
A Constraint-Based Model for Cooperative
Response Generation in Information Dialogues

Yan Qu
CLAIIITECH Corporation

5301 Fifth Avenue
Pittsburgh, PA 15232

yqu@claritech.com

Steve Beale
Computing Research Laboratory

New Mexico State University
Box 30001, Las Cruces, NM 88003-0001

sb@crl.nmsu.edu

Abstract

This paper presents a constraint-based model for
cooperative response generation for information
systems dialogues, with all emphasis on detecting
and resolving situations in which the user’s infor-
mation needs have been over-constrained. Our
model integrates and extends the AI techniques
of constraint satisfaction, solution synthesis and
constraint hierarchy to provide an incremental
computational mechanism for constructing and
maintaining partial parallel solutions. Such a
mechanism supports immediate detection of over-
constrained situations. In addition, we explore
using the knowledge in the solution synthesis net-
work to support different relaxation strategies.

Introduction
In typical human-computer information-seeking dia-
logues, the user and the system do not have perfect
and detailed models of each other. Over-constrained
situations occur when the preferences and restrictions
in the user’s information needs cannot all be sat-
isfied. Generation of cooperative response in over-
constrained situations has been addressed in many
human-computer dialogue systems, e.g., (Kaplan
1979; Abella, Brown, & Buntsehuh 1996; Pieraccini,
Levin, & Eckert 1997; Litman, Pan, & Walker 1998).
In identifying relaxation candidates, however, existing
systems often employ heuristics (e.g., relaxation based
on constraint weights (Abella, Brown, & Buntschuh
1996; Pieraccini, Levin, & Eekert 1997)) which do not
take into account the interaction effects of constraints
and lack a principled and efficient way to explore the
interaction effects in arriving at relaxation candidates.
In our work, we implement a constraint satisfaction-
based model by integrating various AI techniques such
as constraint satisfaction, solution synthesis (Tsang
Foster 1990; Beaie 1997) and constraint hierarchy. So-
lution synthesis, when integrated with constraint satis-
faction and constraint hierarchy, provides a mechanism

Copyright ~1999, American Association for Artificial Intelligence

(www.aaai.org). All rights reserved.

where the effects of constraint interaction are main-
tained as partial solutions. These effects can be ex-
ploited as a system’s knowledge sources for diagnosing
and resolving over-constrained situations.

Our constraint-based model supports the frame-
work of incremental problem formulation and solu-
tion construction and refinement, consisting of cycles
of constraint acquisition, solution construction, solu-
tion evaluation, and solution modification. The stage
of constraint acquisition relies on interaction with the
user. The stages of solution construction, solution
evaluation and solution modification are conducted by
the constraint-based problem solver. Through solution
evaluation, over-constrained situations can be evalu-
ated immediately. Through solution modification, the
system can use its knowledge about the solution states
to guide the adoption of cooperative strategies for re-
solving over-constrained situations. Repeating the cy-
cles allows the system to help users with their problem
formulation until a satisfying solution is found.

The next sections detail our constraint-based model
for cooperative response generation. First, we present
some terminology related to constraint satisfaction
problems. Then we present in detail how the user’s
information needs and solutions are incrementally for-
mulated and refined. We then illustrate how the use
of knowledge sources in the constraint-based problem
solver supports generation of cooperative responses in
over-constrained situations. Finally, we discuss related
work and summarize the paper.

Definitions
A constraint satisfaction problem (CSP) is typically
defined as the problem of finding consistent assign-
ment of values to a fixed set of variables given some
constraints over these variables. In modeling human-
computer interaction in information systems, a user’s
information request can be readily modeled as a CSP,
with the set of attributes that constitutes a user’s in-
formation need as the variables in a CSP, and the
user’s preferences and restrictions over these attributes
as constraints. For instance, in the travel domain,
attributes such as arrival-city, departure-city,

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

date, carrier, time are treated as variables. The
domains for these variables are legal values found in the
database (e.g., carrier can be {UA,AA,USAII~,...}).
The variables are constrained by domain relations in
the database and by user preferences and restrictions
on these variables.

In information domains, the user’s preferences and
restrictions may be of different strengths. For example,
in the travel domain, the departure city and the arrival
city are usually required to be satisfied, while the air-
line carrier is preferred but not required. We introduce
labeled constraints, constraints which are labeled with
their respective strengths. There can be an arbitrary
number of strengths reflecting varying degrees of pref-
erences. Constraints and their strengths constitute a
constraint hierarchy. In information domains, the task
of the system is to provide users with information sat-
isfying their information needs as much as possible.
In over-constrained situations, constraints with weaker
strengths should be relaxed before constraints with
higher strengths. The constraint strengths used for
describing examples in our system include required,
strong, weak, and weakest.

We use the labeled constraint formalism to repre-
sent various types of relationships found in the infor-
mation domain. Database constraints reflect the func-
tional dependencies between attributes in a database
(assuming a relational one in this work). Such depen-
dencies are usually represented as tuples. Database
constraints have the default strength required. Do-
main constraints record attributes and their impor-
tance in solving stereotypical domain problems. User
constraints represent the restrictions and preferences in
the user’s information needs. User constraints are usu-
ally domain reduction constraints for variables. User
profiles record general constraints for a certain types of
users or idiosyncratic constraints for individual users.

In CSPs, the variables, domains and constraints are
fixed and known beforehand. In many problems, the
set of variables and the set of constraints can change
in the problem solving process. Such problems are
modeled as dynamic constraint satisfaction problems
(DSCPs). A dynamic CSP can be considered as a se-
quence of static CSPs each resulting from a change in
the preceding one, representing new facts about the
enviromnent being modeled. As a result of such an in-
cremental change, the set of solutions of the CSP may
potentially decrease (i.e., a restriction) or increase
(i.e., a relaxation). In information-seeking applica-
tions, the set of variables that are relevant to a user’s
information need and the values that can be assigned to
them change dynamically in response to user input and
the negotiation between the user and the system dur-
ing the course of interaction. Therefore, information-
seeking human-computer dialogues is a dynamic CSP.

Dynamic CSP-based Problem Solving

In this section, we present in detail each phase in the
cycles of constraint-based constraint acquisition and
solution construction/refinement model of information
dialogues: constraint acquisition, solution construc-
tion, solution evaluation, and solution modification.

Constraint Acquisition

In the constraint acquisition phase, the system acquires
constraints to update the problem definition which is
modeled as a CSP. The system gathers constraints
through (1) recognition of constraints from user in-
put, (2) requesting constraints from the user, or (3)
proposing constraints for user to confirm. Constraints
gathered from (1) are user-initiated constraints. Con-
straints gathered through (2) and (3) are system-
initiated constraints. The system’s requests and pro-
posals are initiated based on the recommended strate-
gies from the solution modification phase, incorpo-
rating its knowledge of the solution status, domain-
specific task solving knowledge sources, and user pro-
files. The user’s answer to the system-initiated re-
quests results in new constraints being added. As a
cooperative agent, system-initiated proposals need to
be negotiated with the user before they are finalized
in the problem definition. In contrast, user-initiated
constraints are generally incorporated into the current
CSP the moment they are recognized without negoti-
ation.

Currently, the strengths of the acquired constraints
are deduced based on the linguistic cues in the user’s
utterances. From a corpus analysis of naturally occur-
ring dialogues (Transcripts 1992), we classify linguis-
tic cues into three strengths, required, strong, and
weak. For example, we assign a required strength
to constraints expressed through I need to, a strong
strength to it’d better be, and a weak strength to maybe
or it could be. When no linguistic cues are available,
constraints get default strengths from user profiles,
which are calculated based on corpus analysis of dis-
tributions of attributes and distributions of relaxed or
modified attribute-value pairs in the corpus. The cur-
rent constraint strength recognition mechanism could
be extended by taking into account conversation cir-
cumstances and endorsing confidence measures as dis-
cussed in (Elzer, Chu, & Carberry 1994).

Solution Construction

We use solution synthesis techniques (Tsang & Fos-
ter 1990; Beale 1997) to generate all solutions to
CSP by iteratively combining partial answers to ar-
rive at a complete list of all correct answers. In solu-
tion synthesis, the variables in a CSP are represented
as the base level nodes in a graph (SS-graph). Sub-
sets of base level nodes are combined yielding higher
level nodes which represent legal compound labels sat-
isfying k-variable constraints. Partial solutions for a

subset of constraints are represented by the legal com-
pound labels at the highest nodes covering the par-
ticipating variables. The arcs represent the combina-
tion method used for combining lower level nodes into
higher level nodes. Through solution synthesis, all as-
signments of values to variables that satisfy the prob-
lem’s constraints are produced. Often, this list is then
rated according to some separate criteria in order to
pick the most suitable answer. Solution synthesis is
applicable for problems when all possible solutions are
required and for optimization problems.

We extend the solution synthesis technique in two
ways: (1) we adapt the technique to dynamic CSPs,
and (2) we integrate solution synthesis with constraint
hierarchy.
Dynamic solution synthesis Applications that uti-
lize solution synthesis are typically static CSPs (Tsang
& Foster 1990; Beale 1997). A constraint-based model
of interaction, however, is a DCSP: constraints and
variables are dynamically added or removed during in-
teraction in forming the problem definition and con-
structing a solution. Figure 1 demonstrates how so-
lution synthesis is used and dynamically updated for
constructing partial parallel solutions based on incre-
mentally acquired constraints from dialogue excerpt 1
where the user specifies his or her constraints for a
flight:

Dialogue excerpt 1:
User:
(U1) I need to reserve a flight to Dallas.
(U2) Maybe American Airlines.
(U3) It’d better be a night flight.
System:
(S1) American Airlines do not have any night
flights to Dallas.

Figure 1: Solution synthesis

Through constraint acquisition, the system acquires
new variables and constraints from utterances U1 to
U3. The variables acquired include flight, dent,
carrier, and time. The user constraints acquired
include (1) the dest being Dallas with a required
strength, (2) the carrier being American Airlines
with a weak strength, and (3) the travel time being
night with a strong strength. For utterance U1, the
variables flight and dest are posted to the solution

space. Their initial domains are shown at nodes 1
and 2. The constraint that the flight have a desti-
nation of Dallas reduces the domain at node 2, with
the synthesized solutions shown at node 3 contain-
ing all flights with a destination of Dallas as con-
strained by the database constraint Cz(flight, dest)z 2,
which specifies the functional dependency relation be-
tween flight and dent in the database. For utter-
ance U2, the variable carrier is posted to the so-
lution space (node 4). The constraint that the car-
rier be American Airlines reduces its domain. This
can then be synthesized with node 3 to produce a
set of answers at node 5 which include all American
Airlines flights to DMlas, constrained by the database
constraint C2(flight, carrier). Similarly, the variable
travel time is posted to the solution space (node 6).
After domain reduction, it is synthesized with node
5 to produce a set of answers at node 7 which in-
clude all American Airlines flights to Dallas depart-
ing at night, constrained by the database constraint
C3(flight, time). In this dialogue, the final set of
flights is empty.

In the above example, solution synthesis is ex-
tended by incrementally adding variables and con-
straints. Partial solutions are constructed and main-
tained in the dynamically updated SS-graph as new
variables and constraints are introduced. In gen-
eral, solution synthesis can be extended for DCSPs
through operations for adding/removing variables and
adding/removing/modifying constraints (Tsang 83 Fos-
ter 1990).

Adding or removing variables affects the structure of
the SS-graph. In our system, added variables are sim-
ply appended to the tail of the ordered nodes at the
base level, but synthesized with the top level nodes of
the current SS-graph. Adding one variable in this way
to an existing N-variable SS-graph involves construct-
ing two extra nodes, one at the base level for the new
variable, and the other at level N + 1 for the top level
node. Removing variables from a SS-graph is in general
complicated. Basically, when a node which represents
the domain of the deleted variable is removed, all the
nodes which are ancestors to the node must be either
deleted or re-constructed. In our model of problem
solving for the information domMn, however, a vari-
able is added into the solution space as a result of the
negotiation process between the system and the user;
variables never are deleted.

Adding, relaxing or modifying a constraint affects
the size of nodes in the solution synthesis graph.
Adding or tightening a constraint involves possible
deletion of elements in some nodes. Relaxing con-

ZConstraints C1,C2 and 6’3 are simplified database
constraints for illustration purposes. Actual database
constraints can be n-ary rather than binary as in our
illustration.

2This is where the constraint-based problem solver
would normally interact with the back-end database.

straints involves possible addition of elements in some
nodes. (Qu Forthcoming) gives the details on opera-
tions for updating the sets of variables and constraints
and their complexity analysis.
Solution synthesis with constraint hierarchy The
information of the preferential choices specified by a
constraint hierarchy can be encoded in a graph such as
an SS-graph with an incrementally maintained value
called the walkabout sirengih (Maloney 1991). Specif-
ically, every node in the SS-graph is annotated with
a walkabout strength, which indicates the strength of
the weakest constraint in the current graph that could
be removed from the graph to allow some other con-
straints to be enforced by changing that node. The
walkabout strength of a node may reflect the existence
of a constraint quite far away in the SS-graph. Thus,
the walkabout strengths encapsulate information for
updating the SS-graph, which would otherwise have to
be acquired by traversing the graph.

Walkabout strengths of nodes in an SS-graph are
calculated by looking at the strengths of constraints in
which the nodes participates, and the strengths of all
the input nodes. The walkabout strength of a node in
an SS-graph is defined as follows:

¯ if a node N is a base level node representing a vari-
able without any constraint over it, then it gets a
system-supplied walkabout strength required. This
technicality simply means that once a variable is
added to the graph, it stays there and never gets
removed.

¯ if a node N is a base level node representing a
variable, and a domain constraint C constrains the
size of the node, then its walkabout strength is the
weaker of C’s strength and the node’s required
walkabout strength supplied by the system.

¯ if a node N is not a base level node, and a constraint
C constrains the size of the node, then its walkabout
strength is the weaker of C’s strength and the weak-
est walkabout strengths among all the input nodes
that participate in generating N.

Walkabout strength annotation can be straightfor-
wardly incorporated into the dynamic solution synthe-
sis procedures by annotating each node with its walk-
about strength when the node is being constructed or
when the node is being updated as a result of con-
straint update, yielding an SS-graph annotated with
walkabont strengths.

For instance, suppose the constraints participating
in solution synthesis have the following strengths (S)
for the CSP of dialogue excerpt 13:

3It is important to note the difference between walk-
about strengths for variables (base level nodes in an SS-
graph) and the strengths for user constraints. Walka-
bout strengths assigned to variables such as dest and
carrier are based on the definition of walkabout strength
for an SS-graph. The system-supplied required walkabout

strengths for user constraints:
S(dest = Dallas) = required
S(carrier = AA) = weak
S(time -=- night) = strong
strengths for database constraints:
S(CI (flight, dest)) required
S(C2(flight, carrier)) -- required
S(C3(flight, time)) required

According to the walkabout strength definition, the
wMkabout strengths (WS) of the nodes in the SS-
graph for the CSP in Figure 2 are calculated as follows:

{I
{ (AA 123,Daily%AA),C3(fllghLti~), required

w~(AA234,DMI~,AA).
(UA345,Da]Ias,AA), .--I

C2(fllZhl,cax~), required

{(AA 123,D~1~).
(UA235,DalI~)...}

fligM:lAAJ23,UA235~..] d~,t:lDall~s,Bo~on....} carrie~lAA,UA,Uni~cd.,..I d~:lam,pm,nlgh[}
c~*t =Dall~. req~ carrle~AA, weak [ime=nlght, strong

Figure 2: Solution synthesis with walkabout strengths

WSNodel = required
W SNode2 = m~n{required,S(dest = Dallas)}
= required
WSNode3 = m~n{WSNodel, WSNo~2, S(C~)}
---- required
W SNode4 = m,n{required,S(carrier = AA)}
-~ weak

WSNode5 = mm{WSNod,3, WSNode4, S(C2)}
= weak

WSNode6 --- mzn{required,S(time --- night)}
----- strong
wsNod~ = m,n{WSmd~5, WSNo~6, S(C~)}

weak

Solution Evaluation

Solution evaluation characterizes the solution space
into different solution situations. We use an evaluation
function to characterize the solution space. Specifi-
cally, the evaluation function evaluates the top level
node of the SS-graph, which records all the partial so-
lutions obtained so far, to three possible values. If the
top node evaluates to NIL, then an over-constrained

strength reflects the claim in our model that once an at-
tribute is introduced as a variable into the problem def-
inition, the attribute (variable) itself never gets dropped
from the problem definition (SS-graph), even though the
constraints over the variable may get modified. The fact
that the destination city being a certain city is usually re-
quired for the information task while the carrier constraint
can be optional is reflected by the strengths assigned to
user constraints, e.g., S(dest -= Dallas) =required, and
S(carrier = AA) =weak.

1 PROCEDURE LocateRelaxCandidate (NodesOfSS
2 RelaxCandidate <: - NIL;
3 TopNode < - top level node from NodesOfSS
4 while RelaxCandidate not found,
(4.a) if walkabout strength of TopNode resulted
from a constraint C,
then RelaxCandidate < - constraint C;
(4.b) else if walkabout strength resulted from
an InputNode, then TopNode < - InputNode;
(4.c) else if there is a tie between the candidate
InputNodes or constraints,
then TopNode < - a randomly selected InputNode;
5 return RelaxCandidate;

Figure 3: Use of walkabout strengths for relaxation

situation is detected, which suggests that some con-
straints need to be relaxed to get a solution. If the
top node evaluates to a set whose number of solutions
exceeds a pre-defined threshold k (e.g., k = 5 is
good heuristic number), then the problem is under-
constrained, which suggests that a cooperative system
should employ initiative taking strategies to help the
user deal with the under-constrained situations. If the
top node evaluates to a set whose number of solutions is
within a pre-defined threshold k, then the solution set
is small enough, and the system can decide to present
the solutions to the user at this point.

Consider again Figure 2 for dialogue excerpt 1. The
constraints from utterance U2 are incorporated into
the SS-graph resulting in a new top level node 7, which
evaluates to NIL. This signals an over-constrained sit-
uation.

Solution Modification

When no solutions can be found to satisfy the user’s
information needs, a cooperative system need to pro-
vide relaxed solutions in addition to informing the user
of the over-constrained situation. The solution modifi-
cation module is invoked when over-constrained situa-
tions are detected. Its task is to support strategies for
relaxation in over-constrained situations to help the
user with the problem definition. Efficient instantia-
tion of the parameters in these strategies are made pos-
sible by exploiting knowledge sources recorded in the
solution synthesis graph, and by interacting with do-
main knowledge sources and user models. Our model
recognizes the fact that over-constrained situations re-
sult from interactions between constraints, e.g. be-
tween user constraints and database constraints, and
that the partial solutions in an SS-graph encode the
effects of such interactions.

Knowledge sources for constraint relaxation
The knowledge sources we explore for resolving over-
constrained situations include the walkabout strengths
and node density ratios.
Constraint hierarchy and walkabout strengths

We use the constraint hierarchy as a systematic way
of ordering the importance of the constraints. As we
mentioned earlier, such preferential information can be
encoded as walkabout strengths of the nodes in an SS-
graph, while the partial solutions are computed. The
walkabout strength of a node indicates the strength of
the weakest constraint in the current solution graph
that could be removed or modified from the solution
graph to allow some other constraints to be enforced
by changing that node. When an over-constrained sit-
uation is detected, the system tries to satisfy the con-
straints with higher strengths in the constraint hier-
archy, while relaxing constraints with lower strengths
first. Figure 3 describes the procedure for locating the
constraint with the weakest walkabout strength as the
relaxation candidate. The incremental running time
of this algorithm grows linearly with the number of
variables in the CSP.

Solution synthesis network structure The sizes
of the nodes in the solution synthesis network, which
encode partial solutions, yield another source of in-
formation that we can exploit. For example, relax-
ation of constraints is typically most advantageous at
a point where a solution synthesis node yields a par-
tial solution that is relatively small compared to its
inputs. This indicates that some constraint has re-
moved many possible solutions. We introduce the no-
tion of node density with respect to its input nodes
to record the number of compound labels satisfying
participating constraints at this node over the num-
ber of possible compound labels as a result of prod-
uct combination of the values from its input nodes.
The node density ratio reflects the combined efforts of
all the constraints effective over the compound labels
of a node. The smaller the node density ratio, the
more constraining the participating constraints. The
node density information can be combined with the
walkabout strengths in identifying candidates for relax-
ation. We give priority to the walkabout strengths over
node density ratios, and use the latter only for break-
ing the ties among candidates. In Figure 3, we use a
simple tie-breaking heuristic in preferring input nodes
over constraints with the same strength. This heuris-
tic reflects an artifact of our domain where the user
constraints are usually domain reduction constraints
represented at the base level of the SS-graph, while
domain and database constraints are usually exerted
at higher level nodes to reduce the set of possible so-
lutions. Since domain and database constraints usu-
ally have requ±red strengths, the relaxation is likely
to happen with the user constraints over base level
nodes. Using the combined knowledge sources, we in-
troduce another heuristic to break the tie between can-
didate nodes. The revised tie-breaking act becomes:

(4.c’) if there is a tie between the candidate
InputNodes or constraints,
then TopNode < - InputNode with the lowest
node density ratio;

Relaxation example Relaxation candidates can be
identified based on the knowledge sources we just dis-
cussed.
Relaxation using walkabout strengths Consider
again the SS-graph for dialogue excerpt 1 repeated
here in Figure 4. When an over-constrained situation
is detected, solution modification is evoked to identify
the candidate constraint for relaxation. The traversal
starts from the top node 7. Since the weak walkabout
strength of node 7 results from the walkabout strength
of node 5, node 5 is chosen as the candidate node. This
process repeats recursively until node 4 is identified as
a candidate node. Since the weak walkabout strength
of node 4 results from the user constraint carrier being
American Airlines, this constraint is identified as the
constraint for relaxation.

IIC3(flight,lir~), required
[(AA 123,O-~llas,AA), we~k
(AA234.Da~I~s,AA),
(UA345.Da]Ias,AA). -.-I

C2(flisht.can~r), ~’q ul red

|(AAI23.DalI~), ~(U^235.~1~)....]
Cl(lli~l+desl). req~r~l

flI~t:[AAI23.UA235+...] g~:.l:[~l~%Bosl~....I ca~.|AA~A.Unit~.+..I ~:{anl4~m.,ight}

Figure 4: Relaxation based on walkabout strengths

Relaxation based on solution synthesis network
structure and walkabout strength Suppose in dia-
logue excerpt 1, instead of saying in U3 "I¢’d better be a
night flight’, the user said "I could take a nigh~ flight",
then during constraint acquisition, the strength of the
constraint travel time being night would be recognized
as weak as illustrated in Figure 5 instead of strong (in
Figure 4). Consequently, the walkabout strength for
node 6 is weak instead of strong. Also suppose that
as a result of the constraint Cl(flight, dest), the num-
ber of legal solution tuples at node 3 is 100. Since the
number of possible solution tuples at node 4 is 1 due to
the constraint carrier = AA, the number of possible
compound labels at node 5 as a result of product com-
bination of its input nodes (nodes 3 and 4) is 100. Sup-
pose after satisfying the constraint C2(flight, carrier),
only 87 tuples remain at node 5, then node 5 has a
node density ratio (ND) of 87/100. At node 6, the con-
straint time =- night results in a ND ratio of 1/3. Now
when traversal starts from the top node 7, both node
5 and node 6 are tied as relaxation candidates based
on walkabout strengths. Our revised tie-breaking rule
(4.c’) chooses node 6, as the constraints at node 6 more
tightly constrain the solution tuples at that node. As
the weak walkabout strength of node 6 results from the
user constraint travel time being night, this constraint
is identified as the constraint for relaxation.

I}
C3(flighz time requiredI(AAI23,Dallas,AA). ~eak

(AA234,D~II~.AA)+
(UA345.DalI~,AA). ---I ND=~Tn "-.

C2(Aight.cani~), ~..

[(AAI~+~II~). -~

Ilight:[AAI23,UA235~.,]dcst:{Dall~Boe+lon,...} cmnlc~.lAA,IJA,Unitc’d,..,I IJ~:ian~pm,nlghtl
dest=D-~la~, required c’arkr=-AA, weak time--nigl+t, weak

Figure 5: Relaxation based on walkabout strengths
and node density ratios with walkabout strength of
node 6 changed to weak

Evaluation of relaxation candidates Simply
identifying a constraint for relaxation does not guar-
antee that a solution will be found. As a coopera-
tive agent who has access to the back-end databases to
evaluate the relaxation candidates, the system should
make sure that relaxation of the candidate constraint
will lead to a solution. In our system, when a user
constraint is chosen for relaxation, the user constraint
vi = val is replaced by assigning all the possible do-
main values to vi, with the strength required, as no
further relaxation is possible when all domain values
are considered. Then all the ancestor nodes to the
current node are re-computed, yielding a new solution
synthesis graph. If a solution is found at the top node,
then such a relaxation is valid; the system can in turn
initiate appropriate dialogue acts to inform the user of
such relaxation proposal. If however, after such a re-
laxation, the relaxed problem is still over-constrained,
a new relaxation candidate is further identified by re-
peating the procedure in Figure 3 until a solution is
found.

Before a solution is found, a set of constraints may
have been relaxed. If there exists a solution for M1
the required constraints of the CSP, our procedure
is guaranteed to find that solution by incrementally
relaxing constraints of weaker strengths. We define
solution optimality for a relaxed CSP as (1) satisfy-
ing the constraints with higher strengths first, and (2)
satisfying as many original constraints as possible4.

The incremental relaxation procedure guarantees the
first condition of optimality. The second condition
of optimality is satisfied by ranking all solution tu-
ples based on the order of maximally satisfying (a) the
original set of user constraints, (b) the constraints
user models, and (c) the constraints in domain knowl-
edge. The solution satisfying more constraints in a set
is ranked higher than other solutions. Such an order-
ing could be further augmented by introducing metrics

4Note that in over-constrained situations, solution or-
dering only becomes meaningful when the system has the
turn.

such as closeness of the matched values (Elzer, Chu,
Carberry 1994) and semantic distances between solu-
tions (Pieraccini, Levin, & Eckert 1997).

Cooperative Response Generation

The focus of solution modification for over-constrained
problems is to identify the candidate constraints for
relaxation that will yield solutions to resolve the over-
constrained situations. The system will be considered
uncooperative, however, if it modifies the problem def-
inition without the user’s consent. Thus cooperative
principles require that the proposed modifications by
the system be accepted by the user. This requirement
causes the system to go back to the constraint acqui-
sition phase to interact with the user by generating
natural language utterances to negotiate the changes
in the problem definition. The selection of a particular
dialogue act should be based on the system’s exist-
ing knowledge of the solution status and the degrees
of system initiative. We conducted corpus analysis of
naturally occurring information dialogues (Transcripts
1992) to identify problem solving initiative-taking di-
alogue acts for various dialogue situations. Detailed
enumeration of these dialogue acts and the criteria un-
der which they occur are discussed in (Qu Forthcom-
ing). Three dialogue acts, presented in an increasing
degree of system initiative, could be selected to resolve
the over-constrained situations.
Dialogue act 1: Request a new value for a vari-
able. The system takes the initiative in indicating the
constraint that requires relaxation. An example NL
utterance for this dialogue act is: Does any other
airline work for you? in which the system proposes
replacing the previous constraint carrier = AA with
some new constraint. Specific airline values provided
by the user or simple positive answer to this request
will result in an update in the problem definition and
in new solutions in the solution construction phase.
Dialogue act 2: Propose a new value for a vari-
able. The system takes the initiative in proposing a
new constraint to replace an existing one. The pro-
posed instantiation of the variable is obtained from
the optimal solution obtained during solution modi-
fication. Being a cooperative agent, the system needs
to obtain the user’s acceptance first before the con-
straint can be finalized into the SS-graph. An example
NL utterance for this act is: Does United Airlines
work for you? in which the system proposes replac-
ing the previous constraint carrier = AA with the
new constraint carrier = United. Acceptance of this
utterance by the user will result in an update in the
problem definition and in new solutions in the solution
construction phase.
Dialogue act 3: Propose a new value for an at-
tribute and inform user of solutions. The system
takes the problem solving initiative one step further
than that in act 2, in also informing the optimal so-
lutions resulted from such proposed modification. An

example NL utterance for this act is United Airlines
has one leaving at 8:~gpm. in which the system
proposes replacing the previous constraint carrier =
AA with the new constraint carrier = United, and in-
forms the user that once such constraint modification
is made, solution is possible.

A possible future extension is to generate reasons to
support the above relaxation dialogue acts, e.g., Does
United Airlines work for you? Since no other
airlines have such flights. Such supporting ratio-
nales could be generated in our framework by compar-
ing the attribute values between different solutions.

Related Work
Generation of cooperative response in over-constrained
situations has been addressed in many human-
computer dialogue systems, e.g., (Kaplan 1979;
Abella, Brown, & Buntschuh 1996; Pieraccini, Levin,
& Eckert 1997; Litman, Pan, & Walker 1998). Our
work is similar to many of these systems in (1) using
solution evaluation in identifying over-constrained sit-
uations, and (2) interleaving information gathering and
solution update. In identifying relaxation candidates,
however, existing systems employ heuristics (e.g., re-
laxation based on constraint weights (Abella, Brown,
& Buntschuh 1996; Pieraccini, Levin, & Eckert 1997))
which do not take into account the interaction effects
of constraints and lack a principled way to explore
the interaction effects in arriving at relaxation candi-
dates. The solution synthesis-based problem solver in
our model provides a mechanism where the effects of
constraint interaction are maintained as partial solu-
tions, which can be exploited as the system’s knowl-
edge sources when over-constrained situations occur.
The use of walkabout strengths provides a principled
way to explore the SS-graph for relaxation candidates
in linear running time. In addition, the SS-graph sup-
ports re-use of many partial solutions in constructing
or modifying solutions.

Relaxing over-constrained queries and possibly
proposing relaxation modification is also analogous
to previous work on detecting invalid beliefs/plans
and suggesting possible alternative solutions, e.g.,
(Joshi, Webber, & Weischedel 1984; van Beek 1987;
Chu-Carroll & Carberry 1994). In particular, the cy-
cles in the framework of incremental constraint acqui-
sition and solution construction/refinement are similar
to the Propose-Evaluation-Modify cycle for collabora-
tive response generation in (Chu-Carroll & Carberry
1994). However, the above work addresses coopera-
tive response generation based on modeling of plans
and beliefs, while our work focuses on using CSP-based
models for problem solving. The CSP-based problem
solver could be incorporated with other aspects of dia-
logue processing, such as belief and plan modeling, to
formulate different types of cooperative responses.

Constraint computation has been used for modeling
the dynamic nature of discourse in (Donaldson & Co-

hen 1997). The focus of their work, however, is to use
local repair techniques to generate solutions in manag-
ing turn-taking goals.

Conclusions and Future Work

In this paper, we presented a novel way to integrate
and extend the AI techniques of constraint satisfac-
tion, solution synthesis and constraint hierarchy for the
problem of cooperative response generation. We illus-
trated that the knowledge sources in an SS-graph can
be exploited in a principled and efficient way for sug-
gesting relaxation candidates in over-constrained situ-
ations.

Our ongoing work addresses several open issues of
the CSP model. The current framework for incre-
mental problem definition and solution construction
requires database retrieval whenever database con-
straints are encountered, e.g., constraints C1-C3. Ac-
cess to back-end databases incur communication cost
and retrieval cost, which can be expensive in excess. In
many tasks, it is reasonable to assume that an infor-
mation need is not over-constrained without actually
accessing the database (e.g., at the beginning of a di-
alogue when few constraints are introduced) by spec-
ifying a minimal set of constraints for each particular
topic before database retrieval occurs. In fact, such an
assumption has been generally followed in most exist-
ing information systems, in which the systems collect
user constraints to a certain set before interacting with
the back-end databases. However, the drawbacks of
such an assumption are (1) that identification of over-
constrained situations may be delayed, and (2) that
partial solutions will not be available to support iden-
tification of relaxation candidates in an efficient and
principled manner. Our proposal is to use a caching
mechanism to store portions of retrieved results, and
to access this cache to reduce communication and re-
trieval costs while building an SS-graph. The trade-off
between space demand and cost reduction of utilizing
the caching mechanism requires further investigation.

Adoption of different dialogue acts can affect the di-
alogue efficiency and effectiveness of human-computer
dialogue. For example, we hypothesize that dialogue
act 1 is less efficient than dialogue acts 2 and 3 be-
cause new user constraints obtained from a user’s re-
sponse to dialogue act 1 may again lead to an over-
constrained situation. Our ongoing work focuses on
evaluating the effectiveness and efficiency of the di-
alogue acts with respect to factors such as problem
structure, solution structure, user profiles, and con-
straints in domain data.

Acknowledgments

The work reported here is based on the first author’s
dissertation research at Language Technologies Insti-
tute, Carnegie Mellon University. We thank Nancy
Green, Jaime Carbonell, Barbara Di Eugenio and three

anonymous reviewers for their comments on earlier ver-
sions of this paper.

References
Abella, A.; Brown, M. K.; and Buntschuh, B. 1996.
Development principles for dialogue-based interfaces.
In Proceedings of ECAf’96 Workshop on Dialogue
Processing in Spoken Language Systems, 1-7.
Beale, S. 1997. HUNTER-GATHERER: Applying
Constraint Satisfaction, Branch-and-Bound and So-
lution Synthesis to Computational Semantics. Ph.D.
Dissertation, School of Computer Science, Carnegie
Mellon University.
Chu-Carroll, J., and Carberry, S. 1994. A plan-based
model for response generation in collaborative task-
oriented dialogues. In Proceedings of the AAAI-94,
799-805.
Donaldson, T., and Cohen, 1~. 1997. A constraint
satisfaction framework for managing mixed-initiative
discouse. In Proceedings of 1997 AAAI Spring Sym-
posium on Minced-Initiative Interaction.
Elzer, S.; Chu, J.; and Carberry, S. 1994. Recog-
nizing and utilizing user preferences in collaborative
consulation dialogues. In User Modeling Conference.

Joshi, A.; Webber, B.; and Weischedel, R. M. 1984.
Living up to expectations: computing expert re-
sponses. In Proceedings of the AAAI-84, 169-175.
Kaplan, S. J. 1979. Cooperative responses from
a portable natural language data base query system.
Ph.D. Dissertation, School of Computer and Infor-
mation Science, University of Pennsylvania.

Litman, D. J.; Pan, S.; and Walker, M. A. 1998.
Evaluating response strategies in a web-based spoken
dialogue agent. In COLING/ACL-98, 780-786.
Maloney, J. It. 1991. Using Constraints for User
Interface Construction. Ph.D. Dissertation, Depart-
ment of Computer Science and Engineering, Univer-
sity of Washington.

Pieraccini, R.; Levin, E.; and Eckert, W. 1997. AM-
ICA: the at & t mixed initiative conversational archi-
tecture. In Proceedings of EUROSPEECH 97.
Qu, Y. Forthcoming. A constraint-based model of co-
operative response generation in spoken information
systems.
Transcripts, S. 1992. Transcripts derived from audio-
tape conversations made at SI~I International, Menlo
Park, CA. Prepared by Jacqueline Kowtko under the
direction of Patti Price.
Tsang, E., and Foster, N. 1990. Solution synthesis in
the constraint satisfaction problem. Technical Report
Technical Report CSM-142, Department of Computer
Science, University of Essex.

van Beek, P. 1987. A model for generating better
explanations. In Proceedings of the ACL, 215-220.

