningful” wrapper pieces.
To evaluate a method, we materialize the appropriate
view,? thus generating a ranked list of proposed struc-
tures. A good method is one that ranks meaningful
structures ahead of non-meaningful structures.

2Thresholds of ¢ = 0.5 and r» = 100, 000 were used in
materializing the view R_extracted_by, and thresholds of ¢ =
0 and r = 100,000 were used elsewhere. We also assume
that the system “knows” whether a list or a hotlist is to be
extracted from each page: i.e., we apply to each hotlist page
only structure-recognition views that recognize hotlists, and
apply to each list page only views that recognize lists.



To obtain useful aggregate measures of performance,
it is useful to consider how a structure-recognition
method might be used. One possibility is interactive
use: given a page to wrap, the method proposes wrap-
per pieces to a human user, who then examines them in
order, and manually selects pieces to include in a wrap-
per for the page. To evaluate performance, we vary K
and record for each K the coverage at rank K—that is,
the percentage of the 82 problems that can be wrapped
using pieces ranked in the top K. The resulting “cov-
erage curve” can be plotted. We also compute a mea-
sure we call the average number of skips: the average
number of non-meaningful pieces that are ranked ahead
of some meaningful piece; or, equivalently, the average
number of wrapper pieces that would be unnecessarily
examined (skipped over) by the user.

Another possibility use for the system is batch use:
given a page, the method proposes a single structure,
which is then used by a calling program without any
filtering. For batch use, a natural measure of perfor-
mance is the percentage of the time that the top-ranked
structure is meaningful. Below, we call this measure
accuracy at rank 1, and define error rate at rank 1
analogously.?

Figure 4 shows the coverage curves obtained from
methods that require no page-specific information. For
comparison, we also show the performance of a earlier
structure-recognition method (Cohen & Fan 1999). (To
summarize this method briefly, structure recognition is
reduced to the problem of classifying nodes in an HTML
parse tree as to whether or not they are contained
in some meaningful structure. The node-classification
problem can then be solved by oft-the-shelf inductive
learning methods such as CART (Brieman et al. 1984)
or RIPPER (Cohen 1995).) This method produces a
single wrapper program (which may correspond to mul-
tiple wrapper pieces), rather than a ranked list of wrap-
per pieces. On the data used here, the wrapper pro-
posed coincides with the true wrapper, or some close
approximation of it, on exactly half the cases.

The anchorlike method?* performs quite well, obtain-
ing accuracy at rank 1 of nearly 70%, and an average of
0.9 skips. (These numbers are summarized in Table 1).
Even the strawman fruitful method works surprisingly
well in interactive use, obtaining an average number of
skips of only 3.3; however, for batch use, its accuracy
at rank 1 is less than 20%.

The third curve shown in Figure 4, labeled domain-
like, is an instance of the R_like_piece method in which
R contains a large list of items in the same domain as

3Note that accuracy at rank 1 is not identical to coverage
at K = 1; the former records the number of times the top-
ranked wrapper piece is part of the target wrapper, and the
later records number of times the top-ranked wrapper piece
is the only piece in the target wrapper.

“Recall that the anchorlike can only be applied to
hotlists. In the curve labeled anchorlike, we used the fruitful
method for simple list wrappers, and the anchorlike method
for simple hotlist wrappers.

the items to be extracted. (For instance, if the data to
be extracted is a list of universities, then R would be a
second list of universities.) We consider this structure-
recognition method in this section because, although
it does require some page-specific information, the in-
formation required is quite easy to obtain.® The av-
erage skip rate and error at rank 1 for the domainlike
method are roughly half that of anchorlike. However,
this method does not obtain 100% coverage, as in some
fraction of the problems, the secondary relation R is
either unavailable or misleading,.

The final curve in Figure 4, labeled “domainlike with
backoff”, is a simple combination of the domainlike and
anchorlike strategies. In this method, one first materi-
alizes the view R_eztracted by. If it is non-empty, then
the R_like_piece view is materialized, and otherwise, an-
chorlike_piece is materialized. This method does as well
in a batch setting as domainlike. In an interactive set-
ting, it achieves a final coverage of nearly 100% with a
skip rate somewhat lower than anchorlike.

Ranking structures with training data

Several previous researchers have considered the prob-
lem of learning wrappers from examples (Kushmerick,
Weld, & Doorenbos 1997; Hsu 1998; Muslea, Minton,
& Knoblock 1998). In these systems, the user provides
examples of the items that should be extracted from
a sample Web page, and the system induces a general
procedure for extracting data from that page. If page-
specific training examples are available, they can be
used by storing them in a relation R, and then apply-
ing the R_like method. This use of structure-recognition
methods is quite similar to previous wrapper-learning
systems; one major difference, however is that no neg-
ative examples need be provided, either explicitly or
implicitly.

To evaluate this wrapper-learning technique, we ran
the target wrappers on each page in order to build a
list of page-specific training examples. We then fixed a
number of training examples m, and for each Web page,
stored m randomly chosen page-specific examples in the
relation R, and applied the R_like structure-recognition
method. We call this the ezamplelike method. This
process was repeated 10 times for each value of m, and
the results were averaged.

The results from this experiment are shown in Fig-
ure 5. Even two or three labeled examples perform
somewhat better than the anchorlike and fruitful meth-
ods, and unlike the domainlike method, achieve com-
plete (or nearly complete) coverage. However, the av-
erage accuracy at rank 1 is not as high as for the do-
mainlike method, unless many examples are used.

51t seems reasonable to assume that the user (or calling
program) has general knowledge about the type of the items
that will be extracted. In the experiments, the items in R
were always obtained from a second Web page containing
items of the same type as the page being wrapped; again, it
seems plausible to assume that this sort of information will
be available.



Average Accuracy  Coverage
# Skips at Rank1 at K =0
fruitful 3.3 18.3 100.0
anchorlike 0.9 69.5 100.0
domainlike 04 84.0 91.5
with backoff 0.6 84.0 98.8
examplelike
m=2 0.3 77.8 99.0
m=3 0.3 79.3 99.3
m = 10 0.3 84.2 100.0
oldpagelike
p=20,c=3 0.3 85.0 96.1
p=>50,c=2 0.3 82.9 99.5
p=280,c=1 0.3 85.4 100.0

Table 1: Summary of results

These results show an advantage to presenting the
user with a ranked list of wrapper pieces, as in general,
coverage is improved much more by increasing K than
by increasing m. For example, if the user labels two
examples, then 58.6% of the pages are wrapped cor-
rectly using the top-ranked wrapper piece alone. Pro-
viding eight more examples increases coverage of the
top-wranked piece to only 63.3%; however, if the user
labels no additional examples, but instead considers the
top two wrapper pieces, coverage jumps to 89.4%.

Maintaining a wrapper

Because Web pages frequently change, maintaining ex-
isting wrappers is a time-consuming process. In this
section, we consider the problem of updating an exist-
ing wrapper for a Web page that has changed. Here a
new source of information is potentially available: one
could retain, for each wrapper, the data that was ex-
tracted from the previous version of the page. If the
format of the page has been changed, but not its con-
tent, then the previously-extracted data can be used
as page-specific training examples for the new page for-
mat, and the ezamplelike method of the previous section
can be used to derive a new wrapper. If the format and
content both change, then the data extracted from the
old version of the page could still be used; however, it
would be only an approximation to the examples that
a user would provide. Using such “approximate exam-
ples” will presumably make structure-recognition more
difficult; on the other hand, there will typically be many
more examples than a user would provide.

Motivated by these observations, we evaluated the
R_like structure-recognition method when R contains a
large number of entries, each of which is a corrupted
version of a data item that should be extracted from
the page. Specifically, we began with a list of all data
items that are extracted by the target wrapper, and
then corrupted this list as follows. First, we discarded
all but randomly-chosen percentage p of the items.S

SNote that typically, Web pages change by having new
items added, and we are trying to simulate text that would

Oklahoma dietitians

Yukon Yukon codpiece

Vermont Vermont

British Columbia | British Columbia Talmudizations
Oklahoma Oklahoma,

Wisconsin Wisconsin

New Jersey New Jersey incorrigible blubber
Alaska Alaska

New Brunswick

New Mexico New Mexico cryptogram

Table 2: Ten US States and Canadian Provinces, before
and after corruption with ¢ = 1.

We next perform ¢ - n random edit operations, where
n is the number of retained examples. Each edit op-
eration randomly selects one of the n items, and then
either deletes a randomly chosen word from the item;
or else adds a word chosen uniformly at random from
Susr/dict/words.

Figure 6 shows the results of performing this exper-
iment (again averaged over 10 runs) with values of p
ranging from 80% to 20%, and values of ¢ ranging from
1 to 3. We call this structure-recognition method the
oldpagelike method. With moderately corrupted exam-
ple sets, the method performs very well: even with a
corruption level of p = 50% and ¢ = 2 it performs bet-
ter on average than the enchorlike method.

It must be noted, however, that the corrupted exam-
ples used in this experiment are not very representive of
the way a real Web page would be changed. As an illus-
tration, Table 2 shows one list of familiar items before
and after corruption with ¢ = 1 (really!). It remains
to be seen if more typical modifications are harder or
easier to recover from.

Conclusions

In this paper, we considered the problem of recogniz-
ing “structure” in HTML pages. As formulated here,
structure recognition is closely related to the task of au-
tomatically constructing wrappers: in our experiments,
a “structure” is equated with a component of a wrap-
per, and a recognized structure is considered “meaning-
ful” if it is part of an existing wrapper for that page.
We used WHIRL, a “soft” logic that incorporates a
notion of textual similarity developed in the informa-
tion retrieval community, to implement several heuristic
methods for recognizing structures from a narrow but
useful class. Implementing these methods also required
an extension to WHIRL—a “soft” version of bounded
universal quantification.

Experimentally, we showed that one proposed
structure-recognition method, the enchorlike method,
performs quite well: the top-ranked structure is mean-
ingful about 70% of the time, substantially improving
on simpler ranking schemes for structures, and also im-
proving on an earlier result of ours which used more
conventional methods for recognizing structure. This

have been extracted from an old version of the page.



method is completely general, and requires no page-
specific information. A second structure-recognition
method, the R_like method, was also described, which
can make use of information of many different kinds: ex-
amples of correctly-extracted text; an out-of-date ver-
sion of the wrapper, together with a cached version of
the last Web page that this out-of-date version correctly
wrapped; or a list of objects of the same type as those
that will be extracted from the Web page. In each of
these cases, performance can be improved beyond that
obtained by the anchorlike method.
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