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Abstract

The mechanism underlying perceptual grouping
of visual stimuli is not static, but dynamic. In
this paper, the dynamical grouping process is
implemented with a neural network model con-
sisting of an array of (hyper)columns suggested
by Hubel & Wiesel, where intracolumnar inhibi-
tion and intercolumnar facilitation are incorpo-
rated. The model was applied successfully to fig-
ures consisting of a set of dots yielding either of
two ways of groupings from time to time due to
neural fluctuations and fatigue. Then the model
was extended to introduce dependency on fixa-
tion points as well as neural fluctuations and fa-
tigue. Then, it was applied to the Necker Cube.
The model output from time to time either of
two ways of 3D interpretations depending on the
fixation points.

Introduction

Perceptual grouping plays an essential role in segment-
ing objects in the scene and recognizing each of them.
Gestalt psychologists have proposed that there are sev-
eral factors underlying the grouping: they are factor
of proximity, factor of similarity, factor of smooth con-
tinuation, and so on. Recently, computer implemen-
tations of the grouping processes have been reported
(Stevens 1978; Hiratsuka, Ohnishi, and Sugie 1992).
However, the mechanism underlying perceptual group-
ing of visual stimuli is not static; but dynamic as
in Marroquin pattern (Fig.1) (Marr 1982). The dy-
namical aspect of grouping seems to reflect the flexi-
ble nature of human visual information processing to
deal with ambiguous patterns. However, it has not
been studied seriously. In this paper, the dynamical
grouping process is implemented with a neural network
model consisting of a 2D array of hypercolumns sug-
gested by Hubel & Wiesel (1977), where intracolumnar
inhibition and intercolumnar facilitation are incorpo-
rated. The model was applied successfully to figures
which consist of a set of dots yielding either of two ways
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Figure 1: Marroquin pattern.

Figure 2: Necker Cube.

of groupings from time to time due to neural fluctua-
tions and fatigue. Moreover, the model was able to
interpret line drawings, a grouping at a higher level; it
was applied to the Necker cube (Fig.2). It also exhib-
ited dependence on fixation points about the Necker
cube. The model output either of two 3D interpreta-
tions reflecting fixation point dependence as reported
by Kawabata et al. (1978).

Neural Network Model

This model is based on the neural network model con-
sisting of hypercolumnar structure. It has been used
to explain the early visual process such as retinal ri-
valry (Sugie 1982). We extend it to deal with highly
ambiguous figures of more than two interpretations.
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Figure 3: Generalized flip-flop.

Basic Structure — hypercolumn —

In the human visual system, visual stimuli are received
first by the retina. Then, outputs of retinal ganglion
cells are sent to the V1 of the cerebral visual cortex via
the lateral geniculate body. The V1 consists of a 2D
array of hypercolumns, each of which corresponds to
a specific local visual area preserving the topological
relationship in the retina.

This columnar structure is modeled with network
structure which has intracolumnar inhibitory as well
as intercolumnar facilitator connection. Fig.3 shows
the network structure of one column. The units of
E\,Ey,---,E;,---, E, correspond to neurons, each of
which is selective to specific stimulus orientation of its
own. Each neural output f(u;) is weighted (wy) and
feedback to itself, directly. It is also fed to an inhibitory
neuron I with a unit weight, whereas the output of
neuron I is fed to each of E;’s with weight ws. These
two inputs ensure that at the steady state only one
of F;’s becomes activated or the winner depending on
the inputs s;’s, ¢;’s, and z;’s (Amari 1978). Thus, we
call the network shown in Fig.3 as generalized flip-flop.
Now three kinds of inputs to each of F;’s are explained.

1. visual stimulus via the retina and the lateral
geniculate body- - - [s;]

2. an inhibitory input from I summing up all the
outputs of E;’s - [g(v)]

3. a facilitator input from the orientation sensi-
tive unit in the neighboring hypercolumn (in-
tercolumnar facilitation)- - - [¢;]

This element of columnar structure (or, network)
(Fig.3) is corresponding to the structure which locates
at one point on visual cortex. As shown in Fig.4, a
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Figure 4: Intercolumnar facilitation network.

2D array of generalized flip-flops are arranged so that
each of which corresponds to its own specific local vi-
sual field preserving the topological relation. Further,
neighboring generalized flip-flops are facilitatively in-
terconnected via ¢; as described in 3 above. ¢; is de-
pendent on both the mutual distance and mutual dif-
ference in orientations between each pair of generalized
flip-flops. In Fig.3, hy and h, are the thresholds of the
corresponding units. u;’s and v are the inner potentials
of the corresponding units. Here the inner potential
means the total sum of weighted inputs and threshold.
Thus %; and v satisfy the following differential equa-
tions (1) and (2), respectively. The time constant for
u; is 1, and that for v is 7.

U = —u;+ w1f('th) - w2g(v) —hy+s; (1)
™ = —v+ Z fus) = ko 2)
i=1

As already mentioned, f(u;) and g(v) are the excita-
tory and inhibitory outputs of F; and I, respectively.
Each E; has its own excitatory feedback collateral with
weight w;, which plays the role of keeping its activity
high once it is excited. The inhibitory unit I serves
for keeping E;’s from saturation as well as for deciding
the winner among E;’s. We define f(u;) and g(v) as
equations (3) and (4), respectively.

s={g 429 ®
sw={4 420 @
Further, we assume that 0 < s; < smaz-

As analyzed by Amari (1978), the generalized flip-
flops behaves as follows:

1. When all the inputs s;’s do not attain the level
of smin, none of F;’s are excited.

2. When there are plural s;’s exceeding smin, Fi
corresponding to the maximal s; becomes ex-
cited or the winner, while the others are sup-
pressed and are not excited at the steady state.

3. Once one E; becomes the winner, it remains
excited even after the input s; is set to 0. Only
by resetting the whole system F; is set to off.



In the model shown in Fig.4, certain orientation se-
lective units corresponding to the positions where vi-
sual stimuli do exist will be excited. Moreover due
to intercolumnar facilitation, some other units may be
excited as well even if there is not any correspond-
ing visual stimuli. This facilitative effect may reflect
the factor of smooth continuation complementing gaps
along a smooth line. The winner-take-all nature of the
model may correspond to only one interpretation of a
stimulus figure at one time.

This kind of intercolumnar and intracolumnar inter-
action scheme has been proposed for the elucidation
of self-organization mechanism of binocular stereopsis
(Sawada and Sugie 1982). The generalized flip-flop is
based on the system of winner-take-all. So, it is an
appropriate model of binocular rivalry (Sugie 1982).

Extension to Deal with Dynamical
Grouping

In the situation of dynamical grouping, humans do
not always have a single stable percept, but have one
of plural percepts competing one another from time to
time. For example, when we look at Fig.5(a), the per-
cepts alternate between (b) and (c). To deal with such
phenomena, we introduce the following three factors
into the model.

fluctuation of neural activities (z) As each
neuron is under the influence of noises contained
in the external stimulus as well as intrinsic flue-
tuations in cellular activities, the neural activities
fluctuate from time to time. Therefore, only one
neuron becomes the winner at the steady state,
even if each input s; to E; is one and the same. z;
represents such noises.

neural fatigue Once a unit E; continues to fire,
the threshold hy of which becomes higher result-
ing in difficulty in firing on. This is the neural
fatigue, which may cause the change in the win-
ner unit. The detail of fatigue process will be de-
scribed later.

fixation point When we look at stimulus figures,
we usually change the fixation point from time to
time, which causes the change in the retinal image.

Considering these factors, the processing in the
model proceeds as shown in Fig.6.

First a fixation point is decided. Then the retinal
image is formed accordingly. Next, at the stage of
feature extraction, the position, and allowable orienta-
tions formed by grouping neighboring dots in the stim-
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Figure 5: Example of dynamical grouping.
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Figure 6: Model of dynamical grouping process.

ulus figure at each local region are extracted. Then at
the stage of determining the optimal orientation, the
inputs to each FE; is determined, which reflect the fac-
tors of perceptual grouping (proximity or mutual dis-
tance, similarity in shape or orientation , and smooth
continuation).

At the stage of cooperation and competition, the
proposed neural network decides the winner among
orientation selective E;’s in each hypercolumn. In or-
der to realize the neural fluctuations, we introduce one
noise-generating neuron corresponding to each F;. The
output of the noise-generating neuron represents z;. As
for the neural fatigue, it is realized through the change
in hy as already stated, the detail of which will be de-
scribed in the next section.

At the stage of output image, the simulated per-
cept at each instant is displayed, where E; yielding the
maximal output among other F;’s at each location at
each instant is assumed to correspond to the perceived
grouping (connection) between the dot of concern and
one of the neighboring dots. Since the percepts may
change from time to time except at the equilibrium
state, the output images are generated and displayed
at each instant.

As for the factor of change in fixation points, we
assume the factor as restarting of the whole process.
Thus the factor is introduced at the first of all the
stages.

Simulation Studies

We implemented and simulated the proposed scheme.
TFor simplicity, we assume the processes from the fixa-
tion point through the optimal orientation as a prepro-
cessing prepared beforehand. The results of the pre-
processing are given as inputs to the succeeding pro-
cess of cooperation and competition shown in Figs.3
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Figure 7: Variations of connection between elements.

and 4. One general flip-flop is assigned to each dot
in the stimulus figure. Each of E;’s corresponds to
a connection between the dot of concern and one of
neighboring dots with the orientation specific to F;.
We assume the following three types of connections for
each dot of concern as shown in Fig.7, where the filled
circle represents the dot of concern and open circles
represent neighboring dots.

1. the case with two connected neighbors, where
the distances to them are d1 and d2 and the
angle formed by two line segments are 8.

2. the case with one connected neighbor, the dis-
tance to which is d.

3. the case without any connection.

We set the initial value s; for F; considering percep-
tual grouping factors. That is, in the first case above,
we assign the value is larger for smaller distance (d1
and d2) and for @ closer to 180 degrees. In the second
case, the initial value is larger for smaller d, while in
the third case the initial value is set to zero.

For those inputs described above, each generalized
flip-flop outputs such a connection corresponding to E;
with the highest activity among others.

As for the neural fatigue, we changed the threshold
hy of each E; according to Egs.(5) and (6) below. The
changing profiles of hy with respect to time are shown
in Figs.8 and 9. The former corresponds to the case
where the inner potential is positive and the unit is
firing, while the latter is applied in the case where the
inner potential is negative and the unit not active.

1
hi = hi_min+ m“'— (t;’hr) '(hl_max —'hl_min) (5)

where t,hr T, hi_min,P1_mazr designate the time, the
time constant, the increase rate of threshold, the min-
imum value of the threshold, and the maximum value
of the threshold, respectively.

by = hy_min +exp (—at) : (hl..maa: - hl_min) (6)

where ¢ means the time constant.

In Figl0, we show two sample visual stimuli for
simulation studies. Since these stimuli are simple fig-
ures, we experimented without considering the factor
of change in fixation points. As a measure of process-
ing time unit, we introduce a prescribed time unit. It
is the time to obtain one output image after giving the
inputs to generalized flip-flops. We observed output
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Figure 8: Change in threshold [1] due to fatigue.
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Figure 9: Recovery of threshold [2] from fatigue.

images during 6,000 time units (Fig.10(a)) and 3,000
time units (Fig.10(b)), respectively.

In Fig.11, we show the outputs of the neural net-
work for the visual stimulus, Fig.10(a), in the course
of the time after the stimulus presentation. We can
see that at £ = 500 a complete vertical line is per-
ceived, while the horizontal line is interrupted in the
middle. At ¢ = 3000, however, the percept is just in
the contrary. The horizontal line is complete, while
the vertical line is interrupted in the middle. At
t = 1000, 2000, 3500, and 5000, some of the dots are
left alone without forming any connection with other
dots. Such fluctuating percepts similar to human per-
ception are caused primarily by the neural fluctuations
and fatigue.

In Fig.12, we show the outputs of the neural net-
work in the course of time after the presentation of the
visual stimulus, Fig.10(b). When humans observe the
stimulus, humans perceive in the course of the time ei-
ther fragments of circles of various radii (arcs), or line
segments of various orientations and lengths at various
positions. The outputs shown in Fig.12 may be con-
sidered as simulating and the fluctuating human per-
ception stated above. The simulated percepts in Fig.12
are mostly fragmentary circles or short lines. However,
human percepts tend to prefer more complete circles
or lines. This difference should be studied further by
taking into consideration of more global measure of
‘Gestaltian Praegnanz’.

Applying to Ambiguous Figures

When humans observe the figure shown in Fig.2
(Necker cube), human percepts alternate from time to
time between either of two 3D interpretations shown
in Fig.13(a) and (b), where hidden (only partly) lines
are removed for convenience. Note that only one of the
two interpretations are exclusively perceived at each in-
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Figure 10: Sample stimulus 1,2.
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Figure 11: Time course of perception (pattern 1).

stant. We consider this kind of higher visual processes
can be realized using the scheme of 2D array of gener-
alized flip-flops shown in Figs.3 and 4. Each vertex of
the visual stimulus in Fig.2 corresponds to one gener-
alized flip-flop. Each E; corresponds to one of the two
interpretations at the assigned vertex. Facilitative in-
tercolumnar interactions are introduced between a pair
of E;’s with the same interpretation in generalized flip-
flops for each pair of adjacent vertices.

According to Kawabata et al., which of the two in-
terpretations are preferred is remarkably dependent on
which vertex the subjects look at (Kawabata, Yam-
agami, and Noaki 1978). It is reported that when the
fixation point is around A in Fig.14, the subjects tend
to perceive the interpretation 1 more often. When the
fixation point is around A’, however, the subjects tend
to perceive the interpretation 2 more often. So we set
s;’s dependent on the fixation point as follows, where
let s; stands for the interpretation 1 and sa the inter-
pretation 2. Let Pi denote a fixation point. Then s, is
set to be proportional to the distance between A and
A’ divided by that between Pz and A plus «, where «
is a positive constant to keep the value from diverging
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Figure 12: Time course of perception (pattern 2).

for Pi very close to A. Similar sj is set to be propor-
tional to the distance between A and A’ divided by
that between Pi and A’ plus «. Thus at P1, P2, P3,
and P4, the ratios between s; and s, were set to 5:1,
2:1, 1:2, and 1:5, respectively.

The simulation studies were conducted while the fix-
ation points were shifted from P1 through P4 suc-
cessively. At each Pz, the duration of fixation was
1,500 time units. As an example of the inner potential
change, the result on the vertex A is shown in Fig.15.
In Fig.16 are shown some of the snapshot percepts of
the model. The duration ratios between the interpreta-
tion 1 and 2 are summarized in Table 1. It is obvious
that the percepts fluctuate from time to time. We can
see that at P1 the interpretation 1 is overwhelmingly
dominant. As the fixation points were shifted towards
P4, the interpretation 2 becomes dominant gradually.
However, even at P4, the dominance of interpretation
2 over 1 is not so overwhelming as that of 1 over 2 at
P1. Thus as a whole the duration ratio of interpreta-
tion 1 and 2 during 0 — 6,000 time units is 53.4 : 46.6
preferring the interpretation 1. To see the hysteresis
effects due to the shifts in fixation points, we carried
out simulation studies for the cases of no shifts in fixa-
tion points. Each fixation started from the same initial
condition. The result is shown in Table 2. The change
in interpretations (P1 versus P4, and P2 versus P3)
is almost symmetrical with respect to two interpreta-
tions. Thus the results in Table 1 can be understood as
reflecting the hysteresis effects. These behaviors of the
model coincides well with the findings by Kawabata et
al.

Concluding Remarks

Grouping process is dynamic in nature. However,
in most cases only one kind of grouping is possible.
Therefore the perception is stable and grouping seems
static only apparently. In some pathological cases, the
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Figure 13: 3D interpretation of Necker cube.
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Figure 14: Movement of fixation points.
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Figure 15: Potential change on vertex A.

dynamical aspect of grouping shows up. The present
article may be the first serious attempt to simulate
some of the typical phenomena, related to figures which
consist of dots and the Necker cube. The Gestalt con-
cept of similarity should be extended to include 3D
interpretations as in the Necker cube.
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