
Navigational Plans For Data Integration

Marc Friedman
University of Washington

friedman@cs.washington.edu

Alon Levy
University of Washington
alon@cs.washington.edu

Todd Millstein
University of Washington
todd@cs.washington.edu

Abstract

We consider the problem of building data integration
systems when the data sources are webs of data, rather
than sets of relations. Previous approaches to modeling
data sources axe inappropriate in this context because
they do not capture the relationships between linked
data and the need to navigate through paths in the
data source in order to obtain the data. We describe
a language for modeling data sources in this new con-
text. We show that our language has the required ex-
pressive power, and that minor extensions to it would
make query answering intractable. We provide a sound
and complete algorithm for reformulating a user query
into a query over the data sources, and we show how
to create query execution plans that both query and
navigate the data sources.

Introduction
The purpose of data integration is to provide a uni-
form interface to a multitude of data sources. Data in-
tegration applications arise frequently as corporations
attempt to provide their customers and employees with
a consistent view of the data associated with their en-
terprise. Furthermore, the emergence of XML as a
format for data transfer over the world-wide web is
making data integration of autonomous, widely dis-
tributed sources an imminent reality. A data inte-
gration system frees its users from having to locate
the sources relevant to their query, interact with each
source in isolation, and manually combine the data from
the different sources. The problem of data integration
has already fueled significant research in both the AI
and Database communities, e.g., (Ives et al. 1999;
Cohen 1998b; Knoblock et al. 1998; Beeriet al. 1998;
Friedman & Weld 1997; Duschka, Genesereth, & Levy
1999; Garcia-Molina et al. 1997; Haas et al. 1997;
Levy, Rajaraman, & Ordille 1996; Florescu, Raschid,
& Valduriez 1996; Adali et al. 1996), as well as several
industrial solutions.

Data integration systems are usually built according
to the following architecture. Each data source is mod-
eled as a relation (or a set of relations). The user poses

Copyright (~) 1999, American Association for Artificial
Intelligence (www.a~ai.org). All rights reserved.

queries in terms of the relations and attributes of a me-
diated database schema as opposed to the schemas of
the individual sources. The relations in the mediated
schema are virtual in the sense that their extensions
(i.e., the tuples of the relations) are not actually stored
anywhere. The mediated schema is manually designed
for a particular data integration application, and is in-
tended to capture the aspects of the domain of interest
to the users of the application. In addition to the me-
diated schema, the system has a set of source descrip-
tions that specify the semantic mapping between the
mediated schema and the source schemas. The data
integration system uses these source descriptions to re-
formulate a user query into a query over the source
schemas.

Two of the main approaches for specifying source de-
scriptions use restricted forms of first-order logic sen-
tences. In the global-as-view (GAV) approach (Garcia-
Molina et al. 1997; Adali et al. 1996) Horn rules
define the relations in the mediated schema in terms
of the source relations. The local-as-view (LAV) ap-
proach (Levy, Rajaraman, & Ordille 1996; Friedman
Weld 1997; Duschka, Genesereth, & Levy 1999) is the
opposite: the source relations are defined as expressions
over the relations in the mediated schema.

Our first observation is that modeling web sites re-
quires the expressive power of GAV and LAV combined.
~barthermore, as the WWW expands and sites become
more complex, we observe a growing number of sources
that can no longer be modeled as sets of relations, but
rather as webs of data with a set of entry points. There
are two main characteristics distinguishing data webs
from collections of relations: (1) linked pairs of pages
contain related data, and (2) obtaining the data from
the site may require navigation through a particular
path in the site. These properties render previous for-
malisms inappropriate for incorporating data webs as
sources in a data integration system. Previous works
that considered such sources (e.g., the ARIADNE Sys-
tem (Knoblock et al. 1998)) modeled each page as
separate data source and assumed each page was an
entry point.

This paper describes a formalism for modeling data
webs, a formalism for incorporating them into a data
integration system, and an algorithm for reformulating

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

user queries into execution plans that both query and
navigate the data sources. Our solution combines the
following contributions.

First, we describe a formalism for modeling data
webs. The formalism captures the contents of each page
in the data web, the relationships between linked pages,
and the constraints on the possible paths through the
web.

Second, we describe GLAV, a language for source de-
scriptions that is more expressive than GAV and LAV
combined. We describe a query reformulation algo-
rithm for sources described in GLAV and show that
query answering for GLAV sources is no harder than
it is for LAV sources. Furthermore, we show that in
some sense, GLAV reaches the limits on the expressive
power of a data source description language. Slight ad-
ditions to the expressive power of GLAV would make
query answering co-NP-hard in the size of the data in
the sources. It should be noted that GLAV is also of
interest for data integration independent of data webs,
because of the flexibility it provides in integrating di-
verse sources.

Finally, we show how to reformulate user queries into
execution plans over the data sources. The reformula-
tion consists of two parts. First we use our GLAV re-
formulation algorithm to obtain a query over the rela-
tions in the data webs. Then we augment the resulting
query over the sources with the navigational instruc-
tions needed to interact with the data webs.

Incorporating Data Webs
In this section we describe how we represent data webs
and incorporate them into a data integration system.
We begin by recalling some basic terminology. Then
we explain how we model a data web by a web schema,
and finally we explain how to specify the relationship
between the relations in web schemas and the mediated
schema.

Preliminaries
In our discussion variables are denoted by capital letters
and constants by lowercase letters. Overscores denote
tuples of zero or more variables and constants (e.g., _X).
An atom consists of a predicate symbol p followed by
an argument list (X)_ A Horn rule is a logical sen-
tence of the form rl(X1) A... A_rk(.~k) ~ r(X), where

C (Ji-~i" The variables in X are universally quan-
tified, and all other variables are existentially quanti-
fied. Given the extensions of the relations appearing in
the antecedent, a Horn rule defines a unique extension
for the relation in the consequent. It should be noted
that there is a direct correspondence between single
Horn rules and select-project-join queries in relational
databases (often called conjunctive queries).

Datalog programs are sets of Horn rules, in which the
predicate symbols appearing in the consequents, called
the intensional database (IDB) predicates, may also ap-
pear in any antecedents. A datalog program defines a
unique extension for the IDB relations given the ex-
tensions of the other relations, called the extensional

database (EDB) relations, as follows. We begin with
empty extensions for the IDB relations and apply the
rules, deriving new facts for the 1DB relations, until no
new facts can be derived. 1 We often distinguish one
IDB predicate as the query predicate. The result of
applying a datalog program to a database is the set of
tuples computed for the query predicate.

Data Webs
A data web consists of pages and the links between
them. In this paper we are concerned with the logical
modeling of data webs. In practice, one also needs to
address the problem of actually extracting structured
data from an HTML page. Several researchers have
considered the construction of wrappers for this pur-
pose (Cohen 1998a; Kushmerick, Doorenbos, & Weld
1997; Ashish & Knoblock 1997).

In order to model a data web we need to represent
the set of pages and links in the web, the data available
at every page, whether each link is a hyperlink or a
search form, and which pages can be accessed directly
by name. We represent the structure of a data web
with a web schema, a directed graph G with nodes rep-
resenting sets of pages and directed edges representing
sets of directed links between them. For example, Fig-
ure 1 shows web schemas for three different university
webs. Nodes in G are annotated with:

¯ the node’s name and unique id
¯ a parameter (a variable or constant)
¯ an entry point flag (an asterisk)
¯ a list of contents

Every node name defines a unary function symbol.
For example, consider node 1 in Figure 1, represent-
ing the home page of university Ul. Its name is Univ,
with parameter el, a constant. Univ(ul) denotes the
home page object of university ul. Every web site has
a set of entry points, i.e., nodes that the integration
system can access directly by URL. We indicate them
with an asterisk. For example, node 1 is an entry point
to university Ul’S data web.

There are three kinds of logical information stored
on a page N(X). These correspond to ordinary con-
tents of the page, outgoing edges from the page, and
search forms on the page. (1) Tuples of a predicate
p are listed as atoms of the form p(Y1 , Yk) in the
contents of N(X). For instance, node 7, a department
page, contains the source relation chair(D, P), indicat-
ing that department pages list their department chairs.
Typically X will appear as one of the Y~’s, but in gen-
eral it may not. (2) Edges from a page are often labelled
with an identifier of the target page. For instance, the
Univ(u2) page (node 5) lists each college G satisfy-
ing source relation univcollege(u2,G), with a link to
that college’s page. We indicate this by the expression

1This unique model is known as the least f~ed-point
model of the Horn rules. Since our discussion only consid-
ers the derivation of positive atoms, the difference between
the least fixed-point semantics and the classical first-order
semantics is immaterial.

1 Univtul)*

a~ univ(ul)

form
a: univdept(ul,D) ---> Dept(D)

~deptlD)

b~ b: d~Uab(D,L) -> Lab(L)

;~ Lab(L)
lab(L)

clb: deptlab(D,L) -> Dept(D)
c: labprof(L,P) -> Professor(P)

4 professor(p~

5 Univ[u2~ *
univ(u2)

d~d: univcollege(u2,G) -> College(G)

6 Colleoe(G~
, colrege(G)

e~(]edept(G,D) -> DeptlD)

I dept(D)
fl chair(D,P)

~f: deptprof(D,P) -> Professor(P)

8 Professor(P)

9 Univl’u3)

~
g: true -> PopularCourses (u3)

10 PopularCourses(u3)

h~h: univcourse(u3,C) -> Course(C)

11 CoursetC)

i~course(C)

i: prerequisite(C,C’) -> Course(if)

Figure 1: Three university web schemas.

p(X, Y) ~ M(Y). (3) Search forms, much like links,
map from binary relations to other pages, but the value
of the target page parameter Y must be provided before
accessing the link. We denote this by

p(Z, Y) for,) M(Y).

Note that in this case the value of Y is not available on
the page N(X). For instance, node 1 has a search form
in which the user enters a department name, and the
home page of that department is returned.

Mediated Schemas
A set of relations known as a mediated schema serves
as a uniform query interface for all the sources. It is de-
signed to represent the attributes of the domain relevant
to the integration application, and does not necessar-
ily represent all of the attributes available in all of the
sources. In our university domain, we use the following
mediated schema.

collegeO f(College, University)
deptO f (Department, College)
pro f O f (Pro fessor, Department)
cour seO f (C our se, Department)
chairO f (Pro f essor, Department)
prereqO f (Course, Course)

As data webs are added, they need only be ’hooked’
to the mediated schema, without reference to the other
data webs. This is done via a source description lan-
guage, which relates the source relations to the medi-
ated schema relations.

GLAV Source Descriptions

Source description languages are necessary because the
mediated schema relations do not match the source re-
lations in a one-to-one fashion. There are two reasons
for the mismatch. First, the source schemas often con-
tain differing levels of detail from each other, and from
the mediated schema. In Figure 1, university u2 identi-
fies the colleges in a university, a distinction that does

source description #
~tl :
univdept (ul , D) ~ deptO f (D G) 1

collegeO f (G , ul).
deptlab(D, L), labprof(L, P) ~ profO](D, 2
U2 :
univcollege(u2, G) ~ collegeOf(G, u2). 3
collegedept (G, D) ~ deptO f (D, 4
deptprof(D, P) ~ pro fOr(P, 5
chair(D, P) ~ chairOy(P, 6
U3 :
prereq(C, C’) :- prerequisite(C, 7
prereq(C, C’) :- prereq(C, C"), prereq(C’,
prereq(C, C’) ~ prereqOf(C’,

Figure 2: Sample source descriptions.

not exist in university ul. On the other hand, Ul iden-
tifies laboratories within departments, a detail not in
the mediated schema or in u2.

The second reason is that even if the different
schemas model the same information, they may split
attributes into relations in different ways (in database
terms, this corresponds to different normalizations of
a database schema). For example, one schema may
choose to store all the attributes of a person in a single
relation, while another may decide to have a separate
relation for every attribute.

The LAV and GAV source description languages only
partially address these problems. LAV source descrip-
tions have the form

v(2) rl (Xl, Zl) ^. .. A rk(Xk, Z~
where v is a source relation, the ri’s are mediated
schema relations, and X = Ui J(i- LAV descriptions
handle the case in which the mediated schema contains
details that are not present in every source, such as col-
leges. Statement 1 in Figure 2 is an example of a LAV
source description.

The GAV language deals with the converse case,

when the source contains details not present in the me-
diated schema. Descriptions in GAV have the form

v~(fl, ~) ̂ ... ^ v~(&, YD ~ r(~).
Statement 2 in Figure 2 is an example of a GAV source
description.

Using either pure LAV or pure GAV source descrip-
tions has undesirable consequences. In LAV, the me-
diated schema must mention all attributes shared by
multiple source relations, whether or not they are of
interest in the integration application. In our example,
the lab name L is such an attribute. To make mat-
ters worse, some sites use shared attributes that are
only meaningful internally, such as URLs of interme-
diate pages or local record ids. In GAV, on the other
hand, the mediated schema relations must all be re-
lations present in the sources, or conjunctive queries
over them, making the mediated schema contingent on
which source relations are available.

Hence, we propose the GLAV language that combines
the expressive power of both LAV and GAV, allowing
flexible schema definitions independent of the particular
details of the sources. Formally, a statement in GLAV
is of the form

V(X,]~’) =:~ rl(Xl, Zl) A... Ark(Xk,Zk). (1)

where V(X, 17") is either a conjunction of source rela-
tions, or the distinguished query predicate of a datalog
query over source relations.2 GLAV source descriptions
for the university example are in Figure 2. GLAV com-
bines the expressive power of GAV and LAV and al-
lows source descriptions that contain recursive queries
over sources. Recursion is useful when retrieving the
desired information requires navigating arbitrarily long
paths. University u3 contains such a situation: in or-
der to obtain the prerequisites of a given course, it may
be necessary to traverse the prerequisite edge (which
represents direct prerequisites) arbitrarily many times
before finding them all. The multi-line Statement 7 il-
lustrates this example in GLAV, where prereq is a new
relation defined by a datalog program over the source
relations.

Data Integration Domains

In summary, a set of web schemas and a set of source
descriptions in GLAV form a data integration do-
main. Formally, a data integration domain D is a
triple (TO, {Gi}, ,9:D), consisting of the set of mediated
schema relations TO, web schemas Gi, and source de-
scriptions 8:D.

Planning to Answer a Query

A user of a data integration system poses a query over
the mediated schema relations, which the system an-
swers using a query processor. We consider conjunctive
queries in which the consequent is the new predicate

2We further stipulate that tOiZi n5z = 0.

symbol q, and the antecedents are mediated schema re-
lations. For instance, to retrieve all chairs of history
departments, a user could pose the query:

chairOf(Person, history) ~ q(Person). (2)

To collect the answers to the query automatically,
the integration system must translate this into a low-
level procedural program, called an execution plan. For
a relational query processor, this program is expressed
in annotated relational algebra, which has operators to
fetch relations and do basic relational operations such
as project, select, join, and union. The annotations in-
dicate operator implementations, memory allocations,
and scheduling. In this work we augment relational al-
gebra with an operation that traverses sets of links.

This section describes how to reformulate a query
into an execution plan. We generate plans at progres-
sively more detailed levels. First we construct a logical
plan by reformulating the user’s query into a query over
the source relations in the data webs. Then we aug-
ment the logical plan with navigational information to
describe how to locate the desired relations in the data
webs, forming a navigational plan. Converting a navi-
gational plan into an efficient execution plan is beyond
the scope of this paper. See (Ives et al. 1999) for work
on optimization of data integration queries. A non-
recursive navigational plan can be converted straight-
forwardly into an execution plan in augmented rela-
tional algebra, though we do not provide the details
here.

Logical Plans
A logical plan is a datalog program whose EDB rela-
tions are the source relations and whose answer predi-
cate is q. The soundness and completeness of a logical
plan can be defined in terms of logical entailment with
respect to the source descriptions and contents of the
data webs. Specifically, let T be the knowledge base
containing the sentences in the source descriptions ,9:D,
the ground atoms representing the extensions Z of the
source relations, and the query Q. Let P be the logical
plan constructed for ,5:D and Q, and let P(Z) be the
set of facts derived by applying P to the database Z.
The logical plan P is sound (resp. complete) if for ev-
ery ground atom q(Et), q(g~) E P(Z) ~ T ~ (resp.
T ~ q(~) ~ q(g) C P(Z)).

Given a conjunctive query Q over the mediated
schema relations, we construct a sound and complete
logical plan for the query using the inverse rules algo-
rithm for GLAV, which we call 61avlnverse(Figure 3).
The key insight is that although the source descrip-
tions are written in GLAV, an extension of the inverse
rule method for LAV (Duschka, Genesereth, & Levy
1999) correctly produces the desired set of rules. More-
over, the low polynomial complexity of the inverse rules
method is unchanged.

The algorithm converts the theory T into a datalog
program. The theory T differs from an ordinary data-
log program in two ways. (1) Not all of the rules in
are Horn rules, since the source descriptions may have

Given source descriptions S/) and query Q,
= {Q}.

for each source d escription_s E ST),
let s be V(_X.Y) ~ rl (X1, 21)... rk(Xk, Zk).
A += V(X,Y) ~ ~(X),

where u8 is a new predicate symbol.
let 2 = U~(2,)~ {zl , zm}.
for each Zi in Z,

let f~ be a new function symbol
corresponding to Zi.

forl=ltok,
let]l represent the vector of f’s
corresponding to elements of 2l.
A += us(f() =~ rt(Xt,ft(X)).

return A.

Figure 3: Algorithm Glavlnverse

a conjunction of atoms in the consequent. The algo-
rithm converts each such source description into several
Horn rules whose conjunction is equivalent to the orig-
inal rule. (2) Source descriptions may have existential
variables in the consequent. The algorithm converts
these variables into terms containing function symbols.
Although the resulting logical plan contains function
symbols, their form is limited in such a way that naive
datalog evaluation of the plan on a database will ter-
minate (Duschka, Genesereth, & Levy 1999).

Theorem 1 Let D = {7-~, {Gi}, $79) be an informa-
tion integration domain. Let Q be a conjunctive query.
Then the logical plan A returned by Glavlnverse is sound
and complete.

Proof Sketch: Let Z be the extensions of the source
relations in D, and T -- S/) + Q + Z. It suffices to
show that any ground fact q()~) entailed by T is a
sult of evaluating A on database Z, and vice versa. (1)
u predicates: It is easy to see that A + 7: entails any
consequence of T, since you can apply modus ponens to
A to generate any single rule in T. Since all facts in T
are positive, and all rules have non-null consequent, T
entails no negative facts. A sufficient deduction rule to
nondeterministically obtain all consequences of T is to
apply modus ponens on any rule and any facts¯ Con-
sider a proof tree of a fact x from T. A proof tree for
A can be constructed by splicing in nodes for the u
predicates. (2) function symbols: Function symbols
are usually manipulated as constants. Since we don’t
consider a fact containing a function symbol an answer
to a query, however, function symbols behave exactly
like variables. Since there is one for each existential
variable, the conversion to function symbols is just a
renaming of variables, which has only a superficial ef-
fect on the proof trees.

Navigational Plans
Logical plans by themselves cannot be executed, since
they do not explain how to populate the source rela-
tions from the data webs. (Friedman & Weld 1997;

Given logical plan A and web schemas {Gi},
~’ = {}.
for each source atom A = v(X1,... ,Xk) in A,
construct ReplacementsA, as follows:

ReplacementsA +-~ [Location, 0]: A.
for i = lto k,

ReplacementsA += [Location,.i(Xi)] :
for each rule r E A

add to Ar all rules formed by replacing each atom
A in the body of r with an atom in ReplacementsA.

for each source relation v(X1,..., Xk),
for each node N(Z) it appears on,

if Z is Xi, A’ += [N(Z)] ==~ [Location,.,(Z)]
else A’ += IN(Z)] ::~ [Location, O].

for each edge e from N(X) to M(Y),
A’ +---- [N(X)-EM(Y)] [M(Y)I.

for each entry point N(X),
A’ += [N(X)].

return AI.

Figure 4: Algorithm NavigationalPlan

Lambrecht & Kambhampati 1998) explore how to opti-
mize and execute logical plans when the source relations
are directly accessible. For source relations stored in
data webs, we must extend the logical plans to naviga-
tional plans. Navigational plans are augmented datalog
programs. Their atoms may be relational atoms, paths,
or navigational terms. Navigational terms specify both
the location and the logical content of the relation being
accessed. A navigational term is of the form P:v(X),
where P is a path and v is a source relation. A path de-
notes a connected sequence of directed edges in a web
schema, with variable bindings. A path P starts at
source(P), and ends at target(P). We define paths re-
cursively as follows:

¯ trivial paths: P = IN(X)] is a path, if N names
node and X is a variable or constant, source(P)
target(P) = N(X).

¯ compound paths: P’ = [P-~M(Y)] is a path, if
P is a path with target(P) = N(X), is a v ari-
able or constant, and there is an edge e from node
N(X) to node M(Y). source(P’) = source(P) and
target(P’) = M(Y).

For instance,

¯ d e
[Un~v(u2)-~C ollege(G)--* Dept(

is a path, with edges elided for clarity, while

¯ d e
[Unzv(u2)--~College(G)--*Dept(D)] : chair(D,P) (3)

is a navigational term. A navigational term is exe-
cutable if it corresponds to some valid sequence of in-
structions for a navigational query processor¯ In par-
ticular, P:v(X) is executable whenever:

¯ source(P) is an entry point,
¯ v(X) matches one of the contents of target(P),

h [Univ(u2)].
¯ d

B [Unw(u2)-*College(G)] ~ [College(G)]¯
C [CoUege(a)&Dept(D)l ~ [Dept(D)l.
D [Dept(D)] ~ [Loeationcaai~(D)].
E [Locatianchai~(D)]: chair(D,P) ~ chairOf(P,D).
F chairOf(history, P) ~ q(P).

Figure 5: Plan to find history department chairs

e¯ if P contains an edge X-*Y, and edge e represents a
search form, then Y is bound.

An executable rule is a rule whose antecedent contains
only executable terms and whose consequent is q(J~).

The soundness and completeness of a navigational
plan A~ can be defined in terms of executable rules.
The colon symbol (:) in a navigational term can be in-
terpreted as conjunction for the purposes of deduction.
Consider each executable rule R deducible from AI us-
ing modus ponens, whose antecedent contains only exe-
cutable terms and whose consequent is q(X). Let J
a set of data webs consistent with the web schemas, and
let Z be the extension of the source relations. Let A be
the underlying logical plan of AI, which can be recov-
ered from A~ by removing all paths and throwing away
trivial rules. Navigational plan A~ is sound whenever A
is sound, and for each executable rule R deducible from
A’, for any J, R(J) C A(Z). A’ is complete when-
ever A is complete, and every sound executable rule is
deducible from A’.

Algorithm NavigationalPlan in Figure 4 produces a
navigational plan A~ given a logical plan A and the web
schemas. It first annotates each source atom in the logi-
cal plan with a new symbol associated with its location.
It then produces rules associating the locations of indi-
vidual relations with the pages on which they appear.
For example, relation chair(D, P) becomes

[Locationcha~,(D)] : chair(D,

chair appears on only one page, so we add the single
rule

[Dept(D)] ~ [nocationcha~(D)].

Next we add path rules to A, indicating how one reaches
each node N(X). For instance, the rule

[College(G)-~Dept(D)] ~ [Dept(D)]

indicates that we can reach node Dept(D) if we are
at node College(G) and follow edge e. The rule
[Univ(u2)] indicates that we can always reach entry
point Univ(u2). Figure 5 shows all of the relevant
parts of the navigational plan to find history depart-
ment chairs.

Theorem 2 The navigational plan AI produced by
NavigationalPlan is sound and complete.

Optimization

In principle, it is straightforward to give navigational
plans operational semantics and to execute them with

an interpreter. However in a traditional database sys-
tem, logical plans are converted into trees of relational
algebra expressions, optimized, and executed by a query
processor. Navigational plans can be compiled into ex-
pressions in relational algebra augmented with the op-
erator traverse(Source, Edge, Target), which returns
the target pages given a source page and edge. The
query optimization methods discussed in (Florescu et
al. 1999; Mecca, Mendelzon, 8z Merialdo 1998) can be
applied in this context as well.

The Complexity of GLAV
In this section we show that GLAV reaches the limits of
the tradeoff between expressive power and tractability
of query answering in data integration systems. Two
measures of complexity are used for query processing
problems: query complexity and data complexity. The
query complexity measures the query answering time
in terms of the size of the query Q, holding the other
inputs fixed. High query complexity (NP-complete or
worse), which is quite common for practical database
languages, is not considered a serious impediment to
implementation, because queries are generally consid-
ered to be very small compared with the size of the
data. Data complexity measures the running time in
terms of the size of the data. Since the data (data webs
in this case) can be quite large, data complexity is by
far the more important measure. In our discussion we
model accessing a page, fetching a tuple of a relation,
and traversing a link as unit-time operations.

Our first result shows that the data complexity of
answering queries in GLAV is no harder than in LAV,
extending the results of (Duschka, Genesereth, & Levy
1999; Levy, Rajaraman, & Ordille 1996):

Theorem 3 Given data integration domain D with
GLAV source descriptions, conjunctive query Q, and
extensions Z of the source relations, (i) the query com-
plexity of generating navigational plans is polynomial,
and (ii) the data complexity of answering queries
polynomial.

The data complexity reduces to the polynomial prob-
lem of applying a datalog program to a set of facts.
(Abiteboul & Duschka 1998) show that the data com-
plexity of answering a query becomes co-NP-hard if the
query contains atoms of the form X ¢ Y. The follow-
ing theorems strengthen their results by showing that
restricting the equality and comparison predicates does
not necessarily reduce the data complexity. This is in-
teresting because such restrictions (known as local in-
equalities) do reduce the data complexity of query an-
swering to polynomial in other contexts (van der Mey-
den 1992). It should be noted that Theorem 5 holds
also when using < instead of ¢.

Theorem 4 For conjunctive queries with constraints
o/ the form (X ~ c) and LAV source descriptions, the
data complexity of answering queries is co-AfT~-hard,
even when queries have just one relational conjunct.

Theorem 5 For conjunctive queries with constraints
of the form (X ~ Y) and LAV source descriptions, the
data complexity of answering queries is eo-flfT~-hard,
even when queries have just one relational conjunct and
no constants.

Finally, the following theorem considers one of the
most common uses of interpreted predicates and shows
that it remains tractable for GLAV.

Theorem 6 For conjunctive queries with semi-interval
constraints of the form (X < c) and GLAV source de-
scriptions, the data complexity of answering queries is
polynomial.

Conclusions

We have shown how to extend data integration sys-
tems to incorporate data webs. We define a formalism
for modeling data webs and a language for source de-
scriptions (GLAV) that make querying multiple web-
structured sources possible. In addition, GLAV pushes
the envelope of expressive power with efficient reason-
ing. We present an algorithm for answering queries us-
ing GLAV source descriptions that can be used inde-
pendently of data webs.

For future work, we are considering the extension of
our query answering algorithm (and the associated com-
plexity results) when additional constraints are stated
on the mediated schema using description logics, using
techniques described in (Calvanese, Giacomo, & Lenz-
erini 1998).

References

Abiteboul, S., and Duschka, O. 1998. Complexity of
answering queries using materialized views. In Proc. of
the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS).

Adali, S.; Candan, K.; Papakonstantinou, Y.; and Sub-
rahmanian, V. 1996. Query caching and optimization
in distributed mediator systems. In Proc. of ACM SIG-
MOD Conf. on Management of Data.

Ashish, N., and Knoblock, C. A. 1997. Wrapper gen-
eration for semi-structured internet sources. SIGMOD
Record 26(4):8-15.

Beeri, C.; Elber, G.; Milo, T.; Sagiv, Y.; O.Shmueli;
N.Tishby; Y.Kogan; D.Konopnicki; Mogilevski, P.; and
N.Slonim. 1998. Websuite-a tool suite for harnessing
web data. In Proceedings of the International Workshop
on the Web and Databases.

Calvanese, D.; Giacomo, G. D.; and Lenzerini, M.
1998. On the decidability of query containment under
constraints. In Proc. of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
(PODS).

Cohen, W. 1998a. A web-based information system
that reasons with structured collections of text. In Proc.
Second Intl. Conf. Autonomous Agents, 400-407.

Cohen, W. 1998b. Integration of heterogeneous
databases without common domains using queries
based on textual similarity. In Proc. of ACM SIGMOD
Conf. on Management of Data.

Duschka, O.; Genesereth, M.; and Levy, A. 1999. Re-
cursive query plans for data integration. To appear in
Journal of Logic Programming, special issue on Logic
Based Heterogeneous Information Systems.
Florescu, D.; Levy, A.; Manolescu, I.; and Suciu, D.
1999. Query optimization in the presence of limited
access patterns. In Proc. of ACM SIGMOD Conf. on
Management of Data.

Florescu, D.; Raschid, L.; and Valduriez, P. 1996. A
methodology for query reformulation in CIS using se-
mantic knowledge. Int. Journal of Intelligent ~ Co-
operative Information Systems, special issue on Formal
Methods in Cooperative Information Systems 5(4).

Friedman, M., and Weld, D. 1997. Efficient execution of
information gathering plans. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence.

Garcia-Molina, H.; Papakonstantinou, Y.; Quass, D.;
Rajaraman, A.; Sagiv, Y.; Ullman, J.; and Widom,
J. 1997. The TSIMMIS project: Integration of het-
erogeneous information sources. Journal of Intelligent
Information Systems 8(2):11~132.

Haas, L.; Kossmann, D.; Wimmers, E.; and Yang, J.
1997. Optimizing queries across diverse data sources.
In Proc. of the Int. Conf. on Very Large Data Bases
(VLDB).
Ives, Z.; Florescu, D.; Friedman, M.; Levy, A.; and
Weld, D. 1999. An adaptive query execution system
for data integration. In Proc. of ACM SIGMOD Conf.
on Management of Data.

Knoblock, C. A.; Minton, S.; Ambite, J. L.; Ashish, N.;
Modi, P. J.; Muslea, I.; Philpot, A. G.; and Tejada,
S. 1998. Modeling web sources for information integra-
tion. In Proceedings of the 15th National Conference on
Artificial Intelligence.

Kushmerick, N.; Doorenbos, R.; and Weld, D. 1997.
Wrapper induction for information extraction. In Pro-
ceedings of the 15th International Joint Conference on
Artificial Intelligence.

Lambrecht, E., and Kambhampati, S. 1998. Optimiza-
tion strategies for information gathering plans. TP~ 98-
018, Arizona State University Department of Computer
Science.
Levy, A. Y.; Rajaraman, A.; and Ordille, J. J. 1996.
Query answering algorithms for information agents. In
Proceedings of AAAL

Mecca, G.; Mendelzon, A. O.; and Merialdo, P. 1998.
Efficient queries over web views. In Proc. of the Conf.
on Extending Database Technology (EDBT).
van der Meyden, R. 1992. The complexity of querying
indefinite data about linearly ordered domains. In Proc.
of the ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), 331-345.

