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Abstract
One concern of philosophy of mind is how sensorimotor
agents such as human infants can develop contentful mental
states.  This paper discusses Fred Dretske’s theory of mental
content in the context of results from our work with mobile
robots.  We argue that Dretske’s theory, while attractive in
many ways, relies on a distinction between kinds of
representations that cannot be practically maintained when
the subject of one’s study is robotic agents. In addition,
Dretske fails to distinguish classes of representations that
carry different kinds of mental content.  We conclude with
directions for a theory of mental content that maintains the
strengths of Dretske’s theory.

Introduction

An empirical philosophy of mind might tackle the
question, “How do sensorimotor agents develop contentful
mental states,” by building a sensorimotor agent and,
constrained by certain ground rules, trying to have it
develop contentful mental states.  Our sensorimotor agent
is a Pioneer 1 mobile robot, which roams around our lab
and records its experiences through roughly forty sensors,
controlled by a remote computer via radio modem.  The
ground rules for the project are designed to counteract the
tendency in Good Old Fashioned AI to build systems that
do exactly what we want them to do:  First, while prior or
innate structure is necessary, it should be minimized, and
the robot should learn most of what it knows.  Only when
learning proves intractable will we consider adding some
prior structure to facilitate the learning.  Second, the
learning should be unsupervised. Specifically, our learning
algorithms either require no training signal, or the signal is
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endogenous to the robot (e.g., a pain sensor).  We will not
argue that what the robot learns is completely independent
of us, but we do strive to have the robot learn what the
environment affords, rather than what we want it to learn.

Constrained by these ground rules, the robot has learned
quite a lot.  We will argue in this paper that the robot’s
mental states are representational and contentful.  This
conclusion presents some difficulties for an account of
content ascription due to the philosopher Fred Dretske [4].
One difficulty is that an essential distinction in Dretske’s
theory between two kinds of representation is not practical;
the authorship of mental states, on which Dretske’s
distinction depends, is ambiguous in learning robots, as
Dennett has noted [3].  Second, and more importantly, the
class of representations that figures in Dretske’s theory of
content ascription includes many subclasses, some more
“contentful” than others.

The Robot and Some of What It Learns

The Pioneer 1 robot has two independent drive wheels, a
trailing caster, a two degree of freedom gripper, and
roughly forty sensors including five forward-pointing
sonars, two side-pointing sonars, a rudimentary vision
system, bump and stall sensors, and sensors that report the
state of the gripper.  The robot is controlled by a remote
computer, connected by radio modem.

The robot has learned numerous contingencies
[5,7,8,9,12,13,14], including dependencies between its
actions, the world state, and changes in the world state.
More accurately, several algorithms have learned these
contingencies by processing data gathered by the robot as it
roams around our laboratory. In this section we will focus
on one learning method, clustering by dynamics, and a
primitive ontology of actions that it learned without
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supervision.

The robot’s state is polled every 100msec., so a vector of
40 sensed values is collected ten times each second. These
vectors are ordered by time to yield a multivariate time
series.  Figure 1 shows four seconds of data from just four
of the Pioneer’s forty sensed values.  Given a little practice,
one can see that this short time series represents (in a sense
we will explain later) the robot moving past an object.
Prior to moving, the robot establishes a coordinate frame
with an x axis perpendicular to its heading and a y axis
parallel to its heading.  As it begins to move, the robot
measures its location in this coordinate frame.  Note that
the ROBOT-X line is almost constant.  This means that the
robot did not change its location on a line perpendicular to
its heading, that is, it did not change its heading, during its
move.  In contrast, the ROBOT-Y line increases, indicating
that the robot does increase its distance along a line parallel
to its original heading.  Note especially the VIS-A-X and
VIS-A-Y lines, which represent the horizontal and vertical
locations, respectively, of the centroid of a patch of light on
the robot’s “retina,” a CCD camera.  VIS-A-X decreases,
meaning that the object drifts to the left on the retina, while
VIS-A-Y increases, meaning the object moves toward the
top of the retina.  Simultaneously, both series jump to
constant values.  These values are returned by the vision
system when nothing is in the field of view.  In sum, the
four-variable time series in Figure 1 represents the robot
moving in a straight line past an object on its left, which is
visible for roughly 1.8 seconds and then disappears from
the visual field.
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Figure 1.  A time series of four sensors that represents the
robot moving past an object on its left.

Every time series that corresponds to moving past an object
has qualitatively the same structure as the one in Figure 1,
namely, ROBOT-Y increases; VIS-A-Y increases to a
maximum then takes a constant value; and VIS-A-X either
increases or decreases to a maximum or minimum
depending on whether the object is on the robot’s left or
right, then takes a constant value.  ROBOT-X might
change or not, depending on whether the robot changes its
heading or not.

It follows that if we had a statistical technique to group the

robot’s experiences by the characteristic patterns in time
series, then this technique would in effect learn a taxonomy
of the robot’s experiences.  Clustering by dynamics is such
a technique.  The version we describe here was developed
by Tim Oates [7], similar methods are described in [5,8,9].
First, one divides a long time series into segments, each of
which represents an episode such as moving toward an
object, avoiding an object, crashing into an object, and so
on.  Episode boundaries can be inserted by humans or by a
simple algorithm that looks for simultaneous changes in
multiple state variables.  Obviously we prefer the latter
technique (and apply it in [14]) because it minimizes
human involvement in the learning process; however, for
the experiment described here, episode boundaries were
marked by us.  We did not label the episodes in any way.
Second, a dynamic time warping algorithm compares every
pair of episodes and returns a number that represents the
degree of similarity of the time series in the pair.  Dynamic
time warping is a technique for “morphing” one
multivariate time series into another by stretching and
compressing the horizontal (temporal) axis of one series
relative to the other [11].  If two multivariate series are
very similar, relatively little stretching and compressing is
required to warp one series into the other.  A number that
indicates the amount of stretching and compressing is thus
a proxy for the similarity of two series.  Third, having
found this similarity number for the series that correspond
to every pair of episodes, it is straightforward to cluster
episodes by their similarity.  Agglomerative clustering is a
method to group episodes by similarity such that the
within-cluster similarity among episodes is high and the
between-cluster similarity is low.  Fourth, another
algorithm finds the “central member” of each cluster,
which we call the cluster prototype following Rosch [10].

In a recent experiment, this procedure produced prototypes
corresponding to passing an object on the left, passing an
object on the right, driving toward an object, bumping into
an object, and backing away from an object [7].

We claim that these prototypes were learned largely
without supervision and constitute a primitive ontology of
activities – the robot learned some of the things it can do.
What supervision or help did we provide?  We wrote the
programs that controlled the robot and made it do things.
We divided the time series into episodes (although this can
be done automatically).  We limited the number of
variables that the dynamic time warping code had to deal
with, as it cannot efficiently handle multivariate series of
forty state variables.  We did not label the episodes to tell
the learning algorithm which clusters of activities it should
consider.  In fact, the only guidance we provided to the
formation of clusters was a threshold statistic for adding an
episode to a cluster.  To reiterate, we did not anticipate,
hope for, or otherwise coerce the algorithms to learn
particular clusters and prototypes.  Thus we claim that the
robot’s ontology of activities is its own.



Recently we have been trying to “close the loop” and have
the robot learn enough about the preconditions and effects
of its actions that it can plan to accomplish a goal. For
instance, suppose the robot wants to drive the state of the
bump sensor from low to high (i.e., it wants to bump into
something); what should it do?1 [12,13] discusses how the
robot learns models of single actions from its prototypes.
But planning is more than just executing single actions.
Planning means reasoning about the effects of sequences of
actions to achieve a goal state.  To plan, the robot needs to
transform prototypes into planning operators that specify
the preconditions and effects of actions.   Actually,
prototypes already specify the effects of actions because
they are multivariate time series, and the effects of actions
are just the values of state variables over time.   The tricky
thing is to learn preconditions.   First, each episode is
labeled with the cluster to which it belongs.  Next, the first
1000 msec. time series of each state variable in each
episode is replaced by its mean value.  These are the
“initial conditions,” the average values of state variables at
the beginning (i.e., the first 1000 msec.) of each episode.
Initial conditions are not the same as preconditions. To
qualify as a precondition in an episode, an initial condition
must at least make good predictions about how the episode
will unfold.  That is, an initial condition cannot be a
precondition for a prototype if it is uncorrelated with that
prototype across episodes.   We have a batch of episodes,
and each is labeled with its cluster membership, and each
has a list of initial conditions, so it is a simple matter to run
these data through a decision tree induction algorithm to
find those initial conditions that best predict the cluster
membership of the episodes.  Since each cluster is
represented by exactly one prototype, these predictive
initial conditions are interpreted as preconditions for the
prototypes.

Representational States in the Robot

We claim that our robot possesses contentful mental states.
More precisely, we claim that, after the learning process,
our robot possesses perceptually-based beliefs (a sub-type
of mental states). This section is concerned with arguing
for that thesis. Recall that the last stage of the learning
process involves transforming the prototypes into planning
operators that specify the preconditions and effects of
actions. A single set of preconditions (one set for each
prototype) is the vector of average sensor values that
accurately predicts the future series of sensor values when
a particular operator is applied. After learning, the robot
will perform the operation specified by a prototype
whenever both (i) its most recent time series of sensor state
values matches the set of preconditions for that prototype,

                                    
1  The robot's "wants" are implemented by a trivial
algorithm that selects a sensor and tries to change the
sensor's current value. Obviously, most human wants are
more sophisticated, yet we think our simple algorithm is a
primitive model of exploratory motor behavior in infants.

and (ii) it currently has a want that is satisfied by an effect
of the operator. We shall henceforth use the term
“preconditions satisfier” (abbreviated “PS”) to refer to the
data structure encoding the time series of sensor state
values, when that time series matches any of the sets of
learned preconditions. (This term is applicable to the
sensor state data structure only when a match occurs.)

Note that a preconditions satisfier has several interesting
properties.  First, PSs are caused by things going on in the
environment external to the robot. (This causal relation is
indirect and is mediated by the analog to digital converter
associated with each sensor.) Second, a PS, when
instantiated, causes the robot to act in a way that is
appropriate, given the robot’s other mental states (in
particular, given the robot’s wants). (“Appropriate” here
means “tends to bring about satisfaction of a want”.) A
third property of PSs to note is that they are doubly the
result of learning. We (i.e., the designers of the robot’s
controller) do not stipulate which sensor time series states
are the preconditions for actions, nor do we preordain
which set of preconditions will ultimately be associated
with which action. (Indeed, the action types are themselves
the result of learning.) Both the actual preconditions and
the causal role played by the PSs are determined during the
learning process. Notice that the above-mentioned
properties are nothing other than the properties associated
with perceptually-based beliefs in general: (a) they are
caused by something external to the individual, (b) they
cause the individual to act in appropriate ways, given the
individual’s other mental states, and (c) they are the result
of learning in the individual’s past. (Note that properties (a)
and (b) are just the functionalist interpretation of
perceptually-based beliefs.) Therefore, we feel justified in
saying that PSs are perceptually-based beliefs. Some
philosophers of mind [6] have added an additional
condition: the web of beliefs and desires must attain some
critical level of complexity; thus, punctate minds (e.g.,
minds containing only one belief) are impossible. We
reject this complexity condition. Our reason is simple: the
model of a cognitive agent that we have uppermost is not
an adult human (for whom the complexity condition is
appropriate), but an infant. We are trying to understand
how mental content can be bootstrapped, given a small
primitive set of wants and action types. A major goal of our
project is to show how this bootstrapping is possible with
limited innate structure. Thus, our rejection of the
complexity condition is justified.

Some may object to our argument that PSs are
perceptually-based beliefs as follows: we set the terms (by
providing the definition of “perceptually-based belief”), so
it should come as no surprise that PSs are perceptually-
based beliefs. A more legitimate approach would be for us
to have used some independent theory of mental states and
to have argued that, according to that analysis, PSs are
mental states. So, let’s begin again.



We adopt the analysis provided by Dretske in Explaining
Behavior [4]. In that work, he provides and motivates a
taxonomy of representational states and argues that mental
states are one subclass within that taxonomy (a subclass
which he names “Type III learned representational states”).
The taxonomy is part of a larger project that includes an
analysis of mental content in naturalistic terms and a
defense of the view that mental content has an explanatory
role to play in the behavior of humans and other minded
individuals. Space considerations prevent us from a review
of the wider project – all we shall focus on here is the
claim that PSs are Type III learned representational states
(henceforth, “Type III states”). Dretske sets out very clear
criteria for being a Type III state. (We first give the criteria
in Dretske’s terminology, then unpack them in subsequent
discussion.) In order to fit the bill for Type III status, PSs
must: indicate some external condition, have the function
of indicating that condition, and have this function
assigned as the result of a learning process.  According to
Dretske, one physical state indicates some external
condition when the first state is a state in a larger system,
and the larger system goes into that state when and only
when the external condition happens. So, the physical
states of a standard thermometer (in particular, the level of
mercury) indicate the ambient temperature. Likewise, the
states of the data structure encoding the time series of
sensor state values indicate certain states of affairs
involving the position of the robot relative to objects in the
world. Indicators can acquire the function of indicating in
one of two ways according to Dretske, either by having an
outside agent stipulate what an indicator indicates, or as a
result of learning. If the function of an indicator is assigned
by an exogenous agent, the indicator is not a Type III
representation – Dretske calls it a representation of Type II
– and it doesn’t qualify as a contentful mental state.  Only
learned indicator functions – Type III representations –
qualify.

We shall argue that PSs acquire their indicator functions
through learning; although, as we discuss in the next
section, there are problems in applying the learning
criterion from Drestke’s theory to our robot. PSs in the
post-learning robot cause the robot to take specific actions
to satisfy its wants. PSs have been given this control duty
because of what they indicate about the state of the world
(namely, that the state of the world is such that execution
of these actions is likely to bring about the desired result).
The specific control duty assigned to a PS is determined by
a learning process. – namely, by the learning algorithm that
runs on top of the controller. Thus, PSs are Type III states.
Attaching the above argument to Dretske’s overall theory,
we reach our ultimate conclusion: PSs are mental states.

Difficulties with Dretske

In the above argument, we showed that PSs are Type III
states; however, there were a couple of places where the fit

wasn’t exact (i.e., where the distinctions made within
Dretske’s theory didn’t exactly match the distinctions we
want to make in describing the actual robot). The first point
of mismatch involves Dretske’s understanding of the sort
of learning necessary to achieve Type III status. We are
certainly not the first to question this aspect of Dretske’s
theory [1,2,3]; however, our take on the issue differs from
that taken by others and is based, not on “philosophical”
concerns, but on concerns relating to the application of the
theory to a concrete system.

We have tried to avoid “reverse engineering” the robot or
the robot’s environment so as to coerce the end product we
are looking for. (The charge of “reverse engineering” arises
in both the traditional AI and connectionist approach; the
“tweaking” of network parameters that goes on in
connectionist research is not qualitatively difference from
the “reverse engineering” in traditional AI learning
systems.) Even though we have minimized task-specific
innate structure, we cannot avoid playing a significant role
in the design of the robot’s control algorithms and learning
algorithms. That said, does our role invalidate the learning
achieved by the robot, such that it is not really a Type III
representational system?  If so, we must ask which if any
choices we are allowed to make and still claim Type III
status for the robot’s representations.  If the answer is
“none,” then according to Dretske’s theory our robot will
never have contentful mental states; but if the answer is
“some,” then we face the impossible task of teasing apart
the design choices that do and do not prevent our robot’s
mental states from being contentful.

To illustrate, although we didn’t mention this earlier, the
prototypes for moving toward and past objects were
learned from trials that we set up.  We varied the placement
of objects relative to the robot and instructed the robot to
move.  Even so, we had no idea whether the robot’s
learning algorithm would produce prototypes, we did not
anticipate the prototypes it produced, and we were
pleasantly surprised that the prototypes made sense to us.
So who is the author of the prototypes?  Dretske might take
a hard line and say that the robot did not develop its
prototypes all by itself, so they are not Type III
representations, but then he would also have to rule out
concepts in a curriculum learned by human schoolchildren.
In fact, curricular concepts are even more suspect than our
robot’s prototypes, because teachers intend their students to
believe something while our placement of objects around
the robot was not intended to “teach” the robot any
particular prototype.  On the other hand, if our contribution
to what the robot learned does not disqualify its prototypes
as Type III representations, then what other help are we
allowed to provide?  Suppose we classify prototypes as
good and bad, and make the robot learn our classification
rule.  The fact that a learning algorithm does the work of
inserting the rule into the robot’s knowledge hardly
qualifies the rule as a Type III representation, because the
rule is entirely conventional and could just as well have



been inserted by a programmer – it is our rule.  We must
also consider “in-between” cases like those in
reinforcement learning, where a system learns our rule by
seeking to maximize a reinforcement signal that may well
be endogenous; for example, when I reward a child for
saying “please,” she undoubtedly learns, mediated by her
unique reinforcement function, but she is learning my rule.
In short, the fact that a system learns p does not mean that
p is not conventional, nor does the fact that someone helps
a system to learn p mean p is conventional.  Dretske wishes
to distinguish types of representations based on whether
they are learned, but as he points out himself, learning is
not well-defined.  Dennett [3] accuses Dretske of wanting
“do it yourself understanding,” in which the authorship of
concepts belongs entirely to the individual.  Among our
robots, at least, there are no such individuals and they have
no such concepts.  The distinction between Type II
representations, in which the functions of indicators are
assigned, and Type III representations, in which the
functions are learned, is not practical.

Even if it were a practical distinction, we find that not all
kinds of Type III representations are equally contentful.  At
a minimum, contentful means “being about something,” so
when you think of a good bottle of wine, your mental state
has content by merit of “being about” the wine.  We have
learned that the robot’s mental states can be in several
different relations to the world.  Consider again the sensory
prototype illustrated in Figure 1.  This prototype is “about”
passing an object on the left, as it is evoked when the robot
starts to pass an object on the left and it makes accurate
predictions about the robot’s sensory experience during
this activity.  The prototype in Figure 1 represents the
robot passing an object on the left (and as a learned
prototype, it qualifies as a Type III representation in
Dretske’s taxonomy) but what does it represent, exactly,
what is its content?  Suppose we told the robot, “Turn to
the object on your left,” would it understand?  No, because
although the prototype represents passing an object on the
left, it does not denote the object, the robot, or the spatial
relationships between them.  The object, the robot and the
spatial relationship between them are not part of the
content of the robot’s prototype. Prototypes represent the
sensory experience of activities, they do not denote the
roles of participants in the activities.  If our robot had
prototypes that denote the roles of participants in its
activities, these prototypes would be more contentful than
the robot’s sensory prototypes, though both would be
equally Type III representations.

Toward an Explanation of Mental Content

Perhaps there is a better way to explain the content of
mental states than Dretske’s theory.  The problem of
naturalizing content – explaining how mental states come
to be about something – is not completely solved unless
one can explain how we come to have representations that
denote the roles of participants in activities, not just simple

sensory prototypes.  Dretske’s taxonomy does not
differentiate these types of representation, so his theory
cannot naturalize content.  We agree with Dretske that
learning is an important component of a theory of content,
but we disagree with Dretske’s use of learning as a
criterion for whether mental states are genuinely
contentful.  The content of a state – what it is about, what
reasoning it supports – is orthogonal to whether the state is
learned.  But Dretske is forced to make learning a criterion
for genuine content to divorce mental states from any
possible causes of those states exogenous to the learner.
After all, if mental states are caused by something else,
then Dretske hasn’t explained them until he has explained
their cause.  Learning serves Dretske as an insulator of
mental states from other causes.  Yet the fact remains that
states can be contentful even if they aren’t learned – the
only problem is that their content isn’t explained.  Rather
than making learning a criterion for whether states have
content, we think it should be part of the explanation of
how states have content.  In particular, a theory of the
content of mental states would explain how humans make
the transition from sensorimotor representations very much
like our robot’s sensory prototypes, to representations of
the roles of participants in activities – representations that
support classification of things by their roles, and thus the
development of ontologies, and support mental activities
that depend on representations of roles, such as language.
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