From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

An Evolvable Hardware Chip and Its Application as a
Multi-Function Prosthetic Hand Controller

Isamu Kajitani and Tsutomu Hoshino
University of Tsukuba
1-1-1 Tennou-dai, Tsukuba, Ibaraki, 305-8573, JAPAN
1kajita@etl.go.jp

Nobuki Kajihara

Abstract

This paper describes the application of genetic al-
gorithms to the biomedical engineering problem
of a multi-function myoelectric prosthetic hand
controller. This is achieved by an innovative LSI
chip (EHW chip), i.e., a VLSI implementation
of Evolvable Hatrdware (EHW), which can adapt
its own circuit structure to its environment au-
tonomously and quickly by using genetic algo-
rithms. Usually, a long training period (almost
one month) is required before multi-function my-
oelectric prosthetic hands can be controlled, how-
ever, the EHW chip controller developed here can
reduce this period and it has been designed for
easy implementation within a prosthetic hand.
There are plans to commercialize the prosthetic
hand with the EHW chip, and the medical de-
partment of Hokkaido University has already de-
cided to adopt this for clinical treatment.

Introduction

In contrast to conventional hardware, where the struc-
ture is irreversibly fixed in the design process, Evolv-
able Hardware (EHW) (Higuchi et al. 1993) is de-
signed to adapt to changes in task requirements or
changes in the environment, through its ability to re-
configure its own hardware structure dynamically and
autonomously. This capacity for adaptation, achieved
by employing efficient search algorithms known as ge-
netic algorithms (GAs)(Goldberg 1989), has great po-
tential for the development of innovative industrial ap-
plications.

Although most works on EHW citeYa098 have been
done with software simulations, this paper presents a
VLSI implementation of EHW (EHW chip) and its ap-
plication to the biomedical engineering problem of a
multi-function myoelectric prosthetic hand controller.

In designing this EHW chip, we have modified the
genetic operations used in (Kajitani et al. 1998) to
include a gene replacement operation to accelerate the
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adaptation speed of the EHW chip, which we refer to
as Gene Replacement Genetic Algorithm (GRGA).

The myoelectric prosthetic hand is operated by the
signals generated in muscular movement (electromyo-
graphy, EMG). However, it takes a long time, usu-
ally almost one month, before a disabled person is
able to control a multi-function prosthetic hand freely
(Uchida, H, & Ninomija 1993). During this period, the
disabled person has to undertake training to adapt to
the myoelectric hand. We hope to reverse this situ-
ation, by having the myoelectric hand adapt itself to
the disabled person.

Although, work is being done on applying neural
networks for adaptable prosthetic hand controllers,
this approach is not very promising due to implementa-
tion problems, because systems using neural networks
are large and thus difficult to implement within a pros-
thetic hand.

In contrast, the system using the EHW chip is suit-
able for this kind of application, because of its com-
pactness and high-speed adaptability, and, in this pa-
per, we show that the EHW chip controller is a viable
alternative to neural network controllers.

There are plans to commercialize the prosthetic
hand with the EHW chip, and the medical depart-
ment of Hokkaido University has already decided to
adopt this for clinical treatment.

This paper is organized as follows. Section 2 pro-
vides some background to this research. In Section
3, the basic idea of EHW is explained. Section 4 in-
troduces the EHW chip, and its application to the
controller for a prosthetic artificial limb, which is pre-
sented in Section 5.

Background

EHW is based on the idea of combining a reconfig-
urable hardware device with GAs to execute reconfig-
uration autonomously (Higuchi et al. 1993).

In conventional works on EHW (Yao & Higuchi
1998), genetic operations are carried out with software
on personal computers (PCs) or workstations (WSs).
This makes it difficult to use EHW in situations that
need circuits to be as small and light as possible. For
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Figure 1: The basic idea of the EHW chip

example, a myoelectric prosthetic hand should be the
same size as a human hand and weight less than 700
gram.

One solution to this is to incorporate the hardware
that carries out the GA operations together with the
reconfigurable hardware logic within a single LSI chip,
as shown in Figure 1. Such compact and quickly recon-
figurable EHW chips can serve as off-the-shelf devices
for practical applications that require on-line hardware
reconfiguration.

This paper describes the EHW chip, which is ac-
tually an improved version of the chip developed in
(Kajitani e al. 1998)(Figure 2). The two improve-
ments to this EHW chip are: 1. Speed of adaptation.
2. On-line circuit synthesis.

(Kajitani et al. 1998) demonstrated the possibility
of employing an EHW chip as the pattern classification
circuit for EMG signals in a multi-function myoelectric
prosthetic hand controller.

In that application, the pattern classification cir-
cuit was synthesized off-line, in two distinct phases
(ie. ”input-output pattern training sample phase”
and ”circuit synthesis with GA phase”). Although this
off-line approach is used in most adaptable prosthetic
hand applications of neural network controllers (such
as (Kelly, Parker, & Scott 1990)), this approach is of-
ten ineffective due to changes in EMG signal features
after construction of a training sample (Tto et al. 1991)
(Fujii, Nishikawa, & Yokoi 1998).

To overcome this problem, we apply an on-line ap-
proach to the EHW chip prosthetic hand controller.

The Basic Idea of EHW

The basic idea of EHW is the combination of a re-
configurable hardware device and GAs (Higuchi et al.
1993).

Figure 2: The earlier version of the EHW chip.(Kaji-
tani et al. 1998).

PLA (Programmable Logic Array, Figure 3) is most
commonly used as the reconfigurable hardware device
*. A PLA counsists of an AND-array and an OR-array
as shown in Figure 3. In Figure 3, the black and white
circles indicate switches, which determine the intercon-
nections between the inputs and outputs (the black cir-
cles indicate connections). The row lines (product term
lines) in the AND-array form logical products of con-
nected inputs, and the column lines in the OR-array
form logical sums of the connected row lines of the
AND-array (i.e. product term lines). We can specify
these switch settings by using a configuration bit string
as shown in Figure 3.

The basic concept behind the combination of GAs
and the PLA in EHW is to regard the configuration
bit strings for the PLA as chromosomes for the GAs
(Figure 4). If a fitness function is properly designed for
a task, then the GAs can autonomously find the best
hardware configuration in terms of the chromosomes
(i.e. configuration bits).

Usually, a training sample of input-output pat-
terns (e.g. Table 1) is used to evaluate chromosomes
(Higuchi et al. 1993). In this case, the fitness value
for a chromosome (i.e. circuit candidate) is the output
pattern rate, that is, the rate at which actual output
corresponds to the expected output pattern for a given
training input pattern.

The EHW Chip.

The improvements to this EHW chip are in ”Speed
of adaptation” and ” On-line circuit synthesis.” These

*Other EHW works use special hardware, in which the
circuit structure can be changed by arithmetic functional
blocks or analogue circuit components.
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improvements are achieved through two modifications;
firstly, by employing GRGA (Gene Replacement Ge-
netic Algorithm), and secondly, by adding an extra
” on-line training pattern memory edit” mode, which
is indispensable for an application such as the pros-
thetic hand controller.

Architecuture and Workflow of The EHW

Chip.

The EHW chip consists of the following six functional

blocks, shown in Figure 5.

e GA UNIT : This is the hardware that carries out the
GA operations.

¢ CHROMOSOME MEMORY, TRAINING PAT-

TERN MEMORY and MEMORY for FITNESS

VALUE: These are the memories for the chromo-

somes, the training samples and the fitness values of

each chromosome, respectively.

PLA UNIT (2 arrays): Two PLAs are for parallel

evaluation of two circuits.

¢ 16 bit CPU (8086 compatible, V3OMX(NEC)): This
is used as the interface between outside and inside

Table 1: Training input-output patterns and an exam-
ple of fitness value.

training pattern
Input output | output pattern of the
pattern pattern circuit in Figure 3.
X0X1X2X3 YoY1
1001 10 10
0001 10 10
0101 10 10
1100 01 01
0011 10 10
0000 00 10
0100 10 10
0010 10 10
1010 00 01
1110 01 01
fitness value 0.8

the chip. It can be used to calculate fitness values

for each circuit without using training patterns.

The adaptation of the EHW chip is carried out in
the following way.

1. The GA UNIT reads two chromosomes from the

CHROMOSOME MEMORY in units of 32 bits, and
applies genetic operations on them to make two seg-
ments (32 bits) from the chromosomes.

2. These two segments are written to the PLA UNIT

and are used to implement a circuit on both of the
two PLAs. The two circuits are then evaluated.

3. Evaluations of the circuits on the PLAs are carried

out by using the training samples, which are read
from the TRAINING PATTERN MEMORY, and
the fitness values are written to the MEMORY for
FITNESS VALUE.

GRGA (Gene Replacement Genetic
Algorithm)

The basic idea of GRGA is to accelerate the genetic
search by replacing a part of a chromosome with a
bit string, referred to as the ”chromosome candidate
segment.” In this application, the chromosome candi-
date segment is generated from a training input-output
pattern used for the evaluation of circuit candidates,
as shown in Figure 6.

To implement this replacement operation on the
EHW chip, we combined this operation with the ER
(Elitist Recombination)(Thierens & Goldberg 1994)
and the UC (Uniform Crossover) operations used in the
earlier version of the EHW chip (Kajitani et al. 1998)
and have named this combination of genetic operations
GRGA. This replacement operation is carried out when
the output pattern for a training input pattern does
not match the expected training output pattern, with
the replacement of the chromosome candidate segment
being carried out with a fixed probability.

For example, generation of a chromosome candidate
segment, in the case of the first training pattern in
Table 1 (expected output pattern for the input pattern
”1001” is ”10”), would proceed as follows.
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Figure 5: Block diagram of the EHW chip.

When the switches of a product term line in the PLA
are set as they are in line P1 in Figure 3, the output
pattern for the input pattern ”1001” is ”10,” and the
output patterns for all the other input patterns are
”00”. These switches can be set with the bit string
”1001011010”, which is treated as a chromosome can-
didate segment.

We present the results from simulations carried out
to evaluate the adaptability of the GRGA. These simu-
lated the number of evaluations required to synthesize
a basic combination circuit for both the GRGA and
for the combination of the ER and the UC operations.
The three bit comparator circuit (six input bits and
one output bit) was used as the target circuit in the
simulations, because this circuit requires a long time to
be synthesized by GAs (Higuchi et al. 1995) (Kajitani
et al. 1996).

The result was that the combination of the ER and
the UC operations took about 61874 evaluations (av-
eraged ten times), and the GRGA took about 9710
evaluations (averaged ten times) to synthesize the cir-
cuit. This indicates that the evaluation time for the
combination of the ER and the UC operations is over
sixth times longer than that required with the GRGA.

On-line Training Pattern Memory Edit
Mode.

In the earlier EHW chip, the TRAINING PATTERN
MEMORY could not be edited after the GA UNIT had

The chromosome candidate segment
is generated from a training patten.

chromosome
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PATTERN
MEMORY
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Figure 6: The basic idea of the GRGA.

begun to operate. Therefore, training sample patterns
had to be made off-line(Kajitani et al. 1998).

To overcome this problem, we have incorporated an
” On-line training patter n edit mode” within the chip.
This allows us to terminate the genetic operation s
when necessary, so that the TRAINING PATTERN
MEMORY can be edited on-line , The ability to edit
the TRAINING PATTERN MEMORY on-line helps
to ensur ¢ a smooth adaptation process for the pros-
thetic hand controller.

Prosthetic Hand Control By The EHW
Chip

EMG Pattern Classification with The
EHW Chip

The purpose of the EHW controller in the prosthetic
hand is to synthesize pattern classification hardware
to map input patterns (i.e. feature vectors of the two
channel EMG signals, which are detected by two sen-
sors (Kajitani ef al. 1998), to desired actions of the
hand (i.e. one of six actions in Figure 7). However, be-
cause EMG signals vary greatly between individuals, it
is impossible to design in advance such a control (clas-
sification) circuit. Furthermore, even for a particular
person, feature vectors of the EMG signals sometimes
change even over short periods (Ito et al. 1991) (Fu-
jii, Nishikawa, & Yokoi 1998). Therefore, the control
hardware circuit must be synthesized adaptively.

Problems With Conventional Works

In conventional work on adaptable prosthetic hands,
there are two problems.

1. Inefliciency of off-line construction of training sam-
ple patterns.

2. Computational overheads of preprocessing EMG sig-
nals.



Figure 7: The artificial prosthesis used in our experi-
ments.

Inefficiency of Off-line Construction of Train-
ing Sample Patterns. Although most adaptable
prosthetic hand controllers using either neural net-
works (such as (Kelly, Parker, & Scott 1990)(Hudgins,
Parker, & Scott 1993)) or the EHW chip (Kajitani et
al. 1998) have taken an off-line approach to training,
this is often ineffective due to changes in EMG signal
features after construction of training sample patterns
(Ito et al. 1991) (Fujii, Nishikawa, & Yokoi 1998).

To overcome this problem, an on-line approach has
been applied to neural network controllers (Ito et al
1991)(Fujii, Nishikawa, & Yokoi 1998), and, in this pa-
per, we also adopt this on-line approach to the pros-
thetic hand controller using the EHW chip.

If the prosthetic hand fails to function as the user
intends, it may be due to changes in EMG signal fea-
tures. With this on-line approach, we can supple-
ment the set of training samples with new patterns
and can reconfigure the pattern classification circuit
accordingly.

Computational Overheads of Preprocessing
EMG Signals. In (Fujii, Nishikawa, & Yokoi
1998)(Kajitani et al. 1998), the frequency spectrum
power of the detected EMG signals was used as the
feature vectors of the EMG signals. Usually, the fre-
quency spectrum powers are calculated using FFT
(Fast Fourier Transform) that needs a high perfor-
mance CPU (e.g. Pentium) or a DSP (Digital Signal
Processor) to carry out calculations quickly. However,

in general, systems using high performance CPUs or
DSPs become large, and this makes it difficult to im-
plement them within the prosthetic hand.

Therefore, we have decided to use integrated
EMG(IEMG) signals (Tto et al. 1991), which are calcu-
lated by integrating the absolute value of a EMG signal
for each channel within a fixed period (one second, in
this paper), as the feature vectors of the EMG sig-
nals, in this prosthetic hand controller. These IEMGs
are converted into four bit binary numbers to be input
signals to the PLAs in the EHW chip.

Experiments

Overview This section explains some experiments
on the synthesis of a pattern classification circuit for
the EMG feature vectors. In this experiment, because
the EHW chip introduced in this paper is still in de-
bugging stage, its simulator on a PC (Pentium Pro,
200MHz) was used.

This experiment consisted of the following six stages.

1. Construction of a training sample of input-output
patterns (sixty patterns; 10[pattern]X6[action]).

2. Circuit synthesis with GRGA for five minutes.
8. Test of the synthesized circuit.

4. Construction of additional training sample patterns
(thirty patterns; 10[pattern]X3[action]).

5. Reconfiguration of the circuit with GRGA for five
minutes.

6. Test of the reconfigured circuit.

Training Pattern Construction. A training sam-
ple of input-output patterns consists of the input pat-
terns, i.e., binary expressions of the amplitude of the
EMG signals, and the expected output patterns, which
determine the action of the prosthetic hand (one of six
actions). Training patterns were generated in the fol-
lowing way for each of the six prosthetic hand actions.

1. Envisage one of the prosthetic hand actions, and
contract remnant muscles.

2. Enter key corresponding to the action. This opera-
tion generates ten training sample patterns.

The pattern classification circuit is synthesized using
these training sample patterns (10[pattern] X 6[action]
= 60[pattern]).

Test of The Synthesized Circuit. The synthe-
sized circuit was tested in the following way.

1. Envisage one of the prosthetic hand actions, and
contract remnant muscles.

2. Enter key corresponding to the action. This opera-
tion calculates the output pattern rate for the syn-
thesized circuit, which is the same as the expected
output pattern for an intended action, during ten
seconds.



Table 2: Output pattern rates of synthesized circuit,
which correspond to expected output patterns (aver-
aged for three people).

before training after training

pattern addition (%) | pattern addtion (%)
SUPINATION 66 74
PRONATION 49 72
FLECTION 67 88
EXTENSION 84 95
GRASP 38 75
OPEN 36 84
AVERAGE 57 81

The results of this test are shown in Table 2 (middle
column).

Then, ten additional training sample patterns are
generated for the three actions with the lowest out-
put pattern rates for the synthesized circuit. The cir-
cuit on the PLA is reconfigured using these training
sample patterns (60[pattern] + 10[pattern] X 3[action]
= 90[pattern]), and the reconfigured circuit is tested
again. The results of this test are shown in Table 2
(right column).

Results The averaged output pattern rate (Table 2)
for the EHW chip controller is 81.0{%). In contrast,
the averaged output pattern rate for neural network
controllers, which are learned with training samples
generated by an on-line approach (Fujii, Nishikawa, &
Yokoi 1998), is 81.5[%)]. These results indicate that
the EMG pattern classification with the EHW chip is
a viable alternative to neural networks.

Conclusion

This paper has described the EHW chip and its appli-
cation as a myoelectric prosthetic hand controller. Re-
cent improvements to the EHW chip in terms of both
increased adaptation speeds and the addition of an on-
line edit mode have greatly enhanced the performance
of the EHW chip controller. Our software simulations
show that this is a viable alternative to neural network
controllers, and that prosthetic hands with the EHW
chip can adapt to users in a short period (about ten
minutes).

The EHW chip can adapt its circuit structure au-
tonomously and quickly, and therefore, represents a
breakthrough for applications that require compact im-
plementation and high-speed adaptation (such as au-
tonomous mobile vehicles (Keymeulen et al. 1998)).
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