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Abstract

Electronic Commerce (EC) has rapidly grown with
the expansion of the Internet. Among these activi-
ties, auctions have recently achieved huge popularity,
and have become a promising field for applying agent
and Artificial Intelligence technologies. Although the
Internet provides an infrastructure for much cheaper
auctioning with many more sellers and buyers, we
must consider the possibility of a new type of cheat-
ing, i.e., an agent tries to get some profit by submitting
several bids under fictitious names (false-name bids).
Although false-name bids are easier to execute than
forming collusion, the vulnerability of auction proto-
cols to false-name bids has not been discussed before.
In this paper, we examine the robustness of the gen-
eralized Vickrey auction (G.V.A.) against false-name
bids. The G.V.A. has the best theoretical background
among various auction mechanisms, i.e., it has proved
to be incentive compatible and be able to achieve a
Pareto efficient allocation. We show that false-name
bids may be effective, i.e., the G.V.A. loses incentive
compatibility under the possibility of false-name bids,
when the marginal utility of an item increases or goods
are complementary. Moreover, we prove that there ex-
ists no single-round sealed-bid auction protocol that
simultaneously satisfies individual rationality, Pareto
efficiency, and incentive compatibility in all cases if
agents can submit false-name bids.

Introduction

Electronic commerce (EC) has made rapid progress
in recent years. Internet auctions have become es-
pecially popular in EC. Commercial auction sites
such as eBay (http://www.ebay.com/) and Onsale
(http://www.onsale.com/) have been very successful
and continue to expand. Computational agents are
expected to work on behalf of humans in Internet
auctions, e.g., to seek sellers or buyers and to nego-
tiate the prices (Guttman, Moukas, & Maes 1998).
Various theoretical and practical studies on Inter-
net auctions have already been conducted. Sand-
holm pointed out several problems in applying tradi-
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tional auction protocols to computational agent auc-
tions (Sandholm 1996). Monderer presented a theo-
retical analysis of an upper bound on the seller’s rev-
enue (Monderer & Tennenholtz 1998). AuctionBot
(http://auction.eecs.umich.edu/) is a configurable auc-
tion server that provides a tool for exploring auction
mechanism designs (Wurman, Walsh, & Wellman 1998;
Wurman, Wellman, & Walsh 1998). Moreover, auc-
tions with multiple items or multiple units have been
studied. Ausubel & Cramton investigated the effect
of demand reduction lies on multiple unit auctions
(Ausubel & Cramton 1998). Sandholm developed the
eMediator prototype to support a variety of combina-
tional auctions (Sandholm 1999). Auction techniques
have also been applied to various fields, such as air con-
ditioning control in building environments (Huberman
& Clearwater 1995).

The Internet provides an excellent infrastructure for
executing much cheaper auctions with many more sell-
ers and buyers from all over the world. However, we
must consider the possibility of new types of cheating.
For example, an agent may try to profit by submitting
a false bid under a fictitious name. Such an action is
very difficult to detect since identifying each partici-
pant on the Internet is virtually impossible. We call a
bid under a fictitious name a false-name bid.

As far as the authors know, the problem of false-
name bids has not been previously addressed. On the
other hand, the problems resulting from collusion have
been discussed by many researchers (Milgrom 1998;
Rasmusen 1989; Sandholm 1996). Compared with col-
lusion, a false-name bid is easier to execute since it
can be done alone, while a bidder has to seek out and
persuade other bidders to join collusion.

In this paper, we examine the robustness of the Gen-
eralized Vickrey Auction (G.V.A.) against false-name
bids. The G.V.A. is one instance of the Clarke-Groves
mechanism (Mas-Colell, Whinston, & Green 1995;
Varian 1995), and it is a generalized version of the
well-known, widely advocated Vickrey auction (Vick-
rey 1961). The G.V.A. has proved to be incentive com-
patible, namely, the dominant strategies is for a bidder
to bid his/her true valuation. In addition, the G.V.A.



achieves a Pareto efficient allocation. These character-
istics are advantages of the G.V.A. compared to other
auction mechanisms such as the simultaneous multi-
ple round auction used in the FCC auction (McAfee
& McMillan 1996; Milgrom 1998), where the free rider
problem may cause inefficient allocations.

In this paper, we first introduce some preliminaries,
and describe the G.V.A. in detail. Next, we first show
simple cases where the G.V.A. is robust against false-
name bids, and examine more general settings where
the G.V.A. is vulnerable to false-name bids. Further-
more, we prove that there exists no single-round sealed-
bid auction protocol that simultaneously satisfies indi-
vidual rationality, Pareto efficiency, and incentive com-
patibility in all cases if agents can submit false-name
bids.

Preliminaries

Auction protocol properties depend on each agent’s
utility structure. Auction protocols are divided into
three classes according to the value of goods: private
value auctions, common value auctions, and correlated
value auctions (Rasmusen 1989). In this paper, we
concentrate on private value auctions. Although an
agent’s valuation may be correlated with other agents’
valuations, this restriction is reasonable for making
a tractable analysis. In private value auctions, each
agent knows its own preference, and its valuation is in-
dependent of the other agents’ valuations. For exam-
ple, an auction of antiques that will not be resold can
be considered to be a private value auction. Further-
more, we assume that the value of goods is equivalent
to their monetary value. We define an agent’s utility as
the difference between the true value of the allocated
goods and the payment for the allocated goods. Each
agent tries to maximize its own utility.

Different auction protocols have different properties.
Although they are evaluated from various viewpoints,
we primarily judge auction protocols by whether these
protocols fulfill the three properties: incentive compat-
ibility, Pareto efficiency, and individual rationality.

Incentive compatibility: An auction protocol is in-
centive compatible, if, for each agent, bidding its
true private value is the best way to maximize its
utility, i.e., lying does not benefit the agent. In
computational settings, agents can deal with enor-
mous amounts of data and infer other agents’ prefer-
ences from the results of their bids. If knowing other
agents’ preferences is profitable, each agent tends to
waste its resources in order to keep its preference
secret and obtain the preferences of others. This
situation can be avoided if bidding a true valuation
becomes the dominant strategy.

Pareto efficiency: A Pareto efficient allocation
means that the goods are allocated to bidders whose
valuations are the highest, and that the sum of all
participants’ utilities (including the seller), namely,

the social welfare, is maximized. In a more general
setting, Pareto efficiency does not necessarily mean
maximizing the social welfare. In an auction setting,
since agents can transfer money among themselves,
the sum of the utilities is always maximized in a
Pareto efficient allocation.

Individual rationality: An auction protocol is indi-
vidually rational if each auction participant does not
suffer any loss, in other words, the payment never ex-
ceeds the valuation of the obtained goods. If an auc-
tion protocol is not individually rational, then some
agents do not want to participate in the auction.

We say that auction protocols are robust against
false-name bids, if each agent cannot obtain additional
profit by submitting a false bid under a fictitious name.
If the robustness is not satisfied, the auction mecha-
nism loses incentive compatibility, in other words, par-
ticipants try to manipulate the auction by submitting
false-name bids. This may result in inefficient alloca-
tions.

The Generalized Vickrey Auction

Protocol

The generalized Vickrey auction is based on the
Clarke-Groves mechanism (Milgrom 1998; Wurman,
Walsh, & Wellman 1998). The Clarke-Groves mech-
anism is a mechanism that induces each agent to
tell the true value of public goods (Clarke 1971;
Groves & Loeb 1975; Vickrey 1961). The G.V.A. pro-
tocol can be applied to various auctions, including auc-
tions for multiple items with interdependent values.
Auction protocols that can deal with interdependent
value goods are useful for auctions among computa-
tional agents (Sandholm 1996).

In addition to its wide applicability, the G.V.A. sat-
isfies individual rationality, Pareto efficiency, and in-
centive compatibility. Furthermore, the required time
for the G.V.A. is shorter than the simultaneous multi-
ple round auction, which requires multiple rounds.

The G.V.A. protocol: Let G denote one possible al-
location of goods.

1. Each agent declares a valuation function!. Let
v;(G) denote agent 7’s valuation function for the
allocation G.

2. The G.V.A. chooses the optimal allocation G*
that maximizes the sum of all the agents’ declared
valuations.

3. The G.V.A. announces winners and their payment
pit

pi= 3 vi(GL) = D _vi(GY). ¢
J#i J#i
!The reported valuation function may or may not be the
truth. .



Here, G* ; is the allocation that maximizes the
sum of all agents’ valuations except agent i’s valua-
tion.

Agent 4’s utility after the payment is given by the
following formula. Let u;(G*) denote agent 4’s true
valuation function for G*.

wi(G*) —pi = wi(G?) + Y vi(G) = D_v;(GL). ()
J#i J#
The reason why the G.V.A. is incentive compati-
ble is as follows. The third term in formula (2),
(32,2 vi(GX;)), is independent of agent #’s declara-
tion. The optimal allocation G* is chosen so that the
sum of the agents’ declared valuations are maximized,
ie.,
G* = argmax(v:(G) + gv,-(c)). 3)
JF
Agent i wants to maximize its utility represented as
formula (2). Therefore, agent ¢ can maximize its util-
ity by submitting the true valuation, i.e., by setting
v%(G) = ui(G).

The Vickrey auction (second-price sealed-bid auc-
tion) is a well-known auction protocol (Vickrey 1961).
The G.V.A. for a single item and a single unit is re-
duced to the Vickrey auction, where the highest bidder
wins and pays the second highest bid.

The G.V.A. for multiple units of a single item, where
each agent needs only a single unit, is reduced to the
first rejected bid auction ((M + 1)th-price auction)
(Wurman, Wellman, & Walsh 1998). In the first re-
jected bid auction for M units (M > 1), winners are
the highest bidders from the first to the Mth high-
est bid, and they pay a uniform price, the (M 4+ 1)th
highest bid.

Example of the G.V.A.

We show how the G.V.A works with a simple exam-
ple. Suppose that two agents denoted by agent 1 and
agent 2 are bidding in the G.V.A. with two different
items denoted by g; and g». An agent’s bid is denoted
by using a tuple: (a bid for g1, a bid for g2, a bid for
aset {g1,92} )-

Suppose each agent bids as follows.
e agent 1’s bid: ($20, $5, $25)
o agent 2’s bid: ($10, $15, $30)
The G.V.A. allocates item g; to agent 1 and item g»
to agent 2, respectively, since the allocation maximizes
the sum of all agents’ valuations. Agent 1’s payment is
calculated as follows. When agent 1 does not bid, both
g1 and g are allocated to agent 2, and the valuation is
$30. When g, is allocated to agent 1 and g5 is allocated
to agent 2, agent 2’s valuation of g, is $15. Therefore,
agent 1’s payment is calculated as $30—$15 = $15 and
its utility becomes $20 — $15 = $5. Agent 2’s payment
is calculated as $25 — $20 = $5 and its utility becomes
$15 — 85 = $10.

Features of the G.V.A.

Since the G.V.A. is an incentive compatible mecha-
nism, it is robust against the free rider problem (Mas-
Colell, Whinston, & Green 1995). In general, the
free rider problem is that an agent makes unfair profit
without paying the cost. The free rider problem can
occur in other protocols, such as the simultaneous
multiple round auction (McAfee & McMillan 1996;
Milgrom 1998). This auction is designed to assign ra-
dio spectrum licenses, and it is currently used by the
FCC (http://www.fcc.gov/wtb/auctions/).

The Simultaneous Multiple Round Auction:

In the simultaneous multiple round auction, each
agent submits one sealed-bid for the combination of
items that it wants. Bidding occurs over rounds.
The round result is announced before the next round
starts. The auction is closed when no agent is will-
ing to bid up from the previous round. The highest
bidder for each item gets at the price of his/her bid.
The agent has to pay a penalty to withdraw a bid.

We illustrate the free rider problem in the simultaneous
multiple round auction. Suppose that agent 1, agent 2,
and agent 3 are bidding for two different goods denoted
by gi and g,. Agent 1 bids $5 for g; (where the true
valuation is $7), agent 2 bids $5 for go (where the true
valuation is $7), and agent 3 bids $11 for a set of g;
and g, (where the true valuation is $11). After the
first round, they learn each other’s bid. In the second
round, both agent 1 and agent 2 have to make the
decision whether to raise the bid or not. Each agent
hopes that the other agent raises the bid, so it can get
the good without increasing the payment, i.e., it can
get a free ride. If neither agent raises the bid (hoping
to get a free ride), a Pareto efficient allocation cannot
be achieved.

Although the G.V.A. is not widely used, it has the
potential to be used in the Internet auctions aided
by agents since it is theoretically well-founded as de-
scribed so far.

Robustness of the G.V.A. in Simple
Situations

First, we show the cases where the G.V.A. is robust
against false-name bids in simple auction settings.

In an auction of a single item and a single unit, the
G.V.A. is reduced to the normal Vickrey auction. It is
robust against false-name bids for the following reason.
If an agent can win the auction without a false-name
bid, submitting a false-name bid only results in increas-
ing its payment. If the agent cannot win the auction
without a false-name bid, although the agent may win
the auction by submitting a false-name bid, it has to
pay more than its true valuation. As a result, submit-
ting a false-name bid does not increase its utility in the
Vickrey auction.

In an auction of a single item with multiple units,
where each bidder needs only a single item, the G.V.A.



is reduced to the first rejected bid auction. The first
rejected bid auction is robust against false-name bids.
The reason for this is similar to that in the Vickrey
auction.

In the following, we examine the robustness of the
G.V.A. in more general settings.

Robustness of the G.V.A. in Single
Item, Multiple Unit, Multiple
Requirement Auctions

This section discusses the G.V.A. in an auction of a
single item with multiple units, where each bidder may
desire multiple units. In this situation, the key to de-
ciding whether the G.V.A is robust/vulnerable is the
agents’ marginal utilities. First, we examine the ro-
bustness using some examples.

Example
Example 1 [vulnerable] Suppose that two agents
denoted by agent 1 and agent 2 are bidding for a single
item with two units.
e agent 1’s bid: ($6, $6)
Agent 1 bids $6 for the first unit and $6 for the
second unit, a total of $12 for both units.
e agent 2’s bid: (83, $5)
Agent 2 bids $3 for the first unit and $5 for the
second unit, a total of $8 for both units.

The G.V.A. allocates the two units to agent 1. Agent 1
pays $8 and its utility is $12 — $8 = $4.

Now, suppose that instead of bidding ($6, $6),
agent 1 submits a bid (36, $0), and then submits a
false-name bid ($6, $0) using the identity of agent 3.
e agent ’s bid: ($6, $0)

e agent 2’s bid: (33, $5)

¢ agent 3’s bid: ($6, $0)

The G.V.A. allocates a single unit to agent 1 and a
single unit to agent 3. Agent 1’s payment is $9 — §6 =
$3 and agent 3’s payment is $9 — $6 = $3. It turns
out that agent 1 can get both units and its utility is
$12 — $6 = $6, since agent 3 is a fictitious name of
agent 1.

The difference between agent 1’s utility with a false-
name bid and the truthful bid is $6 — $4 = $2. There-
fore, submitting a false-bid is profitable for agent 1.

Example 2 [robust] Let us assume that two agents
denoted by agent 1 and agent 2 are bidding for two
units of a single item.
e agent 1’s bid: (85, $5)
agent 1 bids $5 for the first unit, and $5 for the
second unit, a total of $10 for both units.

e agent 2’s bid: (84, $2)

The G.V.A. allocates the two units to agent 1. The
payment is $6—$0 = $6 and the utility is $10—$6 = $4.

In this case, if agent 1 submits a false-name bid us-
ing the identity of agent 3, agent 1’s utility does not
increase. Suppose that agent 1 submits a false-name
bid (using the identity of agent 3) by separating its
original bid.

e agent 1’s bid: ($5, $0)

e agent 2’s bid: ($4, $2)

e agent 3's bid: ($5, $0)

The G.V.A. allocates a single unit to agent 1 and a sin-
gle unit to agent 3, respectively. Agent 1’s payment is
$9 -85 = $4 and agent 3’s payment is $9—85 = $4. As
a result, agent 1’s utility is $10 — $8 = $2. Submitting
a false-name bid is not profitable for agent 1.

Marginal utility
As we have seen in the previous subsection, the G.V.A.
is robust in some situations, and vulnerable in other
situations. We find that the robustness of the G.V.A.
for a single item with multiple units depends on the
marginal utility of a single item. The marginal utility
of an item means an increase in the agent’s utility as
a result of obtaining one additional unit. For exam-
ple, when we buy a CD or a book, the marginal utility
usually diminishes, since having a CD or a book is
enough, multiple units of the same CD or book are
wasteful. One example where the marginal utility in-
creases is an all-or-nothing situation, where an agent
needs a certain number of units, otherwise the good is
useless (one sock, glove, etc.).

The following theorem shows one sufficient condition
where the G.V.A. is robust against false-name bids.

Theorem 1 The G.V.A. is robust, i.e., submitting
false-name bids is not profitable, if the declared
marginal utility of each agent is constant/diminishes®.

Proof: Let us assume that an agent is submitting
false-name bids, i.e., submitting bids using multiple
identities. We show that if the agent merges these bids
under a single identity, the same allocation as in the
original case is attained, and the payment of the agent
never increases.

Suppose that there are n units of a single item. Let A
denote the set of all buyer agents, and b; ; denote agent -
4’s bid for jth units of the item. Next, let B(A) denote
the set of bids {b;,; | ¢ € 4,1 < j < n}, nth(1, B(A4))
denote the largest bid in B(A), nth(2, B(A)) denote
the second largest bid in B(4), and so on.

The inequality b;; > b;j41 holds for all 4,j ac-
cording to the assumption that the declared marginal
utility is constant/diminishes. In this case, the sum
of the declared valuations is maximized by allocat-
ing units for the bids nth(1, B(4)), nth(2, B(4)),...,

2Even if the true marginal utility of each agent is con-
stant/diminishes, there is a chance that an agent exists
whose declared marginal utility increases, i.e., the agent
declares a false valuation. In such a case, submitting false-
name bids might be profitable.



nth(n, B(A)). If the declared marginal utility in-
creases, this property cannot be satisfied.

Suppose that agent = submits false-name bids using
two identities, agent y and agent 2, and obtains [ items
under the identity y, and m items under the identity z
(where | + m = k). For simplicity, let us assume that
byj=0forl<j<mandb,;=0form<j<n?d

Agent y’s payment P, is represented by the sum of
the bids nth(n+1, B(A)), nth{n+2, B(A4)),. .., nth(n+
1, B(A)) . Similarly, agent 2’s payment P, is also cal-
culated by the sum of the bids nth(n + 1, B(4)),...,
nth(n +m, B(4)).

Then, let us assume that agent z merges these bids
and submits them under a single identity z. For
simplicity, let us assume b,; = 0 for £ < j < n.
This assumption does not affect the allocation result
and z’s payment. By submitting these bids, agent z
can still obtain & units, and its payment P, becomes
equal to the sum of the bids nth(n+ 1, B(4)),nth(n+
2, B(A)),...,nth(n + k, B(A)).

From these facts, it is obvious that P, + P, > P,
holds. In other words, the payment of an agent be-
comes smaller (or equal) when the agent merges the
false-name bids and submits them using a single iden-
tity. Therefore, the G.V.A. is robust against false-
name bids, as long as the declared marginal utility of
each agent is constant/diminishes. O

In Example 1, agent 2’s marginal utility increases.
On the other hand, the marginal utility of each agent
is constant/diminishes in Example 2.

Robustness of the G.V.A. in Multiple
Item Auctions

This section discusses the robustness of the G.V.A. in
multiple item auctions. In this situation, the key to
decide whether the G.V.A is robust/vulnerable is the
utility structure of an agent. The structure is repre-
sented by introducing economic notions, i.e., substitu-
tional/complementary.

Example We present an example where the G.V.A.
is vulnerable to false-name bids. Suppose that there
are different items denoted by g; and g2 and two agents
denoted by agent 1 and agent 2. We denote an agent’s
bid using a tuple: (a bid for g;, a bid for gs, a bid for

set{g1 7 gg}).
e agent 1's bid: (325, $5, $30)

e agent 2’s bid: ($0, $0, $40)

3Without this assumption, the payments could be
larger, since agent z's bids {b.,; | m < j < n} might be
used to calculate the payment of agent y.

‘In general, P, is calculated by the sum of the
bids nth(n — ! + 1,B(4 — {y})),nth(n — | + 2,B(A —
{y})),...,nth(n, B(A — {y})). We can obtain the above
result since the set {by,; | 1 < j < I} is included in the
winning bids, and by,; =0 for I < j < n.

Agent 2 wins a set {91, g2} at $30 and its utility is $10,
while agent 1’s utility is $0.

Next, we suppose agent 1 submits a false-name bid
under the identity of agent 3.

e agent I’s bid: ($25, $5, $30)
e agent 2’s bid: (80, $0, $40)
e agent 3’s bid: ($0, $30, $30)

The item ¢, goes to agent 1 and g2 goes to agent 3. The
payment for agent 1 is $40 — $30 = $10 and the pay-
ment for agent 3 is $40 — $25 = $15. Namely, agent 1
can obtain the two items with $25, so its utility is
$30 — $25 = $5. This means a false-name bid is effec-
tive.

Substitutional/Complementary

Since the robustness of the G.V.A. for a single item
with multiple units depends on the agents’ marginal
utilities, we find that the robustness of the G.V.A.
with multiple items depends on whether the goods are
complementary /substitutional®.

Suppose that there are two different items denoted
by A and B. We define A and B are complementary, if
the sum of the utility of only having A and the utility
of only having B is lower than the sum of the utility of
simultaneously having A and B, i.e.,

ui(A) + ui(B) < wi({4, B)).

Here, let u; denote a valuation function of an item or
a set of items for an agent 4.

We define A and B are substitutional, if the sum
of the utility of only having A and the utility of only
having B is higher than (or equal to) the utility of
simultaneously having A and B, i.e.,

ui(A) +ui(B) > ui({4, B}).

For example, we can consider tea and sugar to be
complementary and tea and coffee to be substitutional.

The following theorem shows one sufficient condition
where the G.V.A. is robust against false-name bids.

Theorem 2 The G.V.A. is robust, i.e., submitting
false-name bids is not profiteble, if all items are sub-
stitutional for all agents according to the declared val-
uations of agents.

The proof can be given in a way similar to that of
Theorem 1.

In the previous example, the items are complemen-
tary for agent 2. Therefore, there is a chance that
submitting a false-name can be profitable.

Table 1 summarizes the obtained results.

5In microeconomic studies, the definition that item A
and item B are complementary is as follows: if the price of
item B increases, the demand of item A decreases, and vice
versa. This definition is more strict than our definition.



Table 1: Robustness against false-name bids

number of | number of | number of property robustness
items units requirements
single single single O
single multiple single O
single multiple | multiple marginal utility O
is constant/diminishes
marginal utility X
increases
multiple multiple multiple substitutional O
complementary X

Non-Existence of Desirable Protocols

So far, we have investigated the robustness of the
G.V.A., and clarified the circumstances where submit-
ting a false-name bid is effective in the G.V.A. The next
question is whether any auction protocol exists that is
robust against false-name bids or not. In this section,
we show a negative result, i.e., we show proof that there
exists no single-round sealed-bid auction protocol that
simultaneously satisfies individual rationality, Pareto
efficiency, and incentive compatibility in all cases if
agents can submit false-name bids.

Theorem 3 In auctions for multiple units of a single
item and multiple requirements of agents, there exists
no single-round sealed-bid auction protocol that simul-
taneously satisfies individual rationality, Pareto effi-
ciency, and incentive compatibility in all cases if agents
can submit false-name bids.

Proof: It is sufficient to show one instance where no
auction protocol satisfies the prerequisites.

Let us assume that there are two units of a single
item, and three agents denoted by agent 1, agent 2,
and agent 3.

e agent 1’s bid: (a,0)

agent 1 bids a for the first unit and 0 for the second

unit, total of a for both units.

o agent 2’s bid: (b, )
e agent 3’s bid: (a,0)

Let us assume a > b. According to Pareto efficiency,
agent 1 and agent 3 get one unit. Let P, denote the
payment of agent 1.

When agent 2 and agent 3 reveal their true valua-
tions, if agent 1 submits a bid, a’ = b+¢, the allocation
does not change. Let P, denote agent 1's payment in
this situation. According to individual rationality, the
inequality P, < a' should hold. Furthermore, accord-
ing to incentive compatibility, P, < P, should hold.
These assumptions lead to P, < b+ €. The condition
for agent 3’s payment is identical to that for agent 1’s
payment.

Next, we assume another case with two agents de-
noted by agent 1 and agent 2.
e agent 1’s bid: (a,a)
e agent 2’s bid: (b,a)
According to Pareto efficiency, the two units go to
agent 1. Let us denote the payment of agent 1 P, q).
If agent 1 submits a false-name bid using the iden-
tity of agent 3, the same result as in the previous
case can be obtained. According to incentive com-
patibility, the following inequality must hold, other-
wise, agent 1 can profit by submitting a false-name
bid: Py 4) <2 x P, <2b+ 2e.

On the other hand, let us consider the case when
there are two agents.
e agent 1’s bid: (c,¢)
e agent 2’s bid: (b,a)
Let us assume b+¢ < ¢ < @, and a+b > 2¢. According
to Pareto efficiency, the two units go to agent 2. So,
agent 1 cannot gain any utility. However, if agent 1 re-
places the bid (¢, ¢} with (a, a), both units go to agent 1
and the payment is P, 4) < 2b + 2¢, which is smaller
than 2¢, i.e., agent 1’s true value of these two units.
Therefore, agent 1 can increase the utility by submit-
ting a false bid (over-bidding its true valuation).

Thus, in auctions for multiple units of a single item
and multiple requirements of agents, there exists no
auction protocol that simultaneously satisfies individ-
ual rationality, Pareto efficiency, and incentive com-
patibility in all cases if agents can submit false-name
bids. O

Theorem 4 In auctions with multiple items, there ex-
ists no single-round sealed-bid auction protocol that
simultaneously satisfies individual rationality, Pareto
efficiency, and incentive compatibility in all cases if
agents can submit false-name bids.

The proof can be given in a way similar to that of
Theorem 3.



Conclusions

We have discussed the robustness of the generalized
Vickrey auction (G.V.A.) against false-name bids. Al-
though, to our knowledge, this problem has not been
previously addressed, it can be a serious problem in
Internet auctions. We have clarified the circumstances
where submitting false-name bids is profitable. More
specifically, we have shown that the robustness of the
G.V.A. depends on the utility structure of each agent.
Moreover, we have proved that there exists no single-
round sealed-bid auction protocol that simultaneously
satisfies individual rationality, Pareto efficiency, and
incentive compatibility in all cases if agents can sub-
mit false-name bids.

We obtained a rather negative result in the prob-
lem of false-name bids. However, there are many sit-
uations where obtaining the optimal allocation is not
necessary. In such a situation, it is enough to design an
auction mechanism simultaneously satisfying individ-
ual rationality and incentive compatibility. Our future
goal is to find an auction mechanism that can obtain
reasonably good (but not Pareto efficient) allocations.
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