
Abstract

Classification assigns an entity to a category on the
basis of feature values encoded from a stimulus.
Provided they are presented with sufficient training
data, inductive classifier builders such as C4.5 are
limited by encoding deficiencies and noise in the
data, rather than by the method of deciding the cate-
gory. However, such classification techniques do not
perform well on the small, dirty /or and dynamic data
sets which are all that are available in many decision
making domains. Moreover, their computational
overhead may not be justified. This paper draws on
conjectures about human categorization processes to
design a frugal algorithm for use with such data. On
presentation of an observation, case-specific rules are
derived from a small subset of the stored examples,
where the subset is selected on the basis of similarity
to the encoded stimulus. Attention is focused on
those features that appear to be most useful for dis-
tinguishing categories of observations similar to the
current one.  A measure of logical semantic informa-
tion value is used to discriminate between categories
that remain plausible after this. The new classifier is
demonstrated against neural net and decision tree
classifiers on some standard UCI data sets and shown
to perform well.

Introduction

Classification/categorization can be seen as a special
case of commonsense or hypothetical reasoning, in
which the competing hypotheses are the various possible
assignments, and the observations are sets of feature-
value pairs, or some other representation of data, rele-
vant to the stimuli. Any classifier requires prior knowl-
edge as to the relationship between the possible catego-
ries and the patterns of observational stimuli that will be
encountered. The learning phase of classification is con-
cerned with assembling this knowledge, that is, with
building a classifier.

Categorization processes divide between those that in-
duce rules from training data or cases, and then apply
them to observations, and those which determine the
similarity of an observation to stored exemplars of a
category and then invoke a probabilistic decision func-
tion.

Classification techniques also divide into those which
build a fixed classifier, and those that support change. Clas-
sifiers may change incrementally upon receipt of new data
which relate feature values to categories, or may be recom-
piled for each observational stimulus, for example by using
only those features deemed relevant to the current situation
(Shepherd 1961)

The performance of inductive classifier builders developed
in machine learning has for some time been limited more by
encoding deficiencies and noise than by the method of
making the categorization decision. To average out data
anomalies, recent work has concentrated on pooling results
from classifiers developed using single or multiple base
learning algorithms, applied to different subsets of the data
set and/or with different learning parameters (Dietterech
1997). As well as this trend toward more complex computa-
tional machinery, a popular research area is the analysis of
massive data sets: massive in number of attributes, size of
fields, and/or number of records. Finally there is renewed
interest in defining and computing what is desirable in clas-
sification performance (eg. Cameron –Jones and Richards
1998)

Frugal data and f rugal processes
In contrast to the categorization problems receiving most

attention in machine learning, real-world decision making
often involves classification performed on small, incom-
plete, dynamic data sets, for which there may be little op-
portunity to review performance. It may not be cost effective
to collect the data needed to make accurate categorizations
or evaluations, or the data are not available. In such situa-
tions, the contribution of the encoding of the stimulus to
categorization errors overwhelms the contribution of the
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method of making the categorization decision. This paper is
targeted at this type of classification decision where frugal
approaches to processing are appropriate. Examples abound,
and many are commercially and/or socially important. They
involve rare events  (diagnosing an uncommon disease),
sparse data (categorising an individual consumer’s purchase
decisions within a business transaction database), noisy data
(predicting how senators will vote on a non-standard matter)
and dynamic data (categorising teenage fashion items) as
well as situations in which detailed decision making is not
warranted (selecting which apples to buy for lunch).

Our method seeks to mimic human categorization proc-
esses. It is quite general and quite simple.  A frugal set of
rules is recompiled on presentation of each stimulus. The
rules are formulated from examples retrieved from long-term
memory on the basis of their similarity to the stimulus. At-
tention is then focussed on those features, or more generally,
on those parts of the description of the entities in memory,
that are expected to convey most information about the cate-
gories in this data set. Here, information is calculated as
difference in entropy. Generalization of the truncated exem-
plars provides a rule set. The size of the rule set is further
reduced using a logical semantic information measure
(Lozinskii 1994), the use of which is motivated by our desire
to mimic conscious deductive human reasoning at this stage.
The entity is assigned to the category about which there is
most logical information brought by the knowledge base
consisting of the encoded stimulus together with any other
prior knowledge about the entity, and the frugal rule set. If
required, ties between categories are broken by acquiring
more information from long term memory, in the first in-
stance through looking at further features. This step is again
motivated by human reasoning processes.

Unlike conventional commonsense reasoning that starts
with a set of (possibly conflicting) rules and facts, we start
with a set of facts and derive rules from these in order to
answer a question about an entity. Unlike common machine
learning algorithms, we design a new classifier for each
stimulus, and combine rule and exemplar based approaches.
Moreover, the method naturally accommodates prior knowl-
edge in forms other than attribute value pairs, to make it
more “commonsense”.

The remainder of this paper is organised as follows. The
next section looks at work in cognitive science that suggests
how human categorization might be performed. This is used
in section 3 to develop an algorithm to perform frugal cate-
gorization. The algorithm is described in general terms, to
allow it to be applied to categorization decisions in which
both prior knowledge and observations are presented as
logical formulae.  Section 4 applies the new cognitively-
inspired classifier to some standard data sets from the UCI
repository. The method is seen to outperform standard deci-
sion tree and neural net classifiers when the training sets are
small. Surprisingly, the method performs as well on the dif-
ficult UCI data set Cleveland Heart on a training set of 20 as

conventional packages which have used more than five times
as many training examples. The final section reviews our
contribution and flags further work.

Background
Some version of a principle of frugality is recognised in

any automatic computational area that involves complex
computations on noisy data. Thus, in statistical data classifi-
cation, data are routinely reduced through principal compo-
nent analysis. Such algorithms rely either upon redundancy
in the original data, or on more active search for new data to
compensate for limited “memory” (eg Havens 1997). How-
ever, the main driver for frugal approaches is the fact that
data often cannot support more sophisticated processing.
This was the argument put in (Gigerenzer and Goldstein
1996). The authors presented various strategies for problem
solving which were frugal in their processing and data re-
quirements compared with conventional approaches such as
linear models and multiple regression, and showed that these
performed comparably on the types of data sets that would
be encountered in real world decision making.

In our setting, the key issue surrounding data encoded from
a stimulus is that these may not have the power to fully ex-
plain the categorization. Thus, a data set puts an associated
“ceiling” on the classification accuracy of any classifier. On
the simplest level, this may be due to missing values or to
noise on the encoded values. It may also be due to signifi-
cant interactions between features that have been encoded
and features that have not. There may be instability in the
underlying relationship between observational stimuli and
the categories of the stimuli eg. as in credit application data
where different decision makers may employ different rules
and where all the knowledge used in the decision making
may not be encoded.  Stimuli may be encoded using differ-
ent representation for different classes, unlike the fixed rep-
resentation used in machine learning data sets. (For example
humans appear to use different representations of facial fea-
tures for different races (Levin 1996).)

Because data collection and storage are expensive, a com-
plete data record may also not be encoded for each and
every stimuli even if the data are available. Thus, humans
are thought to encode feature data with exemplars of com-
mon categories containing the most typical features, and
exemplars of rare categories containing the most distinctive
features (Krushke 1996). In this particular case common
categories may appear to have missing the very data that
would enable them to be distinguished.  So it is not just re-
dundant information about a class that is dropped.

We want to develop a classification algorithm that can deal
with such domains, so will draw on methods inspired by
human processing. Part of our algorithm will mimic uncon-
scious processes and will involve data reduction from re-
called exemplars, and part will mimic conscious deductive
reasoning on a frugal rule set derived from the examples.



Unfortunately, the nature of the interaction between exem-
plar and rule based approaches remains an open question in
the cognitive science literature. Rules derived from small
data sets are often claimed to be unstable and likely to be
invalid.  On the other hand, the performance of exemplar
based methods relies on the richness of the example space,
and they do not deal well with extrapolation compared with
rule or model based methods.

Smith, Patalano and Jonides (1998) showed that the results
of many experimental studies could be explained by assum-
ing either a rule based or exemplar based approach, by
varying other under-specified elements of the experimental
situation (eg. difference in instructions). However, they say
cognitive neuroscience research suggests that there exist
separate neural circuits for categorising an observation using
similarity to exemplars, and using rules. Shanks (1997)
claims that categorization is mediated by references to re-
membered instances represented in a multidimensional psy-
chological space, and supports the view that neural net type
models are good descriptions of the process by which in-
stances are encoded. On the other hand, conceptual knowl-
edge is mediated by rules derived from the known members
of the conceptual grouping.

If both exemplars and rules are used, then it is plausible
that rules are derived as generalizations of at least some of
the examples. The connectionist retrieval from memory of
exemplars will be mediated by some measure of similarity
between the observation and the stored exemplars of com-
peting categories. Different measures may be invoked de-
pending on the context. Nosofsky’s Generalise Context
Model (McKinley and Nofosky 1996) allows for an atten-
tion weight on features to model selective attention.

Exemplar and rule based categorization processes have
been modeled with triggers for switching between the two
(eg, Kalish and Kruschke 1997, Erickson and Kruschke
1998). Such models involve parameters that are fitted
through typical feedback techniques which involve prob-
abilities estimated using frequencies of occurrence. While
we are going to develop a categorization process which de-
rives rules from examples and does not switch between the
two, we will need some notion of probability.

It has been widely held that humans do not reason in ac-
cord with a calculus of probability, and famous work has
been done in this area by the “heuristics and biases” school
of Amos Tversky. This has recently been revisited. A rein-
terpretation of probability in terms of observed frequencies
of occurrence removes much of the evidence about neglect
of base rates and other indicators of illogical reasoning (eg.
Cosmides and Tooby 1996, Gigerenzer and Hoffrage 1995).
The probabilistic model can be replaced by an experiential
model where probability reflects the observed proportion, or
the recalled proportion of observations. Base rates are less
likely to be neglected when learned from experience
(Kruschke 1996). It is still not clear to cognitive researchers
when or whether probabilities are hard-coded through

learning, rather than computed when needed through inquiry
of stored instances (Jonides and Jones 1992).

We will in fact use two different notions of probability,
one that is assumed to be computed on-the-fly on the basis
of frequency, and the other that reflects the language of de-
scription of the problem. This is detailed in the next section.
We will also invoke the phenomenon of anchoring. The ten-
dency of humans to modify probability in order to anchor on
prior beliefs about frequency has been recorded in many
laboratory and real world situations. People tend to disre-
gard data that are disconfirming of previously formed opin-
ions, and tend to seek confirming evidence (eg. Garb 1996,
Hogarth 1980). Thus, new data that increase the objective
probability of an interest have a different impact to data that
decrease its probability (Spies 1995).  Subjects are also
likely to be more confident of their judgement about events
which they believe to be either very likely or very unlikely
(eg. Lichenstein reported in Kleindorfer et al. 1993, Pulford
and Colma 1996) than about those which they are uncertain.
The tendency to anchor will be least when prior probability
is around one half.

A Frugal Classification Algorithm
This section develops the frugal classification algorithm

inspired by possible cognitive categorization processes. The
presentation is very general, so some of the equations look
reasonably cumbersome. However, the underlying algorithm
is straightforward and natural.  The design choices available
are illustrated throughout by the choices made in the imple-
mentation used in section 4. The implementation introduces
just two parameters.

Consider a decision maker tasked to assign a category to an
observation about an entity y. The decision maker has access
to a knowledge base M in which knowledge is encoded as
formulae ϑ, which, for representational purposes in this pa-
per, we write as statements in a typed first order language L.
The language has two distinguished types: the type of the
category labels, and the type of the labels identifying the
entities. The identifier label is often implicit in machine
learning data sets.

On presentation of the observational stimulus, the decision
maker encodes the new information as a formula ϕ.  The
decision maker also formulates an hypothesis set Φ(y) ={φi:
C(y, ci)} where each hypothesis assigns y to a possible cate-
gory.  The encoded stimulus ϕ is used along with M to select
between the hypotheses in Φ(y).  In general, though not in
the standard machine learning scenarios, M may contain
formulae that directly refer to the entity y and which may be
brought to bear in the decision making. Such prior knowl-
edge is important in human categorization eg (Heit 1998).

(In the standard machine learning classification scenario,
observational stimuli are encoded using typed binary predi-
cates Aj(u, v) where without loss of generality the first vari-



able identifies the entity and second variable specifies the
jth. feature value.  The observation ϕ is then representable as
a conjunction of instantiations of some or all of the feature
predicates, ∧j Aj(y, bj). The knowledge base M is a set of
exemplars ϑ = ϑ(x), each stored as the conjunction of its
instantiation of the category and of some or all of the feature
predicates, viz. ϑ = C(x, ci) ∧j Aj(x, aj,k). In general Aj(x, a)
does not imply ¬Aj(x, b) for a ≠ b: that is, a feature may take
multiple values, because of uncertainty or non-exclusivity.)

Stage 1. Fi l tering
In deriving case-specific rules from the data in memory M,

we model subconscious recall using two types of filters on
M. The filters are orthogonal in the sense that one decreases
the number of formulae to be considered and one restricts
the size of each formula. When M is a conventional table of
attribute-values, the filters are respectively a select and a
project operation.

The first filter selects those exemplars that are in some
sense “similar enough” to the encoded stimulus. In the fol-
lowing, this is defined in terms of syntactic similarity, on
the basis that this type of measure appears to be used in low
level recall processes in humans.

The second filter acts to focus attention on those parts of
the exemplars that appear to be most relevant to the task of
distinguishing between the hypotheses in Φ(y). Focussing is
done in two ways. Firstly, the set of feature values (con-
stants in the language) is reduced.  If a car that is to be cate-
gorized as a sports car or some other type of car is blue,
then the color of other remembered cars is not going to help
this categorization unless they too are blue. Because of this,
and in the spirit of frugality, we might suppose that the de-
cision maker uses the observation  to focus only on the
terms that appear in ϕ. However, a remembered case should
not be excluded because it refers to red cars, because there
is a chance that the case conclusions may generalize to blue
cars. Thus the filtered version of the language will have
predicates typed to feature domains with up to two ele-
ments, as in “blue” and “a color other than blue” if such is
known to exist. This filtering operation is formalized below.
The second way that attention is focussed is by reducing the
number of predicates under consideration. The method of
selecting which predicates to retain will be discussed below.

The following definitions formally present the filtering op-
erations:

Definit ions

(i) The recall triggered by ϕ is the set Rϕ(M) = {ϑ ∈ M:
Sim(ϕ,ϑ) > threshold} where Sim (−,−) is a measure of
similarity between formulae.
   In the next section,  Sim (ϕ,ϑ) is defined to be the
count of common constants. That is, Sim (ϕ,ϑ) =
|Const(ϕ) ∩ Const(ϑ) | where Const(Ω) is the set of
constants appearing in the formulation of Ω.

(ii) The focus set triggered by ϕ, Tϕ, Φ (M) = {ϑ|L’: ϑ ∈
M}, is obtained by restricting formulae in M to the
sublanguage L’  of L defined as follows:

(a) The constants in L’  are either entity identifiers, cate-
gories, constants that appear in ϕ, or constants that
represent the “other values” of a type set  that do not
appear in ϕ. Formally, for each type predicate Type
in L other than the distinguished types, Type  ∩  L’
= {c, c”} where  c ∈ Const(ϕ) and c” is some arbi-
trarily-chosen  representative element of Type ∩ L \
Const(ϕ).  

(b) The predicates in  L’ are those that convey highest
relative information about ϕ. That is, there is a func-
tion IvalueΦ( -) from the predicates in L  to the real
numbers, together with a selection criterion, and  P
∈  L’  if and only if P ∈  L and  IValueΦ( P) satisfies
the selection criterion (an example of this is given
below).

 Typically, Ivalue would be the expected relative entropy;
this is the definition we use in the next section. Computing
entropy requires a definition of probability, or at least, a
frequency of occurrence. Given a set of formulae S, the fre-
quentist probability pS(γ) of any formula γ is the proportion
of formulae in S which prove γ. Then the relative entropy of
γ  given η is -pS(γ ∧η) log pS(γ ∧η) + pS(η) log pS(η).

The expected relative entropy brought by a predicate P for
a given hypothesis is obtained by summing over all the pos-
sible instantiations of P for fixed entity y, weighting each
contribution to entropy with the proportion of formulae in S
which prove the instantiation. The weighted sum over all
hypotheses gives the expected total entropy, where the
weight on the summand contributed by a hypothesis φ is the
proportion of formulae in S which prove φ. The relevant set
S here is Rϕ(M). Formally, we are suggesting:

Definit ion

IvalueΦ (P) =  ∑v ∑φ {pRϕ(M)(φ) { pRϕ(M)(P(v))(pRϕ(M) (φ ∧
P(v)) log pRϕ(M) (φ ∧ P(v)) – pRϕ(M)(φ) log pRϕ(M) (φ)) : v
∈ Domain P ∩  {y}}, φ ∈ Φ(y)}

  The selection criterion that we have used along with
IvalueΦ is to take five predicates P such that no predicate
that has not been selected has a higher IvalueΦ than a se-
lected predicate. Ties are broken on a first-come-first-in
basis. An alternative strategy would be to threshold on
IvalueΦ..

The enumeration of categories used in forming the hy-
pothesis set is obtained from the categories instantiated in
the exemplars recalled, that is, in Rϕ(M).



The next step is to form rules as generalizations of the for-
mulae in Tϕ, Φ Rϕ(M).  A generalization of a formula is ob-
tained by replacing any identifiers with variables.  Thus the
exemplar ϑ = C(x, ci) ∧j Aj(x, aj,k) generalizes to the rule ∀x
∧j Aj(x, aj,k) ⇒ C(x, ci),  j = 1, …n.

In memory M there may be duplicate exemplars, and the
likelihood of this increases in Tϕ, Φ Rϕ(M) because of the
reduced language of description. It is reasonable to suppose
that when duplicate formulae are encountered, their gener-
alization is given more weight in the decision maker’s mind.
The strength of a formula is therefore important.

Definit ions

Retain multiple occurrences of a formula Ω in both Rϕ

(M) and Tϕ, Φ (M), and say that Ω  has strength h if there
are h occurrences of the formulae in the focussed recall
set Tϕ, Φ Rϕ(M).

 GTϕ, Φ Rϕ(M ), the generalization of Tϕ, Φ Rϕ(M), is the
set of ordered pairs (γ, h(γ)), where γ  is the generaliza-
tion of a formula in Tϕ, Φ Rϕ(M ) in the sense described
above, and h(γ)  is its strength.

Stage 2. Deductive Reasoning
Up to now we have been mimicking subconscious recall

and focussing. Now we want to bring information in to the
“conscious memory”, that is, the working knowledge base.
There are too many formulae in GTϕ, Φ Rϕ(M) to keep in the
working memory of a frugal decision maker at the one time,
if we are to keep within the limits of the “magic number 7”
long postulated to constrain human reasoning (Miller 1956).
A further cull of the set makes sense in any case as the set
will be in general inconsistent with the observation ϕ which,
as “prior knowledge”, is already in the working knowledge
base.

The decision maker should aim to bring into the working
knowledge base those rules that carry most information
about the hypotheses (that is, about the categories to which y
could be assigned) relative to the prior knowledge. Usually,
prior knowledge is taken just to be the encoded stimulus ϕ.
It is possible that M contains other knowledge pertaining to
the category of the entity to be classified, and in a general
system this could be assembled before the task was at-
tempted. However, here we assume that prior knowledge is
just ϕ.

How should the information that a rule brings about a hy-
pothesis given the observation be measured? It will need to
be defined in terms of some difference in relative informa-
tion (see for example (Blachman 1968)). Restated, it is a
measure of how much knowing the rule and the observation
reduce the surprise value on learning that the hypothesis is
true, compared with the surprise value of finding the hy-
pothesis is true when all you have is the observation.

We claim that the information intrinsic in measuring sur-
prise should not be based on a frequentist view of probabil-
ity, because humans do not normally consciously count up
occurrences. Rather, here it is more appropriate to take a
logical semantic definition of probability, as defined for
example in (Lozinskii 1994).  The logical semantic prob-
ability of a formula γ expressed in a language L is the pro-
portion of models of the language that are models of γ. We
employ a modified definition of semantic probability that
takes account of anchoring. We suppose that in the face of
disconfirming data the decision maker anchors on prior be-
lief in whether the categorization is likely or not, with an-
choring proportionate to that estimate. Specifically, if
p*(φ|γ) is the logical semantic posterior probability, our
posterior probability p(φ|γ) is given by (1 - p(φ))p*(φ|γ) +
p(φ) p(φ))  if  p(φ)> ½, and by p(φ)p*(φ|γ) + (1 - p(φ)) p(φ)
otherwise. Logical semantic information in a formula γ  is
then as usual given by -log p(γ). Relative information I(φ| γ)
is -log(p(φ|γ)) / p(φ)).

The value of information about a hypothesis φ  brought by
γ given the observation ϕ is defined to be the difference of
relative information values I(φ | γ ∧ ϕ) - I(φ | ϕ). The total
information brought by γ can be defined to be the sum of the
information brought by each of the hypotheses, multiplied
by the strength of γ. That is, the information brought by γ
given the observation ϕ  is  h(γ) ∑i I(φi | γ ∧ ϕ) - I(φi | ϕ).
For a similar formulation, see (Aisbett and Gibbon 1998).

This computation is not complicated in practice, and in
most cases reduces to choosing the rules that have most
terms in common with the observation. (Remember that
while the initial filtering operation chose exemplars with a
high degree of commonality, the orthogonal second filtering
operation may have left exemplars with little or nothing in
common with the observation).

Given a ranking of rules based on the value of information
brought by each rule, a strategy is needed to determine
which rules to actually bring in to the working knowledge
base. For example, a strategy might be to bring in any rule
which exceeds a threshold information value, or the J most
informative rules for some given J > 0, or, most frugally,
only those rules which maximise the information value. We
adopted this last strategy in deriving the results presented in
the next section. Only one or two rules are normally in this
set, and refer to only a small number of feature values and
one or two categories. This corresponds to a human using
only a few key features to determine between a few of the
most salient categories.

The final step is to determine which category the instance y
belongs to on the basis of the information set consisting of
the observation ϕ and the rule set ∆ which maximises Equa-
tion (1).  This is achieved by selecting the hypothesis that is
most supported, that is: assign the entity to the category i for
which the hypothesis φi has maximal logical semantic infor-
mation relative to {ϕ} ∪ ∆. If there is more than one such i



then more features will have to be considered. This corre-
sponds to a human reasoner seeking more clues about the
classification. Features will be considered in order corre-
sponding to their predicate ranking in the second filtering
step. In the runs reported, if this procedure did not break the
tie, then the first rule encountered would be given higher

priority. More sophisticated tie breaking could be imple-
mented, eg. picking the most probable category, where
probability is assessed from the set Tϕ, Φ Rϕ(M).

Table 1:  Average fractional misclassification rates

Notes about runs Mushroom
(2 catego-
ries)

Cleveland
Heart (5 cate-
gories)

German
Credit (2
categories)

Cognitive classi-
fier

20 training ob-
servations, 5 runs

0.08 0.47 0.34

CART 20 training obser-
vations unless
otherwise stated,
5 runs

0.17 0.66
0.47 (100
training ob-
servations)

0.38

NeuroShell 20 training obser-
vations, 5 runs

0.19 0.53 0.36

1 - Probability of
most common
class

Calculated on full
data set; see text

0.48 0.46 0.30

C4.5 Trained on 200
for Mushrooms,
500 for Heart and
Credit, average of
50 runs

0.01 0.48 0.29

Results
The data sets used in initial testing of the cognitively-

inspired classifier are from the UCI Repository of Machine
Learning Databases (Blake, Keogh, & Merz 1998). These
results are presented as indicative of performance, and not as
a rigorous comparison between classifiers which are de-
signed to operate in different conditions (Salzberg, 1997).
Of the UCI data sets, the Mushroom set was chosen because
conventional techniques perform very well on it, whereas the
German credit is moderately difficult and the Cleveland
Heart produces high fractional error rates.

All data sets were converted to categorical, with any field
taking more than 20 values converted to 5 values by simple
linear transformation between the minimum and maximum.
Five runs were used on each set. Twenty training and 100
test samples were randomly selected for each run. Other runs
were done to ensure that 100 tests were sufficient for as-
ymptotic error rates to have been achieved. The recall pa-
rameter for the cognitive classifier was fixed so that all 20
training samples were considered, and the focus parameter
was fixed to focus on 5 attributes out of the available 13
(Heart) to 24 (German credit). These settings were designed
to be cognitively realistic; no other parameter settings were

investigated and so there has been no tuning to suit these
data sets.

The new classifier was tested against a binary recursive
partitioning tree building method, and a neural net. CART
was selected as the decision tree builder in part because of
its good handling of missing data (Steinberg and Colla
1995). A Probabilistic Neural Network implemented in Neu-
roShell2 package was selected because of its performance on
sparse data sets (Burrascano 1991). Missing data were re-
placed by average field values when required by these classi-
fiers. For CART, training data had to be enlarged in some of
the Heart runs to ensure all categories had at least one repre-
sentative.

As well, C4.5 error rates are reported, taken from Table 2
of Cameron-Jones and Richards. These rates are for classifi-
ers trained on sets of between 200 and 500 items, so can be
taken as representative of good classifier performance on
typical machine learning data sets.  (Note the Mushroom
training set is still smaller than in most experiments reported
in the literature -- the classification accuracy is also less than
the almost-perfect scores achievable when 8000 or so rec-
ords are used). One minus the probability of the most com-
mon class is the misclassification rate that would be
achieved if a “dumb” decision maker always chose the most
common category. These probabilities (which were reported



by Cameron-Jones) are calculated over the full data sets, and
so represent prior information unavailable to the frugal rea-
soner who only has 20 observations to hand.

Convergence characteristics depend heavily on the charac-
teristics of the data set.  On a set like the German Credit in
which there are only 2 classes and the attributes do not ex-
plain the categorisations well, the cognitive classifier can
perform adequately (though not as well as the "dumb" deci-
sion maker picking the most common class) even on 5
training/recall samples. Performance improves steadily with
size of the recall set. When a recall set pegged to 20 exem-
plars could be selected from a larger set of exemplars in
"long term memory", then improvement was only marginal
for this type of data set. On very small training sets, CART
will not build a tree, in which case the default is to become a
"dumb" decision maker -- on a difficult dataset like German
credit this means CART actually improves its performance,
as measured by misclassification rate, over its performance
when more training data are available.

In contrast, on databases like the UCI dermatology whose
34 attributes can explain all the six classes, having more
exemplars in long term memory allows the cognitive classi-
fier to perform better when recalling the most similar 20
exemplars to an observation than it can when it has only
limited experience.

Discussion and further work
We have described and implemented a classifier that is

frugal in a number of senses.  Firstly, it builds a new but
simple classifier for each observation, which is frugal be-
haviour for one-off classification tasks, or for classification
using unstable data when the overhead of building a classi-
fier is not justified. Our classifier is also frugal in the sense
that it requires little training data to provide reasonable re-
sults. It is also frugal in the processing sense that it uses
elementary filters to reduce the data. It is frugal in that it
uses only a very small data set after the filters are applied.
And finally, it is frugal in having few free parameters.

We showed that this classifier performed surprisingly well
both on the sort of data sets for which it was designed, and
for cleaner data.  Thus, on a training set of 20 examples
chosen at random from some of the standard UCI machine
learning data sets, the frugal classifier outperforms some
standard classifiers, and actually has performance compa-
rable with classifiers trained on hundreds of training sam-
ples.

It is important to note that the UCI data sets were used to
give a comparative feel for the performance of the new clas-
sifier, and should not be taken as suggesting that it is “just-
another-classifier” in an already crowded field.  We reiterate
that our classifier is unique in being designed to cope with
small training sets.

The classifier needs to be extensively tested on three dif-
ferent types of data. Firstly, it needs to be tested against the
sort of data for which it is designed, to ensure that results are
accurate enough to be useable in actual applications.  Sec-
ondly, it needs to be comprehensively comparatively tested
on the standard machine learning data sets, to gauge its per-
formance as an all-round classifier. Thirdly, it needs to be
tested on more complex data that include first order formu-
lae.

When dealing with larger data sets, a design decision arises
as to whether the decision maker should be modelled as re-
taining a perfect memory of all cases in long term memory.
If not, and it is assumed that the decision maker retains the
most recently experienced samples in memory, then the clas-
sifier will be able to cope with change but may be locally
sensitive. If memory retains only the first samples encoun-
tered, then the classifier may have anchored on the past and
may not be able to cope with change. A sensible and cogni-
tively-supported scheme would be for the decision maker to
retain a library of “good” exemplars for each category. This
may affect base rate estimations.

Developments of the algorithm include modelling the for-
mation of rules from exemplars, and using weights to focus
attention on some attributes. Attributes encode stimuli in
quite different ways, and Krushke (1996) suggested humans
go further in treating different categories differently, encod-
ing typical features for some categories, and distinguishing
features for others. Treating all attributes equally, as our
algorithm has done, is not cognitively supported. Alternative
possibilities to having the system learn weights through
training are to investigate differential encoding or, more
generally, to allow users to weight features for their applica-
tions (eg. Minka & Picard 1997).

Other research underway is examining the impact on classi-
fication performance of some of the more complicating parts
of the algorithm, such as anchoring.
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