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Abstract

An important research issue in RBF networks
is how to determine the ganssian centers of the
radial-basis functions. We investigate a technique
that identifies these centers with carefully selected
training examples, with the objective to minimize
the network’s size. The essence is to select three
very small subsets rather than one larger subset
whose size would exceed the size of the three small
subsets unified. The subsets complement each
other in the sense that when used by a nearest-
neighbor classifier, each of them incurs errors in
a different part of the instance space. The pa-
per describes the example-selection algorithm and
shows, experimentally, its merits in the design of
RBF networks.

Introduction

Radial-basis-function (RBF) networks, such as the one
depicted in Figure 1, are used to approximate func-
tions f : Rm -4 Rp by appropriate adjustments of
the parmneters in the formula fj(x) = ~ijwi~o~(x),
where x = (xl,...,xn) is an input vector and each

~i(x) -- exp-~ is an RBF function. The pa-
rameters to be determined by learning are the gaus-

2 and the weights wi.sian centers jul, the variances ai,
Since the weights are easy to determine (e.g. by linear
regression) and the variances do not pose any major
challenge, the main difficulty is presented by the cen-
ters/~i. Existing methods associate these vectors with
the gravity centers of data clusters (Moody and Darken,
1989; Musavi et al., 1992), with hyperrectangles defined
on the instance space by decision-tree induction (Ku-
bat, 1998), or with vectors determined by AI search
techniques (Chen, Cowan, and Grant, 1991; Cheng and
Lin, 1994). A method that adds one neuron at a time
with subsequent tuning of the centers was developed by
Fritzke (1993, 1994). Techniques to adjust the centers
by learning have been studied also by Wettschereck and
Dietterich (1992).
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Figure 1: A Radial Basis Function Network

In this paper we focus on 2-class pattern-recognition
in which the network’s output is reduced to a boolean
variable, f : Rn -4 [-1,1], and we explore the approach
that associates each/~i with one training example (Pog-
gio and Girosi, 1990). Since turning all training exam-
ples into gaussian centers would create an unnecessar-
ily large network, Lowe (1989) and Lee (1991) recom-
mend selecting only a random subset. This is still un-
satisfactory in applications where many examples are
noisy, redundant, or non-representative. We surmise
that choosing only those examples that have particular
merit will make it possible to model the given pattern
with a smaller network.

The search for representative examples has received
attention among researchers that study edited nearest-
neighbor classifiers, notably Hart (1968), Gates (1972),
Wilson (1972), Ritter et al. (1975), Tomek (1976),
and, more recently, Cortez and Vapnik (1995), and Wil-
son and Martinez (1997). Their algorithms can remove
many noisy and redundant examples at the price of high
computational costs--typically at least O(mn2), where
m is the number of attributes and n is the number of
examples. Moreover, these authors primarily concen-
trate on how to find "consistent" subsets that, when
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used by a nearest-neighbor rule, give the same classifi-
cations as the original set. In the search for gaussian
centers for RBF networks, consistency is not requried
because the weights and non-linearities can make up for
imperfections of the selected examples.

We suggest a novel technique that, at costs O(mn),
sorts out just a few representative training examples.
The idea is that, rather than a single subset with N
examples, we create three small subsets, $1, $2, and $3,
such that IS1 US2 USa] < N. These subsets complement
each other in the sense that, when employed by a 1-
nearest-neighbor classifier, each of them tends to err in
a different part of the instance space so that occasional
mistakes of one classifier can be outvoted by the others.

When Sfls satisfying the complementarity condition
have been found, their examples are pooled, S =
S1 U $2 [J $3, and the elements of S are used as the
ganssian centers ~ufls. We hypothesize that the com-
plementary behavior of Sfls ensures that the resulting
RBF network will have favorable classification accuracy
despite its small size. Whether this expectation is real-
istic will be examined by a series of simple experiments
with synthetic as well as benchmark data. Prior to
that, however, the next section explains the details of
the example-selection algorithm.

Description of the Algorithm
The ganssian centers ~ui are identified with carefully se-
lected training examples in the subsets $1, $2, and $3.
Each Si, when used by a 1-nearest-neighbor algorithm,
defines a subclassifier Ci. The subsets Sfls are to be
selected in a manner that ensures that each Ci will be
prone to err on different examples. Here, our inspira-
tion comes from the recent work on combining expert
decisions (Vovk 1990; Breiman 1996) and, indirectly,
from the essence of the boosting algorithm (Schapire,
1990).

Each Si contains only very few training examples (say
2 or 3), and care is taken that both classes (positive and
negative) are represented in each Si. Applying Cfls to
example x results in three class labels, and the final de-
cision is achieved by voting of the triplet of Cfls. This
will correctly classify any example that has been cor-
rectly classified by C1 and C2. Conversely, any exam-
ple that has been misclassified by both C1 and C2 will
be misclassified by the voting triplet regardless of the
behavior of C3. Therefore, C3 should maximize its per-
formance on those examples where C1 and C2 disagree.
Let the error rates of C1, C2, and Ca be denoted Vl, ~2,
and c3, and let ~k denote the percentage of examples
misclassified by both C1 and C2. (Remember that the
error rates of C1 and C2 will be measured on the entire
training set, but e3 will be measured on those examples
where C1 and C2 disagree.)

Figure 2 clarifies the notation and illustrates the fact
that the error rate (PE) of voting consists of ek, in-
creased by the percentage of those examples on which
C3 is wrong while C1 and C2 disagree (~1 + ~2 - 2ok):

Cl
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I.egend: Remark:

correctly classified examples ~i have the character of percentages,
misclassified examples not absolute numbers

[-~ examples playing no role

Figure 2: The behavior of the three classifiers

(1)

In the event of ~1 = ~2 ---- ~s = ~, Equation 1 degen-
erates into PE = ~k + ~(~ + ~ -- 2~) = Zk(1 -- 2~) + 2.
Then, PE < ~ for any ~k < ~, and the voting is guaran-
teed to outperform any Ci. The expression turns into

PE = 2~2 for Ek = 0, and it turns into PE ---- e for
~k = E. The best accuracy for el = 62 = ~3 = ~is
therefore achieved when (71 and (72 never misclassify
the same example (gk = 0). Conversely, PE reaches its
maximum when Ck = g.

In realistic applications, ~k -- 0 is hard to achieve if
~1 = ~2. In the search for the most appropriate C2,
the condition ~k = 0 can often be satisfied only at the
price of significantly increased ~2, which means that
the trade-off between ~2 and ~k has to be considered.
Suppose the learner has chosen some C1, and then suc-
ceeded in finding C2 such that ~k is low, while c2 is
high. What if another classifier, C~, can be found such
that ~ < ~2, and ~ > ~k? How to decide whether the
improvement in v2 outweighs the loss in ~k? A guideline
is offered by the following lemma:

Lemma 1. Given fixed ~ and ~3, assume two can-
didates for the second classifier, C2 and C~, such that
~ = ~2 + A¢2 and ¢~k = ¢k + A~a. Define (~ = 1-2e~~3
For the error rates, PE and P~, of C2 and C~, the fol-
lowing equivalence holds:

Proof. Equation I establishes for the overall error rate:



Table 1: The algorithm for the selection of example sub-
sets, S1,$2 and $3, that complement each other when
used by a nearest-neighbor classifier.

1. Make/(1 choices of $1, and then select the one that
minimizes 81.

2. Select randomly $2 and $3 and establish the initial
value of a.

3. Make/(2 choices of an alternative for $2. Whenever
As2 < --aAsk is satisfied, replace $2 with this new
candidate.

4. Make/(3 choices of $3, and select the one that min-
imizes 83. Unless a stopping criterion is satisfied,
update a = (1 - 283)/83, and return to step 

P~ = s~.+s3(sl +s~-2s~.)
= sk + ASk +83(sl +82 + As2 - 2sk -- 2Aak)

= PE + Ask + 83(A~2 - 2~)

From here, P~ < PE iff ASk + S3(AS2 -- 2ASk) < 
,~ I --2~This inequality is satisfied whenever 82 < --’~k ~3 =

--aA~.

Q.E.D.

For illustration, suppose that some initial choice for
C2 implies Sk ----- 0.05 and 82 = 0.35, and let a -- 3.
This gives PE = ask + s2 = 0.15 + 0.35 = 0.50. Then,
another classifier, C~, is found, entailing error rates
s~ -- 0.18 and s~ = 0.10. According to the previ-
ous lemma, this new classifier is better (P~ < PE)
because As2 = -0.17, which is less than --aA~k =
--3 ¯ 0.05 ---- --0.15. Indeed, it is easy to verify that
P~ --- as~. + s~ -- 3.0.10 + 0.18 -- 0.48 < PE.

Suppose that C1 and C2 have been chosen. Then,
C3 is selected and the values of ~3 and a determined.
The learner will search for some C~ that satisfies the
condition As2 < -c~As~. Lemma 1 guarantees that
the replacement of C2 by C~ reduces PE. The search
is repeated, with the error rate PE gradually decreas-
ing, until no C~ satisfying the condition of Lemma 1
can be found. The learner will then find a C3 that mi-
minizes 83. As a result, 83 might depart from its initial
value, which chanes a. The program will return to the
previous step to further adjust C2, and the procedure is
repeated several times, terminating when no reasonable
improvement of PE is observed.

The algorithm that employs this analysis for the
choice of complementary instance-based classifiers is
summarized in Table 1. The precise values of the K~
values were: /(1 = 10,K2 = 5, and /(3 = 10. This
means that in the first step, 10 different (random) sub-
sets $1 are considered, and the one with lowest el value

is chosen. The program generates the initial $2 and
$3 subsets (so as to calculate the initial value of a),
and then cycles through steps 3 and 4 until some ter-
mination criterion is reached. In our experiments, we
simply stopped the program after 5 visits at steps 3
and 4. In each of these visits, K2 -- 5 random candi-
date $2 subsets were generated. Whenever the condi-
tion Ass < --~Ask, the current $2 is replaced with the
new candidate. The program then generates Ks = 10
random candidates for $3 and chooses the one that has
the lowest e3.

The number of subsets considered by this algorithm
is K1 + 5(K2 q- t(3) = 10 + 5(5 + 10) -- 85 which,
together with the initial choices of $2 and S3, gives 87.
Evaluation of each subset on the training set is linear
in the number of examples. More precisely, if each Si
contains three examples, then the overall computational
costs are upper bounded by 87 × 3 x n, where n is
the number of training examples. The real costs are
somewhat lower because $3 is evaluated only on those
examples where the first two subclassifiers disagree.

Experiments

Our objective is to select a compact subset of the train-
ing examples that will be identified with the ganssian
centers, tt~, of a radial-basis function network. In our
experiments, the weight vector w was obtained using
the statistical linear-regression technique of pseudoin-
verse matrices (see, e.g., Duda and Hart 1973). More
specifically, if X is a matrix whose each row contains
the outputs of the RBF units, and b is the classification
vector whose elements are 1 for positive examples and
-1 for negative examples, then w -- XPb where XP is

2 of thea pseudoinverse matrix of X. The variance, a~,
2 v~ where d is the Euclideani-th RBF is set to ai =

distance of the center that is closest to tti.
Our question is whether our example-selection

method can really lead to smaller RBF networks with
still high classification accuracy. In the search for an an-
swer, we experimented with simple synthetic data with
known characteristics, and then proceeded to experi-
ments with more realistic benchmark domains.

In the sequel, an RBF network that has been cre-
ated from randomly selected examples will be referred
to by the acronym RANDEX. A RBF network that has
been created from examples selected by the algorithm
described in the previous section will be referred to by
the acronym SELEX.

Synthetic Data

To develop initial insight into the behavior of SELEX,
we experimented with synthetic data in which the de-
cision surface between positive and negative examples
is known. We worked with three noise-free artificial
domains, created as follows:

1. Hyperbola. Examples are generated as pairs, (x,y),
of uniformly distributed numbers. All points satis-
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Figure 3: Classification accuracies in synthetic do-
mains. Left to right: hyperbola, hypercubes, hyper-
spheres. Top: 6 gaussian centers. Bottom: 15 centers.

fying 3x2 - 3y2 < 1 are positive; all other points are
negative.

2. Hypercubes. Examples are 5-tuples of uniformly dis-
tributed numbers. Three 5-dimensional hypercubes
are created. All points inside any hypercube are
positive; all other points are negative.

3. Hypcrspheres. Examples are 5-tuples of uniformly
distributed numbers. Three 5-dimensional hyper-
spheres are created. All points inside any hyper-
sphere are positive, all other points are negative.

In all these three domains, care is taken that the pos-
itive and negative examples are equally represented in
the data.

One of the advantages of experiments with synthetic
data is that arbitrarily large sets of examples can be
generated to warrant statistical significance of the re-
sults. In the experiments reported below, we always
used 500 training examples and 500 testing examples.
Given the relative simplicity of the decision surfaces
(and the fact that the examples are noise-free), these
numbers apear to be sufficient for good estimates of
classification performance.

We carried out two sets of experiments with SELEX,
differing in the sizes of the subsets Si. In the first serms,
we required that ISil = 2, which led to RBF networks
with 3 x 2 -- 6 gaussian centers. In the second series, we

required that IS~I = 5 which led to RBF networks with
3 × 5 -- 15 gaussian centers. By way of reference, we
organized the experiments with RANDEX as follows:
for each training set, we conducted 5 separate runs,
each with a different set of randomly selected examples
(6 or 15 examples), and averaged the results.

The results are graphically displayed in Figure 3. The
bars show the classification accuracies observed on test-
ing examples (classification acccuracy being defined as
the percentage of correctly classified examples among
all examples).

Expectedly, an increased number of gaussian centers
(from 3 x 2 = 6 to 3 × 5 -- 15 vectors) means higher
classification accuracy in RANDEX as well as in SE-
LEX. Also expectedly, SELEX outperformed RANDEX
in all experimental domains. What is more important,
however, is the fact that the margin is more clearly pro-
nounced in the case of 6 centers than in the case of 15
centers (reaching 1370 in the domain hyperbola). This
observation corroborates the intuitive expectation that
the example-selecting algorithm described in the previ-
ous section improves classification accuracy especially
in very small RBF networks. When the number of cen-
ters is high, even random selection will be sufficiently
representative, and the advantage of SELEX dissipates.

Note that the domain hypcrspheres was especially dif-
ficult for the RBF network. Many more ganssian cen-
ters would be necessary if the network were to achieve
satisfactory performance. For this reason, SELEX in
this domain clearly outperformed RANDEX, even in
the case of 15 centers,

Benchmark Data

To make sure that our conjectures extend also to real-
world domains, we experimented with the benchmark
data files from the Machine Learning Database Repos-
itory of the University of California, Irvine (Blake,
Keogh, and Merz, 1998). The particular choice of
testbeds was constrained by our focus on two-class
problems and by the requirement that the examples
be described mainly by numeric attributes. Occasional
boolean attributes were treated as numeric attributes,
acquiring value 1 for true and 0 for fa/se. The upper
part of Figure 4 summarizes the experimental data files
by providing information about the size of each file, the
number of attributes, and the percentage of examples
that are labeled by the majority class (the right-most
column).

The first seven datasets have two classes. The last
three domains (balance, glass, and wine) originally in-
volved more than two classes, but we turned them
into two-class problems. Specifically, the classes in the
balance domain say whether the balance is tilted left,
right, or whether there is no tilt at all. We combined
tilt-right and tilt-left into one class. We aggre-
gated the 7 classes in the glass domain into into windows
(the first four classes) versus non-windows. In the wine
domain, the second class and the third class were com-
bined into one.



Dataset ~ex. # att. majority
1 Hepatitis 80 19 83.75
2 B. Cancer WI 1 683 9 65.01

B. Cancer WI 2 569 30 62.74
Pima 768 8 65.10

5 Ion 351 34 64.10
6 Balance 625 4 92.16
7 Echocardiogram 61 12 72.13
8 Glass 214 9 76.17
9 Liver 345 6 57.97

10 Wine 178 12 68.85
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Figure 4: Classification accuracies observed in bench-
mark domains. Upper graph: 6 gaussian centers. Lower
graph: 15 gaussian centers. For comparison, the results
of initialization by k-means (k = 6 and k = 15) are
shown.

These data files are not large enough to warrant
statistically safe estimates of classification accuracies.
Since the popular t-tests are unreliable in random sub-
sampling of data files of this size, and since N-fold cross-
validation on some of the smaller domains would entail
very high standard errors, we opted for a compromise:
we used 10-fold cross-validation, repeated 5 times, each
time for a different partitioning of the data, and then
averaged the accuracies measured in different runs. In
each experiment, 90% of the examples were used for
training, and the remaining 10% for testing. The vari-
ances then became reasonably small. In view of the fact
that we are interested only in general tendencies, the
chosen experimental methodology is sufficiently sound.

The SELEX and RANDEX experiments were orga-
nized analogically as in the case of synthetic data. This
means that in SELEX, the sizes of the individual sub-
sets were ]Sil = 2 or IS~I = 5, meaning that the resulting
RBF network would contain 6 and 15 units, respectiv-
elly. The RANDEX results are averages from 5 random
runs, each time with 6 (or 15) randomly selected exam-
ples used for/~i.

For reference, the graphs in Figure 4 show also the
performance of RBF networks that have been initial-
ized by clustering techniques (each/xi is identified with
the center of gravity of a cluster found by the k-means
algorithm)1 where, again, k ---- 6 or k -- 15. The reader
can see that in most domains the clustering-based ini-
tialization is a clear loser among the three techniques.
From the results, one can therefore conclude that to
identify/~i’s with selected training examples is a more
promising approach.

Further on, our example-selecting mechanism gives in
nearly all domains better results than random selection
of examples (the only exception being balance). Again,
the margin is reduced when the number of centers in-
creases to 15.

Conclusions
One of the main issues in RBF networks is how to de-
fine the gaussian centers of the individual radial-basis
functions. One of the possibilities is to identify these
centers with representative training examples. A natu-
ral requirement i s that the ensuing network should be as
small as possible to prevent overfitting and to minimize
classification costs.

Our solution is based on a simple heuristic that says
that rather than a single subset containing N examples,
one should search for three smaller subsets, S1, $2, and
$3, such that IS1 US2 US3[ < N. The sets should com-
plement each other in the sense that, when employed
by a 1-nearest-neighbor classifier, each would lead to
errors in a different part of the instance space.

This approach turned out to outperform random se-
lection of examples. Another observation is that (at

iClustering techniques did not make much sense in
the synthetic data because the examples were uniformly
distributed.



least in the benchmark domains we used) initialization
by selected training examples gave better results than
the more expensive clustering technique suggested by
Moody and Darken, (1989) and Musavi et al. (1992).

On the other hand, the achieved performance does
not seem to reach the classification accuracies reported
by Kubat (1998) for his decision-tree based initializa-
tion. However, a great advantage of SELEX is the com-
pactness of the resulting network. In the decision-tree
based approach, a typical network contained dozens of
neurons.

The encouraging results suggest that example-
selecting techniques (used in RBF initialization) de-
serve further attention. We recommend that instead of
just triplets of subsets, one should study the behavior
of the more general K-tuples (K > 3). This will lead
to more general version of Equation 1 and of Lemma 1.

Although not included in our results, preliminary ex-
periments showed that if the size of the Si’s was two,
the classifier accuracy sometimes suffered. Increasing
the size from three to five did not significantly improve
the results with other datasets. We therefore left the
size of the S~’s at three because this seemed optimal for
the majority of datasets involved. Additionally, similar
preliminary experiments suggested the number of ran-
domly generated candidates used in choosing the S1, $2
and $3 subsets were optimal for the given benchmark
datasets.

Apart from that, we observed that different domains
called for different sizes of Si’s. This means that one
should look for heuristics that would suggest the ideal
size for the given problem. Flexibility can be further
enhanced by allowing that each Si has a different size.
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