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Abstract

Classification assigns an entity to a category on the
basis of feature values encoded from a stimulus.
Provided they are presented with sufficient training
data, inductive classifier builders such as C4.5 are
limited by encoding deficiencies and noise in the
data, rather than by the method of deciding the cate-
gory. However, such classification techniques do not
perform well on the small, dirty /or and dynamic data
sets which are all that are available in many decision
making domains. Moreover, their computational
overhead may not be justified. This paper draws on
conjectures about human categorization processes to
design a frugal algorithm for use with such data. On
presentation of an observation, case-specific rules are
derived from a small subset of the stored examples,
where the subset is selected on the basis of similarity
to the encoded stimulus. Attention is focused on
those features that appear to be most useful for dis-
tinguishing categories of observatiossnilar to the
current one A measure of logical semantic informa-
tion value is used to discriminate between categories
that remain plausible after this. The new classifier is
demonstrated against neural net and decision tree
classifiers on some standard UCI data sets and shown
to perform well.

Introduction

Categorization processes divide between those that in-
duce rules from training data or cases, and then apply
them to observations, and those which determine the
similarity of an observation to stored exemplars of a
category and then invoke a probabilistic decision func-
tion.

Classification techniques also divide into those which
build a fixed classifier, and those that support change. Clas-
sifiers may change incrementally upon receipt of new data
which relate feature values to categories, or may be recom-
piled for each observational stimulus, for example by using
only those features deemed relevant to the current situation
(Shepherd 1961)

The performance of inductive classifier builders developed
in machine learning has for some time been limited more by
encoding deficiencies and noise than by the method of
making the categorization decision. To average out data
anomalies, recent work has concentrated on pooling results
from classifiers developed using single or multiple base
learning algorithms, applied to different subsets of the data
set and/or with different learning parameters (Dietterech
1997). As well as this trend toward more complex computa-
tional machinery, a popular research area is the analysis of
massive data sets: massive in number of attributes, size of
fields, and/or number of records. Finally there is renewed
interest in defining and computing what is desirable in clas-
sification performance (eg. Cameron —Jones and Richards
1998)

Classification/categorization can be seen as a specidrugal data and frugal processes

cz?]s_,gh ?r]:e (z:%nr:]mgtnﬁenhse o?r:e:ggoaltrie&c:l arrec?ssomggé'blp In contrast to the categorization problems receiving most
wh beting hyp various possibl&ention in machine learning, real-world decision making

assignments, and the observations are sets of featur%ﬁen involves classification performed on small, incom
value pairs, or some other representation of data, rele P '

vant to the stimuli. Any classifier requires prior knowl- PI€te, dynamic data sets, for which there may be little op-

edge as to the relationship between the possible Categg_ortunity to review performance. It may not be cost eﬁgctiye
ries and the patterns of observational stimuli that will bet© collect the data needed to make accurate categorizations

encountered. The learning phase of classification is conor evaluations, or the data are not available. In such situa-
cerned with assembling this knowledge, that is, withtions, the contribution of the encoding of the stimulus to
building a classifier. categorization errors overwhelms the contribution of the



method of making the categorization decision. This paper isonventional packages which have used more than five times
targeted at this type of classification decision where frugahs many training examples. The final section reviews our
approaches to processing are appropriate. Examples aboundntribution and flags further work.

and many are commercially and/or socially important. They

involve rare events (diagnosing an uncommon disease), Background

sparse data_ (gategons_mg an |nd|V|dgaI consumer's pnghaS%ome version of a@rinciple of frugalityis recognised in
deC|s!ons within a busmesg transaction database), noisy d"’gﬁy automatic computational area that involves complex
(predicting how senators will vote on a non-standard matter

and dynamic data (cateqorising teenage fashion items) omputations on noisy data. Thus, in statistical data classifi-
yhamic . =gorising ge 'on el gtion, data are routinely reduced through principal compo-
well as situations in which detailed decision making is no

ent analysis. Such algorithms rely either upon redundancy

warranted (selecting Whlch_apples to buy for Iun_ch)._ in the original data, or on more active search for new data to
Our method seeks to mimic human categorization proc-

It i it | and quite simple. A f | set cfompensate for limited “memory” (eg Havens 1997). How-
esses. 11 IS quite general and guite simple. rugal se 0ever, the main driver for frugal approaches is the fact that

rules is recompiled on presentation Of. each stimulus. Th&ata often cannot support more sophisticated processing.
rules are formulated from examples retrieved from long-ter

this was the argument put in (Gigerenzer and Goldstein

tmeﬁ?]oor:ysq[?]etgiotc):azlsseodfc:zetlr:osslcran:‘fgttyréz tg? rrigrrr;umesr;eégl 996). The authors presented various strategies for problem
lon i u Hres, 9 olving which were frugal in their processing and data re-

on those parts of the description of the entities in memory uirements compared with conventional approaches such as

that are expected to convey most information about the cat inear models and multiple regression, and showed that these

g%;zn':et.?:se:t?éa seé.erl;leer;elz gg;moaft't%g 5‘ r?g;g:jat:de%erformed comparably on the types of data sets that would
! ! Py zatl u X€M5e encountered in real world decision making.

plars prowdgs a rule s.et. The Size of .the ruIe- sets furtherIn our setting, the key issue surrounding data encoded from
reduced using a logical semantic information measurg

S i . & stimulus is that these may not have the power to fully ex-
(Loz!n§k|| 1994.)’ the use Of. which is motlvateq by our.desw lain the categorization. Th>L/JS a data set Suts an asso}::iated
to mimIC conscious deductive human reasoning a_t this sta .%eiling” on the classification accuracy of any classifier. On
The entity is §153|gneq to the category about which there tRe simplest level, this may be due to missing values or to
most logical information brought by the knowledge base§1oise on the encoded values. It may also be due to signifi-

can|st|ng of the encoded S“'T‘“'“S together with any othe ant interactions between features that have been encoded
prior knowledge about the entity, and the frugal rule set. |

required. ties between catedories are broken by acquiri nd features that have not. There may be instability in the
quired, ies betw gon . y acqui II'lﬁgnderlying relationship between observational stimuli and
more information from long term memory, in the first in-

X . ; the categories of the stimuli eg. as in credit application data
stance through looking at further features. This step is a0 here different decision makers may employ different rules
motivated by human reasoning processes.

) ) . nd where all the knowledge used in the decision making
Unlike conventional commonsense reasoning that starE

with a set of (possibly conflicting) rules and facts, we star ay not be encoded.  Stimuli may be encoded using differ-
. P y cting ! nt representation for different classes, unlike the fixed rep-
with a set of facts and derive rules from these in order t

Pesentation used in machine learning data sets. (For example

answer a ques_tlon about an gntlty. Unlike common machi umans appear to use different representations of facial fea-
learning algorithms, we design a new classifier for eacttbres for different races (Levin 1996).)

;[g;géli/s(a’ra?r?ecrﬁ?t?]glg rrlgltir::d :é(?(;nrr?rlr?cr) db:tseid ?igfrl?r?c;:vcle Because data collection and storage are expensive, a com-
' y P lete data record may also not be encoded for each and

edge ‘!n forms other"than attribute value pairs, to make Every stimuli even if the data are available. Thus, humans
mor:e commc()jnsenfseh._ : ised foll nare thought to encode feature data with exemplars of com-
The re”.‘a'”l erko this pl)(aper IS organised as ho ows. T on categories containing the most typical features, and
EeXt Eectlon 00ks at work in .ccl')]gr;ltlve s]?lenc?jt ?]t. sugges emplars of rare categories containing the most distinctive
ow human categorization might be performed. This Is use atures (Krushke 1996). In this particular case common

in section 3 to develop an algorithm to perform frugal Cateéategories may appear to have missing the very data that

gorization. The algorithm is described in general terms, 9 ould enable them to be distinguished. So it is not just re-
allow it to be applied to categorization decisions in which

both prior knowledge and observations are presented gundant information about a class that is dropped.
P 9 P We want to develop a classification algorithm that can deal

gl ormule Seclon & sppies e Tew SOMMUNEN it such domains, 5o wil traw on mthods s by
P man processing. Part of our algorithm will mimic uncon-

repository. The method is seen to outperform standard decgéious processes and will involve data reduction from re-

sion tree and neural net classifiers when the training sets aAl1aq exemplars, and part will mimic conscious deductive

small. Surprisingly, the method performs as well on the dif- . .
. ’ - reasoning on a frugal rule set derived from the examples.
ficult UCI data set Cleveland Heart on a training set of 20 as g 9 P



Unfortunately, the nature of the interaction between exemnlearning, rather than computed when needed through inquiry
plar and rule based approaches remains an open questiorofrstored instances (Jonides and Jones 1992).
the cognitive science literature. Rules derived from small We will in fact use two different notions of probability,
data sets are often claimed to be unstable and likely to lmme that is assumed to be computed on-the-fly on the basis
invalid. On the other hand, the performance of exemplaof frequency, and the other that reflects the language of de-
based methods relies on the richness of the example spaseription of the problem. This is detailed in the next section.
and they do not deal well with extrapolation compared withNVe will also invoke the phenomenon of anchoring. The ten-
rule or model based methods. dency of humans to modify probability in order to anchor on

Smith, Patalano and Jonides (1998) showed that the resutsor beliefs about frequency has been recorded in many
of many experimental studies could be explained by assur&boratory and real world situations. People tend to disre-
ing either a rule based or exemplar based approach, kgrd data that are disconfirming of previously formed opin-
varying other under-specified elements of the experimentabns, and tend to seek confirming evidence (eg. Garb 1996,
situation (eg. difference in instructions). However, they sayogarth 1980). Thus, new data that increase the objective
cognitive neuroscience research suggests that there exwbbability of an interest have a different impact to data that
separate neural circuits for categorising an observation usirecrease its probability (Spies 1995). Subjects are also
similarity to exemplars, and using rules. Shanks (1997ljkely to be more confident of their judgement about events
claims that categorization is mediated by references to revhich they believe to be either very likely or very unlikely
membered instances represented in a multidimensional psieg. Lichenstein reported in Kleindorfer et al. 1993, Pulford
chological space, and supports the view that neural net tymad Colma 1996) than about those which they are uncertain.
models are good descriptions of the process by which inFhe tendency to anchor will be least when prior probability
stances are encoded. On the other hand, conceptual knovel-around one half.
edge is mediated by rules derived from the known members
of the conceptual grouping.

If both exemplars and rules are used, then it is plausible A Frugal Classification Algorithm

that rules are derived as ggnerallzatlgns of at least some OFhis section develops the frugal classification algorithm
the examples. The connectionist retrieval from memory o

Inspired by possible cognitive categorization processes. The

exemplars will be mediated by some measure of S'm'lami;iresentation is very general, so some of the equations look

between the observation and the stored exemplars of co sasonably cumbersome. However, the underlying algorithm
straightforward and natural. The design choices available
X};\re illustrated throughout by the choices made in the imple-

mentation used in section 4. The implementation introduces

peting categories. Different measures may be invoked d?—
> ; . 5
pending on the context. Nosofsky's Generalise Conte
Model (McKinley and Nofosky 1996) allows for aiten-
tion weighton features to model selective attention. al}*St two parameters.

Exemplar and rule based categorization processes h ®onsider a decision maker tasked to assign a category to an

been modeled with triggers for switching between the two, : . .
. . servation about an entyy The decision maker has access
(eg, Kalish and Kruschke 1997, Erickson and Kruschk a knowledge bask! in 'yv)\:hich knowledge is encoded as

1998). Such models involve parameters that are fitte ) . N
) ) o ormulaed, which, for representational purposes in this pa-
through typical feedback techniques which involve prob- ! . :
er, we write as statements in a typed first order language

abilities estimated using frequencies of occurrence. Wh"'%?‘he language has two distinguished types: the type of the

we are going to develop a categorization process which d%ategory labels, and the type of the labels identifying the
rives rules from examples and does not switch between the . : o . R .

. . o entities. The identifier label is often implicit in machine
two, we will need some notion of probability.

It has been widely held that humans do not reason in a(lze_:arnmg data sets.

. . On presentation of the observational stimulus, the decision
cord with a calculus of probability, and famous work has . .
gpker encodes the new information as a formpularhe

been done in this area by the “heuristics and biases” school™ . ker also f | hvbothesi o
of Amos Tversky. This has recently been revisited. A reind€cision maker also formulates an hypothesisPeg) ={ ¢

terpretation of probability in terms of observed frequencie&(: @} where each hypothesis assign® a possible cate-

of occurrence removes much of the evidence about negle@Py- The encoded stimulgsis used along with to select

of base rates and other indicators of illogical reasoning (e¢€tween the hypotheses &(y). In general, though not in
Cosmides and Tooby 1996, Gigerenzer and Hoffrage 1995)€ standard machine learing scenaridsmay contain
The probabilistic model can be replaced by an experientidPrmulae that directly refer to the entiyand which may be
model where probability reflects the observed proportion, oProught to bear in the decision making. Such prior knowl-
the recalled proportion of observations. Base rates are le§89€ iS important in human categorization eg (Heit 1998).
likely to be neglected when learned from experience (In the _standard machlne learning _cla53|f|cat|o_n scenario,
(Kruschke 1996). It is still not clear to cognitive researcher@bservational stimuli are encoded using typed binary predi-
when or whether probabilities are hard-coded througlf@t€SA(u, v)where without loss of generality the first vari-



able identifies the entity and second variable specifies the

jth. feature value The observatiom is then representable as (ii) The focus setriggered by¢, Ty » (M) = {J.: 30
a conjunction of instantiations of some or all of the feature M}, is obtained by restricting formulae M to the
predicates,[] A(y, ). The knowledge baskl is a set of sublanguagé’ of L defined as follows:

exemplarsd = §(x), each stored as the conjunction of its

instantiation of the category and of some or all of the feature (@) The constants i’ are either entity identifiers, cate-

predicates, vizd =C(x, ¢) [ A(X, 3,). In generalA(x, a) gories, constants that appeaupiror constants that
does not imply=A(x, b)for a # b: that is, a feature may take represent the “other values” of a type set that do not
multiple values, because of uncertainty or non-exclusivity.) appear inp. Formally, for each type predicalgpe
) ] in L other than the distinguished typé&gpe n L’

Stage 1. Filtering = {c, ¢’} where c [J Constf) andc” is some arbi-

In deriving case-specific rules from the data in menhdry trarily-chosen representative elemenffgben L\
we model subconscious recall using two types of filters on Constg).
M. The filters are orthogonal in the sense that one decreases (b) The predicates i’ are those that convey highest
the number of formulae to be considered and one restricts relative information aboup. That is, there is a func-
the size of each formul@vhenM is a conventional table of tion Ivalue,( -) from the predicates ib to the real
attribute-values, the filters are respectivelgalectand a numbers, together with a selection criterion, dhd
projectoperation. _ [ L if and only ifP [J L and IValue,( P) satisfies

The f|rs_t fllter selects those exemplars _that are in some the selection criterion (an example of this is given
sense “similar enough” to the encoded stimulus. In the fol- below).

lowing, this is defined in terms of syntactic similarity, on

the basis that this type_ of measure appears to be used in |0WTypicaIIy, Ivalue would be the expected relative entropy:
level recall processes in humans. _ this is the definition we use in the next section. Computing

The second filter acts to focus attention on those parts Oéntropy requires a definition of probability, or at least, a
the exemplars that appear to be most relevant to the task Prfequency of occurrence. Given a set of form@athe fre-
distinguishing between the hypothesesfy). Focussing is  guentist probabilitys(y) of any formulayis the proportion
dton? In tt"r‘l’o lways. F|;s.tly, tc:‘e Sgt ﬂf featutr: t"?‘“:esb (Cont'of formulae inSwhich provey. Then the relative entropy of
stants in the language) is reduced. If a car that is to be cate- . ;

. . givenn is pgy L) log py £i) + ps(n) log ps(n).

gorized as a sports car or some other type of car is blu The expected relative entropy brought by a prediedte

thgn the col_or qf other remembered cars is not going to he]B given hypothesis is obtained by summing over all the pos-
this categorization unless they too are blue. Because of th'%ible instantiations oP for fixed entityy, weighting each

a_n(_j in the spirit of frugality, we mlght suppose that the de'con'[ribution to entropy with the proportion of formulaeSn
cision maker uses the observatida focus only on the \yhich prove the instantiation. The weighted sum over all
terms that appear ig. Howeyer, a remembered case ShOUIdhypotheses gives the expected total entropy, where the
not be excluded because it refers to red cars, because th%@ight on the summand contributed by a hypothegsthe

is a chance that the case conclusions may generalize to blB?oportion of formulae S which proveq The relevant set
cars. Thus the filtered version of the language will haveShere isRy(M). Formally, we are suggesting:

predicates typed to feature domains with up to two ele-
ments, as in “blue” and “a color other than blue” if such is
known to exist. This filtering operation is formalized below. Definition
The second way that attention is focussed is by reducing the Ivalue, (P) = 3y 3 p{Proow)(® { Proow)(P(V))(Brgaw (@ 0
number of predicates under consideration. The method of py)) |og oy (@ TPMV)) — Row(@ 109 Proy (@) : V
selecting which predicates to retain will be discussed below. 7 pomain Pn Wi, o0 &y)}

The following definitions formally present the filtering op-
erations:

Definitions The selection criterion that we have used along with

(i) The recall triggered byg is the seRy(M) = {8 [ M: Ivalue, is to take five predicateB such that no predicate
Sim@,9) > threshold}whereSim ,-) is a measure of that has nqt been s_elected has a h'gm”esp than a se-
similarity between formulae. lected predicate. Ties are broken on a first-come-first-in

In the next section.Sim @,9) is defined to be the basis. An alternative strategy would be to threshold on

count of common constants. That 8im @,9) = value,

|Const@) n Constd) | whereConst@) is the set of The enumeration of categories used in forming the hy-
constants appearing in the formulation(af pothesis set is obtained from the categories instantiated in

the exemplars recalled, that is,Rg(M).



The next step is to form rules as generalizations of the for-We claim that the information intrinsic in measuring sur-
mulae inTy » Ry(M). A generalization of a formula is ob- prise should not be based on a frequentist view of probabil-
tained by replacing any identifiers with variables. Thus théty, because humans do not normally consciously count up
exemplard = C(x, 6) [J A(X, 3,) generalizes to the ruléx ~ occurrences. Rather, here it is more appropriate to take a
OAX a)0 CX 6, j=1,..n. logical semantic definition of probability, as defined for

In memoryM there may be duplicate exemplars, and theexample in (Lozinskii 1994).The logical semantic prob-
likelihood of this increases iy » Ry(M) because of the ability of a formulayexpressed in a languageis the pro-
reduced language of description. It is reasonablegpase  portion of models of the language that are modelg dfe
that when duplicate formulae are encountered, their gene@mploy a modified definition of semantic probability that
alization is given more weight in the decision maker’'s mindtakes account of anchoring. We suppose that in the face of
The strength of a formula is therefore important. disconfirming data the decision maker anchors on prior be-
lief in whether the categorization is likely or not, with an-
choring proportionate to that estimate. Specifically, if
_ . . p*(¢dy) is the logical semantic posterior probability, our
Retain multiple occurrences of a form@&n bothRy posterior probabilityp(¢y) is given by(1 - p@)p*(dy) +
(M) and Ty, » (M), and say thaf2 hasstrengthh if there p(@ p(@) if p(@> %, and byp@p*(dy) + (1 - p@) p(®
areh occurrences of the formulae in the focussed recall 5inerwise. Logical semantic information in a formuais
setTy, o Ry(M). then as usual given by -lqu(y). Relative informatiori(¢] )
is Hog(p@y)) / P(@).

The value of information about a hypothegidrought by
y given the observation is defined to be the difference of
relative information value§@| y [7¢) - (¢ | ¢). The total
information brought by can be defined to be the sum of the
. ) information brought by each of the hypothesasiltiplied

Stage 2. Deductive Reasoning . by the strength of. That is, the informatiobrought byy

Up to now we have been mimicking subconscious reca@iven the observatiog is h(y) 5 (@ | y O ¢) - (@ | ¢).
and focussing. Now we want to bring information in to theg,, 5 similar formulation, see (Aisbett and Gibbon 1998).
conscious memory”, that is, the working knowledge base. this computation is not complicated in practice, and in
There are too many formulae @4, » R$(M) to keep inthe 45t cases reduces to choosing the rules that have most
working memory of a frugal decision maker at the one timeyerms in common with the observation. (Remember that
if we are to keep within the limits of the “magic number 7"\ hile the initial filtering operation chose exemplars with a
long postulated to constrain human reasoning (Miller 1956),igh degree of commonality, the orthogonal second filtering
A further cull of the set makes sense in any case as the i?ﬁ?eration may have left exemplars with little or nothing in
will be in general inconsistent with the observatfowhich,  :ommon with the observation).
as “prior knowledge”, is already in the working knowledge Gijven a ranking of rules based on the value of information
base. . o ~ brought by each rule, a strategy is needed to determine

The decision maker should aim to bring into the workingyhich rules to actually bring in to the working knowledge
knowledge base those rules that carry most informatiogase. For example, a strategy might be to bring in any rule
about the hypotheses (that is, about the categories to whickynich exceeds a threshold information value, orXimeost
could be assigned) relative to the prior knowledge. Usuallyjnformative rules for some gived > 0, or, most frugally,
prior knowledge is taken just to be the encoded stimfilus only those rules which maximise the information value. We
It is possible thaM contains other knowledge pertaining to adopted this last strategy in deriving the results presented in
the category of the entity to be classified, and in a generghe next sectionOnly one or two rules are normally in this
system this could be assembled before the task was &ft, and refer to only a small number of feature values and
tempted. However, here we assume that prior knowledge éne or two categories. This corresponds to a human using
just¢. only a few key features to determine between a few of the

How should the information that a rule brings about a hymost salient categories.
pothesis given the observation be measured? It will need tarhe final step is to determine which category the instgnce
be defined in terms of some difference in relative informapelongs to on the basis of the information amtsisting of
tion (see for example (Blachman 1968)). Restated, it is the observatios and the rule sefi which maximises Equa-
measure of how much knowing the rule and the observatidibn (1). This is achieved by selecting the hypothesis that is
reduce the surprise value on learning that the hypothesis igost supported, that is: assign the entity to the catédory
true, compared with the surprise value of finding the hy-which the hypothesig has maximal logical semantic infor-
pothesis is true when all you have is the observation. mation relative t{¢} (7 A. If there is more than one suth

Definitions

GTy o Rg(M ), the generalization of 4 o Ry(M), is the
set of ordered pair§; h()), wherey is the generaliza-
tion of a formula inTy » Ry(M ) in the sense described
above, andh(y) is its strength.



then more features will have to be considered. This corrgsriority. More sophisticated tie breaking could be imple-
sponds to a human reasoner seeking more clues about thented, eg. picking the most probable category, where
classification. Features will be considered in order correprobability is assessed from the $gty, Ry(M).

sponding to their predicate ranking in the second filtering

step. In the runs reported, if this procedure did not break the

tie, then the first rule encountered would be given higher

Table 1: Average fractional misclassification rates

Notes about runs| Mushroom | Cleveland German
(2 catego- Heart (5 cate-| Credit (2
ries) gories) categories)
Cognitive classi-| 20 training ob-| 0.08 0.47 0.34
fier servations, 5 runs
CART 20 training obsert 0.17 0.66 0.38
vations unless 0.47 (100
otherwise stated, training ob-
5 runs servations)
NeuroShell 20 training obser-0.19 0.53 0.36
vations, 5 runs
1 - Probability of | Calculated on full| 0.48 0.46 0.30
most common data set; see text
class
C4.5 Trained on 200 0.01 0.48 0.29
for Mushrooms
500 for Heart and
Credit, average of
50 runs

The data sets used in initial testing of the cognitively-
inspired classifier are from the UCI Repository of Machin
Learning Databases (Blake, Keogh, & Merz 199B)ese
results are presented as indicative of performance, and not e%gs
a rigorous comparison between classifiers which are d
signed to operate in different conditions (Salzberg, 1997).
Of the UCI data sets, the Mushroom set was chosen becau?
conventional techniques perform very well on it, whereas th
German credit is moderately difficult and the Clevelan

Results

Heart produces high fractional error rates.

All data sets were converted to categorical, with any field
taking more than 20 values converted to 5 values by simple
linear transformation between the minimum and maximum:;
Five runs were used on each set. Twenty training and 1
test samples were randomly selected for each run. Other ru
were done to ensure that 100 tests were sufficient for
ymptotic error rates to have been achieved. The recall p
rameter for the cognitive classifier was fixed so that all 2
training samples were considered, and the focus parame
was fixed to focus on 5 attributes out of the available 13
(Heart) to 24 (German credit). These settings were design
to be cognitively realistic; no other parameter settings wer

investigated and so there has been no tuning to suit these
data sets.
The new classifier was tested against a binary recursive
epartitioning tree building method, and a neural net. CART
was selected as the decision tree builder in part because of
its. good handling of missing data (Steinberg and Colla
[995). A Probabilistic Neural Network implemented in Neu-
roShell2 package was selected because of its performance on
arse data sets (Burrascano 1991). Missing data were re-
e . : :
aced by average field values when required by these classi-
iers. For CART, training data had to be enlarged in some of
he Heart runs to ensure all categories had at least one repre-
entative.
As well, C4.5 error rates are reported, taken from Table 2
of Cameron-Jones and Richards. These rates are for classifi-
s trained on sets of between 200 and 500 items, so can be

{ggen as representative of good classifier performance on
aﬁ{pical machine learning data sets. (Note the Mushroom

raining set is still smaller than in most experiments reported

n the literature -- the classification accuracy is also less than
?Q almost-perfect scores achievable when 8000 or so rec-
rds are used). One minus the probability of the most com-
gien class is the misclassification rate that would be
gchieved if a “dumb” decision maker always chose the most
common category. These probabilities (which were reported



by Cameron-Jones) are calculated over the full data sets, an@ihe classifier needs to be extensively tested on three dif-
so represent prior information unavailable to the frugal reaferent types of data. Firstly, it needs to be tested against the
soner who only has 20 observations to hand. sort of data for which it is designed, to ensure that results are
Convergence characteristics depend heavily on the charaaecurate enough to be useable in actual applications. Sec-
teristics of the data set. On a set like the German Credit ondly, it needs to be comprehensively comparatively tested
which there are only 2 classes and the attributes do not ean the standard machine learning data sets, to gauge its per-
plain the categorisations well, the cognitive classifier cafiormance as an all-round classifier. Thirdly, it needs to be
perform adequately (though not as well as the "dumb" dectested on more complex data that include first order formu-
sion maker picking the most common class) even on ke.
training/recall samples. Performance improves steadily withWhen dealing with larger data sets, a design decision arises
size of the recall set. When a recall set pegged to 20 exems to whether the decision maker should be modelled as re-
plars could be selected from a larger set of exemplars taining a perfect memory of all cases in long term memory.
"long term memory", then improvement was only marginalf not, and it is assumed that the decision maker retains the
for this type of data set. On very small training sets, CARTmost recently experienced samples in memory, then the clas-
will not build a tree, in which case the default is to become aifier will be able to cope with change but may be locally
"dumb" decision maker -- on a difficult dataset like Germarsensitive. If memory retains only the first samples encoun-
credit this means CART actually improves its performancetered, then the classifier may have anchored on the past and
as measured by misclassification rate, over its performangeay not be able to cope with change. A sensible and cogni-
when more training data are available. tively-supported scheme would be for the decision maker to
In contrast, on databases like the UCI dermatology whosetain a library of “good” exemplars for each category. This
34 attributes can explain all the six classes, having monmmay affect base rate estimations.
exemplars in long term memory allows the cognitive classi- Developments of the algorithm include modelling the for-
fier to perform better when recalling the most similar 20mation of rules from exemplars, and using weights to focus
exemplars to an observation than it can when it has onlgttention on some attributes. Attributes encode stimuli in
limited experience. quite different ways, and Krushke (1996iggested humans
go further in treating different categories differently, encod-
ing typical features for some categories, and distinguishing
Discussion and further work features for others. Treating all attributes equally, as our

We have described and implemented a classifier that iSalgorlthm has done, is not cognitively supported. Alternative

frugal in a number of senses. Firstly, it builds a new butpossﬁbilities to having the s_ystem .Iearn We?ghts through
simple classifier for each observation, which is frugal be- training are to investigate differential encoding or, more

' ) o -~ _..—~ generally, to allow users to weight features for their applica-
haviour for one-off classification tasks, or for classification tions (eg. Minka & Picard 1997).

using unstable data when the overhead of building a classi- . - . .
Other research underway is examining the impact on classi-

fier is not justified. Our classifier is also frugal in the sense fication performance of some of the more complicating parts
that it requires little training data to provide reasonable re- P P 9p

sults. It is also frugal in the processing sense that it use:gf the algorithm, such as anchoring.

elementary filters to reduce the data. It is frugal in that it

uses only a very small data set after the filters are applied. References
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