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Abstract
A modified version of the first-order logic of probability
presented in (Halpern 1990) – with probability on possible
worlds – makes it possible to formulate an alternative char-
acterisation of fuzzy sets. In this approach, fuzzy sets are no
longer seen as primitive entities with an intuitive justifica-
tion, but rather as structured entities emerging in a suitable
logical framework. Some fuzzy techniques of practical rele-
vance are shown to be encodable in this way. In addition,
the resulting approach leads to a clearer epistemological
analysis in that it clarifies the purposive nature of the kind
of uncertainty that can be modelled by fuzziness.

1. Introduction

A fairly common characterisation of fuzzy sets in the lit-
erature is as a primitive notion – usually but not necessarily
related with uncertainty – which is given intuitive justifi-
cation in terms of similarity with classical sets. Typically, a
textbook on the topic wil l start by describing the real-
valued generalisation of classical characteristic functions
and will then discuss a few examples of fuzzy set model-
ling applied to everyday knowledge immediately after.

From an epistemological standpoint, this attitude would
appear to assume an incremental modelling strategy for the
notion itself. One disadvantage, deriving from the rather
weak premises, is that further formal and informal ele-
ments have to be introduced at all subsequent stages of
theoretical development. For instance, a viable mathemati-
cal definition for the fundamental set-theoretic operators –
i.e. conjunction, disjunction and complement – is typically
achieved by positing an ensemble of natural axioms (e.g.
continuity, commutativity, monotonicity, etc.). However
sensible, these axioms are restricted to each group of items
to be defined and are grounded on pragmatic intuition
alone. Not surprisingly, as the formal apparatus grows, the
method becomes less and less effective.

The problem is particularly noticeable with the closely-
related field of fuzzy logic. Paris (1994) for instance gives
a set of natural axioms for negation, conjunction and dis-
junction and then skates over the detailed assessment of an
implication-like connective, as “ it seems far less clear what
axioms should hold for this function”. Clearly, the situation
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does not improve when defining a fuzzy-logical con-
sequence relation.

The central claim of this paper is that fuzzy sets could be
characterised in a different way, namely as a derivative
notion in a suitable logical framework. More precisely,
fuzzy sets may be made to emerge from a logical ‘deep
structure’ which governs their ‘surface’ behaviour. Al-
though the modal probabilistic framework that has to be
adopted is somewhat elaborate, the resulting characterisa-
tion leads to clearer epistemological analysis. In addition,
the approach would appear to preserve the qualitative fla-
vour of the original setting. At the very least, it can be
shown that some well-known fuzzy techniques can be en-
coded in the proposed framework.

The paper first describes the modal probabilistic logical
framework and subsequently provides a tentative definition
of fuzzy sets with respect to this framework. The possible
encoding for existing fuzzy techniques is then discussed in
some detail. In so doing, the informal notion of fuzziness is
reconsidered again and the relationship with Gärdenfors’
notion of conceptual spaces (1992) is discussed in detail.

The ideas presented here owe much to the influence of a
number of other studies. As already stated, the logical ap-
paratus is derived from (Halpern 1990). The construction
of a possible world semantics for fuzzy logic was first ex-
plored in (Ruspini 1991), whereas the characterisation of
fuzzy sets given here has some similarity with that devel-
oped by Gerla (1994), who instead adopts probability on
formulas, and in (Wang and Tan 1997). To a large extent,
the treatment of compositionali ty follows the line pre-
sented in (Dubois and Prade 1994).

2. A Modal Probabilistic Framework

The logical framework we are seeking in this section has
the two main goals of providing:
• a language for expressing statements about fuzzy sets;
• a clearly-defined consequence relation.

Sometimes, fuzzy logic is investigated by assuming a
many-valued propositional logic as a basis and by estab-
lishing a relation with fuzzy set theory. Here we follow a
different path. We shall start by constructing a logic of
fuzzy sets, whereas the relationship with many-valued
logics will be discussed in a subsequent section. Note that
the achievement of an axiomatisation is not assumed as a
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goal in this context. One significant reason is that, as we
shall see below, this goal cannot be achieved at all. An-
other reason is that most fuzzy logic techniques are applied
in practice as numerical techniques. Hence the informal
goal in this paper is not to develop a form of automated
reasoning as a replacement, but rather a suitable formal en-
coding that allows us to assess the soundness of the tech-
niques in question.

As mentioned above, the construction of the framework
is based on the first order logic of probability on possible
worlds developed by Halpern (1990). At the outset, we
have a first order language F with equality containing
predicate and function symbols of various arities, together
with a family of object constants and object variables.
Terms of this first sort are to be interpreted, as usual, in a
domain of objects D. It is further assumed that the lan-
guage F includes a name for every object in D.

In order to simplify the exposition that follows, we adopt
a modal translation of Halpern’s original language follow-
ing the approach described in (Voorbraak 1993). This
translation makes use of the two special modal symbols ü
and üp, where p is real number in [1, 0]. Informally, the
meaning of a formula ü j is that j is true in every possi-
ble world (see below), whereas üp j means that j is true
with a probability at least equal to p.

Define a probability structure M as a tuple (D, W, p, S,
m), where D is a domain of objects, W is a set of possible
worlds, p is a binary function assigning the proper meaning
in each world w ³ W to the symbols in F. Define also a
valuation function v assigning an element of D to each ob-
ject term in F. To keep things manageable, we assume that
v does not vary across W, i.e. that all terms are rigid. Note
however that this does not say anything about the exten-
sions of predicate symbols, which are in fact allowed to
vary. Semantic rules for (M, v, w) ì j are defined as usual
in first order logic, i.e. by induction over the structure of j,
with the sole exception that a reference to the world w is
kept as required by the function p. The function m is a
countably additive probability measure over the algebra of
sets {w : (M, w) ì j} generated by the sentences j in F.
The set S is defined as follows:

S = {w : "j,  m(j) = 1 Ã (M, w) ì j}

in other words, S is the subset containing random worlds
(see Gaifman and Snir 1982); i.e. worlds that do not satisfy
any sentence with a zero probability of being true. The se-
mantic rules for the two modal symbols are:

• (M, v) ì ü j  iff  " w ³ S,  w ì j
• (M, v) ì üp j  iff  m({ w ³ W : w ì j}) � p

which yield the expected meaning. Note that both defini-
tions are given w.r.t. to S and this validates the identity:

 ü j � ü1 j.

We also introduce two derivative modal symbols åp and
Pp defined as follows:

åp j � ½ü1 - p ½j
  Pp j � (üp j ¾  ½åp j).

The modal operator Pp expresses a point-valued probability

constraint. Note that, syntactically, modal operators might
be nested. Voorbraak (1993) proves that in a setting of this
kind – which is of modality KD45 – any nested formula
has a non-nested equivalent.

We assume that any formula f in the final language of
the framework is a composition:

l  :  y
where y is a formula in the first order language with modal
extensions. The label l contains symbols from the first or-
der language F plus symbols from a language of a second
sort, namely the language of real closed fields. The latter
includes the binary predicates > and  =, the binary func-
tions + and �, the three constants –1, 0 and 1 plus field
functions and field variables. The interpretation of this
second sort of symbols is given as usual, i.e. with respect
to the set of real numbers R. In addition, l may also con-
tain measuring functions (Bacchus 1990), i.e. functions
mapping object terms to field terms. Finally, we allow field
variables to appear in y as indexes to the modal operators
üp. As a convention, we shall use the letters x, y, z for ob-
ject variables and p, q, r, for field variables.

Informally, the label l acts as a generalised quantifier
binding both sorts of variables in y. From a formal stand-
point, however, the labelled notation is a mere notational
facility for preserving a clear separation between the alge-
braic part and the logical part of each formula. The seman-
tics of labelled formulas is given in terms of a translation
rule. Let:

Q1v1 … Qnvn l
*

be the prenex form of l, where each Qivi represents a
quantifier Qi applied to a variable vi of either kind. Hence,
by definition, a labelled formula  l : y  is a shorthand no-
tation for:

"vn+1 … "vm  Q1v1 … Qnvn (l
* � y)

where vn+1 … vm are variables of either kind occurring free
in l*. The semantic rule for labelled formulas  f = l : y is
defined with respect to a class of extended structures M�
where v� is an extended valuation function assigning a real
value to field terms as well. We write M� ì f iff for every
valuation v�, (M�, v�) ì f. The consequence relation is de-
fined in the usual way – i.e. given a set of labelled formu-
las S, we write S ì f iff every structure M� satisfying the
formulas in the set S also satisfies f.

A first example of a labelled formula is:

p  :  "x (üp A(x) � üp B(x)).

By convention, the term p in the label l is taken here as the
abbreviation of p = p, which is satisfied by any valuation.
Hence in the above formula p is universally quantified; the
formula states that, for any object in D, the probability of
its being B is at least equal to that of its being A. A more
interesting example of labelled notation relates to the defi-
nition of conditional formulas:

(q = 0 ¾ p = 0) ¿ (q � 0 ¾ r = p � q)  :
 (Pq b ¾ Pr (a ¾  b)) � Pp (a | b)

which is the axiom given in (Bacchus 1990). A ternary
modality of conditional independence can be defined as:



p = q � r :
   (a, b ^ g) � ((Pq (a | g) ¾ Pr (b | g)) � Pp (a ¾  b | g)).

The analysis of finitary properties, however, reveals that
the framework is intractable. One of the proofs contained
in (Halpern 1990) can be adapted to show that any formula
in his setting, with probability on possible worlds, can be
translated into a labelled formula of the above kind. Hence
the proofs contained in (Abadi and Halpern 1991) also
demonstrate that the framework presented is hopelessly
non axiomatisable. Nevertheless, the two above goals have
been achieved, as we shall see.

3. A Tentative Definition of Fuzzy Sets

We start by describing the characterisation in question
with a rather informal observation. Consider an open for-
mula j(x) in F, i.e. a formula with no modal extensions,
where x occurs as the sole free variable. With respect to a
probability structure M, each valuation v turns j(x) into the
analogue of a binary random variable. In fact, given the
assumptions made, any value assignment to x causes j(x)
to have a clearly-defined probability of being true. When
we consider a set of valuations, we obtain something simi-
lar to a binary random field. In our characterisation, fuzzy
sets are assumed to coincide precisely with these entities.

For simplicity, we will restrict our attention to monadic
open formulas from this point onwards. The extension to
polyadic formulas should be obvious in most cases. The
machinery of generalised quantifiers enables us to express
statements about fuzzy sets. For instance:

(x = Jane ¾ p = 0) ¿ (x = John ¾ p = 0.3) ¿
 (x = Jill ¾ p = 0.8) ¿ (x = Jack ¾ p = 1)  :  Pp Old(x)

Note that the free variables x and p in y are bound in l. Ba-
sically, the formula expresses a constraint about the fuzzy
set corresponding to the (open) formula “Old(x)”. This
constraint is partial, in that it relates only to a few objects
which are explicitly mentioned. Another example is:

p = cOld(age(x))  :  Pp Old(x)

Here, age( ) is a measuring function assigning an age to the
objects in D, while cOld may be any suitable function that
can be either encoded or approximated in the language of
real closed fields. Note that we have assumed that all terms
are rigid, so both functions do not depend on the world of
reference. The function cOld acts as the membership func-
tion in a ‘classical’ fuzzy set, as shown in the following
figure.

Old(x)½Old(x)

0

1

age20 40 60 80

The function cOld defines a global constraint over the set
of binary random variables, shown as vertical bars, corre-
sponding to the valuations of x. Note that cOld is solely re-

quired to have [0, 1] as its domain; since it models a binary
random field and not a probability distribution, such a
function may consistently assign the value 1 to two or
more distinct instantiations of Old(x).

Clearly, in this scenario, fuzzy sets are given an entirely
probabilistic ‘deep structure’. Such a probabilistic charac-
terisation is not new (Zimmerman 1991). The main differ-
ence, however, is that here the probabilistic trait is struc-
turally related to a logical framework. Regarding this point,
let us also observe that probability plays a role in the defi-
nition of the consequence relation only. This can also be
regarded as a pragmatic advantage, as probability measures
are the most constraining in the family of fuzzy measures
(Klir and Yuan 1995). In other words, in the framework
presented, probability leads to a stronger consequence re-
lation.

4. Fuzzy Logic

In this section we will consider the most common alge-
braic rules for fuzzy logic from the perspective of the pro-
posed logical framework.

Proposition 4.1 – These three formulas are equivalent:

p = min(q, r) :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) ¾ y(x)))

p = max(q, r) :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) ¿ y(x)))

p = min(1 - q + r) :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) � y(x))).

Furthermore, any of the above is equivalent to:

"x (ü (j(x) � y(x)) ¿ ü (y (x) � j(x))).

Proposition 4.2 – These three formulas are equivalent:

p = max(q + r - 1, 0) :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) ¾ y(x)))

p = min(p + q, 1) :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) ¿ y(x)))

p = max(1 - q, r)  :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) � y(x))).

Furthermore, any of the above is equivalent to:

"x (ü (j(x) � ½y(x)) ¿ ü (½y(x) � j(x))).

Clearly, the propositional versions of these properties
also hold true. Nevertheless, the quantified sentences pre-
sented are richer in meaning due to the existing relation-
ship between modal formulas and the sets representing the
extensions of formulas in each possible world.

Definition 4.3 – The extension in a world of an open for-
mula j(x), x being the only free variable in j, is defined as:

Ext(w, j(x)) = {d ³ D :  (M, v[x/d], w) ì j(x)}.

In the light of the above definition, from a purely mathe-
matical standpoint, every unary open formula can be taken
to correspond to the analogue of a random set. Further-
more, all random sets of this kind share a common index-
ing, namely the set of possible worlds.



Proposition 4.4 – The formula:

"x (ü (j(x) � y(x)) ¿ ü (y (x) � j(x)))

corresponds to a semantic condition of nesting:
" (w, w�) ³ S, w � w� Ã

 (Ext(w, j(x) ¾ y(x))  ²   Ext(w�, j(x) ¾ y(x)))  OR
(Ext(w, j(x) ¾ y(x))  ̄    Ext(w�, j(x) ¾ y(x))).

Proposition 4.5 – The formula:

"x (ü (j(x) � ½y(x)) ¿ ü (½y(x) � j(x)))

corresponds to the semantic condition of nesting in Propo-
sition 4.4 for the open formula (j(x) ¾ ½y(x)).

Proposition 4.6 – The formula:

"x "y (ü (j(x) � j(y)) ¿ ü (j(y) � j(x)))

corresponds to the semantic condition of nesting in Propo-
sition 4.4 for the open formula j(x).

In keeping with (Shafer 1976), the property described in
Proposition 4.4 is called joint consonance here, whereas
the property in Proposition 4.5 is called joint dissonance.
For completeness, we also define the property in Proposi-
tion 4.6 as consonance.

Proposition 4.7 – These three formulas are equivalent:
p =  q � r :

 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) ¾ y(x)))
p = q + r - (q � r):

 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) ¿ y(x)))
p = 1 - (1 - q) � r  :

 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) � y(x))).

Furthermore, any of the above is equivalent to:

"x (j(x) ^ y(x)).

The latter is an abbreviation for (j(x), y(x) ^ true). Re-
garding conditional forms, we have:

Proposition 4.8 – The formula:

(q = 0 ¾ p = 0) ¿ (q � 0 ¾ p = min(1, r / q))  :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) | y(x)))
is equivalent to:

"x (ü (j(x) � y(x)) ¿ ü (y (x) � j(x))).

Proposition 4.9 – The formula:

(q = 0 ¾ p = 0) ¿ (q � 0 ¾ p = max(q + r – 1, 0) / q)  :
 "x ((Pq j(x) ¾ Pr y(x)) � Pp (j(x) | y(x)))

is equivalent to:

"x (ü (j(x) � ½y(x)) ¿ ü (½y(x) � j(x))).

The ratio symbol ‘/’ has been used for the sake of brevity.
Obviously, none of the properties presented above is a

new finding. See for instance (Sales 1996) for a thorough
investigation of the relationship between logic and prob-
ability. The main difference between the above algebraic
rules and many-valued logics, is that the latter are taken to
be fully compositional, whereas the probabilistic rules can
be applied only in particular cases, i.e. when the equivalent
modal conditions hold. Hájek, Godo and Esteva (1995)
suggest that this difference is precisely what distinguishes
the two realms; i.e. fuzzy logic is seen as a compositional

theory for degrees of truth whereas probability is seen as a
non-compositional theory of uncertainty. Intuitively
though, the similarities between the two domains seems
worth commenting on further. From a mathematical stand-
point, for instance, Paris (1994) proves that the algebraic
rules presented above, in a certain sense, contain all the
possible definitions for many-valued logics. More pre-
cisely, he shows that any T-norm is isomorphic to either of
the algebraic rules for conjunction in Propositions 4.7 and
4.2; analogously, any T-conorm is isomorphic to either of
the algebraic rules for disjunction in the same propositions.

On the other hand, these algebraic rules for implication
admit a further degree of freedom, depending on whether
this is informally interpreted, as Lukasiewicz did (Rescher
1969), in terms of strict implication or, alternatively, as a
conditional form. Note that the equivalent modal formulas
are the same in both cases. Indeed, the most common
choices for many-valued implications happen to fall among
those described above (see Hájek and Godo 1997). Having
observed that many compositional fuzzy techniques ap-
plied in practice are intentionally of a local nature – i.e.
they are not related to a broader logical system – we come
up against the suspicion that these techniques may, in fact,
fall into one of the classes where compositional rules ap-
ply. In passing, Dubois and Prade (1994) are more cautious
about compositionality, admitting that fuzzy sets may also
be used to deal with uncertainty in a non-compositional
setting, as happens in possibility theory. Nevertheless, they
suggest that the formalism for degrees of truth is appropri-
ate to fuzzy inference systems. In the next sections, we will
show that these techniques may instead involve fuzzy sets
of the uncertainty-based kind.

5. Fuzzy Inference Systems

Fuzzy inference systems are mostly, but not exclusively,
used in fuzzy control systems. A comprehensive and up-to-
date introduction is given in (Jang et al. 1997).

Basically, these techniques are designed to approximate
a real-valued function u = f(z), where z is a finite vector of
real-valued parameters zi. For instance, the function may
describe a control signal for a system with state variables
zi. For simplicity, let us use a binary target function,
whereby z = [z1  z2]

T. A Mamdani-type inference system is
a set of rules of the kind

if z1 is Ak and z2 is Bk then u is Ck

where Ak, Bk and Ck are fuzzy subsets of the real axis in
rule k.
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The inference method for two such rules is visually de-
scribed in the above figure. The vertical bars correspond to
the two values a and b for the parameters z1 and z2 respec-
tively. These values are intersected with the fuzzy sets; the
intersection values ak and bk are then combined through a
T-norm (e.g. min) to obtain the values gk. The latter are
used as thresholds to ‘cut’ the fuzzy sets Ck; ‘cut’ sets orig-
inating from different rules are combined through a T-
conorm (e.g. max) to yield a final fuzzy set. The estimated
value û is finally obtained through a defuzzification
method; typically through an average-like operation.

In a Sugeno-type inference system, fuzzy rules are of a
slightly different kind:

if z1 is Ak and z2 is Bk then u is fk(z1, z2).

Each fk is intended to be a local approximation to the func-
tion f. The values gk are computed in the same way as with
Mamdani-type rules. The main difference resides in how
the estimated value û is computed, typically as the ‘aver-
age’ of the contributions given by the fk:

û  =  g1 f1(a, b) + g2 f2(a, b) + … + gn fn(a, b).

It can be proven that both inference systems, under cer-
tain conditions, are universal approximators; i.e. the value
û can be made arbitrarily close to any continuous target
function (Buckley, 1995). In the field of practical applica-
tions, fuzzy approximation techniques are particularly ap-
preciated when the target function is either unknown or
unobservable, as they apparently relate more directly to
human knowledge.

The logical encoding of the above techniques can be
made clearer by establishing an informal relation with a
possibly more familiar probabilistic model. Assuming that
the target function is unobservable, we may model the
variable u and the parameters zi as random variables on a
suitable sample space W. The conditional density P(u | z)
would then describe the probability for u to be the ‘true’
value of the function, given the parameter vector z. In the
logical encoding we assume a bijective correspondence in
meaning between the objects d ³ D and the sample points
w ³ W. For instance, if the target function describes a con-
trol strategy, each object/point represents a possible state
of the physical system being controlled.

The encoding of the fuzzy sets which occur in the rules
is exemplified as follows:

p = cAk
(z1(x))  :  Pp Ak(x)

 p = cBk
(z2(x))  :  Pp Bk(x)

 p = cCk
(u(x))  :  Pp Ck(x).

Here, z1, z2 and u are encoded as measuring functions as-
signing a real value to the objects in D. In passing, meas-
uring functions are used in (Bacchus 1990) to represent the
analogue of random variables. The analogy does not hold
here since there is no ‘randomness’ on the variable x, i.e.
probability distributes on W rather than on D. Mamdani-
type rules are encoded as strict implications:

"x ü ((Ak(x) ¾ Bk(x)) � Ck(x)).

An entire rule base is encoded as the overall disjunction of

the above rules. Any specific value assignment to the pa-
rameters z1 and z2 can be expressed through a restriction:

(z1(x) = a) ¾ (z2(x) = b)

which circumscribes the relevant objects in D. There is a
crucial analogy here between the latter circumscription and
the conditional update of a probability space. In a prob-
ability space, the acquisition of new facts causes the elimi-
nation of the sample points in W which have become ir-
relevant. This forces the updating of P( ) into the condi-
tional form P( | z1 = a, z2 = b). Similarly, the above circum-
scription corresponds to the elimination of the irrelevant
objects from D. Nevertheless, the measure m on possible
worlds and hence the probability operators are unaffected
since no worlds are ruled out.

The intersection values ak and bk are algebraically com-
puted from the conjunctions:

p = cAk
(z1(x)) ¾ (z1(x) = a)  :  Pp Ak(x)

 p = cBk
(z2(x)) ¾ (z2(x) = b)  :  Pp Bk(x).

The min operator is a sound choice in this case, as it repre-
sents the ‘erosion’ of irrelevant objects from the original
fuzzy sets. A quite different matter is the combination of ak

and bk to obtain gk. Observe that the min operator – i.e. the
most popular choice – is only applicable when the modal
condition in Proposition 4.1 holds between Ak(x) and Bk(x).
This also means that the two fuzzy sets would have to be
jointly consonant. Let us provisionally assume that this is
true of all pairs Ak and Bk; the implication of this will be
discussed shortly. It can be proved that:

p  :  "x (ü ( j(x) � y(x)) � (üp j(x) � üp y(x)))
 p = max(q, r) :
 "x ((üq j(x) ¾ ür y(x)) � üp (j(x) ¿ y(x)))

are valid formulas. The first makes it possible to derive the
formula describing the ‘cut’ fuzzy sets:

(p = max( cCk
(u(x)), gk)) ¾ (z1(x) = a) ¾ (z2(x) = b) :

 üp Ck(x)

i.e. a lower bound on probabilities. The second valid for-
mula makes it possible to combine the ‘cut’ fuzzy sets
arising from different rules through the max operator, thus
obtaining the final fuzzy set; i.e. a cumulative lower bound.

In this light, the identification of û through an ‘averag-
ing’ operation is vaguely reminiscent of the calculation of
an expected value. However, the fuzzy set in question is
not a probability distribution, nor even a lower one, so this
choice seems difficult to justify.

Sugeno-type rules are encoded in the following way:

Vk(x) � Approxf(u(x),  fk(z1(x), z2(x)))  :
  "x ü ((Ak(x) ¾ Bk(x)) � Vk(x))

where Vk is an auxiliary predicate and Approxf describes a
viable approximation to f. When applied to input values,
each of these rules yields a point-wise estimate of û, thus
the final ‘expected value’ can be obtained directly. One
critical point in Sugeno’s technique, however, is precisely
this ‘expected value’. In a certain sense, {gk} appears to be
quite similar to a conditional, discrete probability distribu-



tion over the possible values of û. If this is the case, the
expectation operator would be appropriate. This point leads
us to discussing a fundamental aspect of informal inter-
pretation.

6. A Short Epistemological Interlude

Intuitively, the techniques in the previous section require
proper coverage of the domain of the target function
through fuzzy sets such as Ak and Bk. In passing, the notion
of a fuzzy partition is usually defined in the literature by a
set of natural axioms accounting for what in this respect is
proper coverage. From another point of view, Definition
4.3 says that fuzzy sets such as Ak and Bk have a ‘deep
structure’ in terms of random sets. Technical details apart,
the main question here regards the informal rationale for
uncertainty in a structure of related predicate extensions.

A few helpful ideas for providing an answer have been
formulated by P. Gärdenfors. In (1997, 1992), with the
support of some psychological experiments, he theorises an
intermediate level of information representation between
the ‘symbolic’ level – namely the level of predicates – and
what he calls the ‘sub-conceptual’ level, i.e. the kind of as-
sociative, intrinsic representation proper to neural net-
works. This kind of ‘missing link’, called the ‘conceptual’
level, is designed to explain how concept formation may
take place. A conceptual space is a number of quality di-
mensions. For instance, dimensions of these kinds may be
closely related to human sensory receptors, such as spatial
dimensions, temperature, colours, etc. The term ‘dimen-
sion’ is to be understood in its proper mathematical sense;
conceptual spaces are taken as being endowed with a geo-
metric or topological structure. In this abstraction, proper-
ties are regions, possibly convex; concepts – corresponding
to predicates – are either a property or a set of properties
defined on different dimensions.

Gärdenfors also adopts a theory of prototypes, i.e. highly
representative points acting as attractors in a conceptual
space, around which concepts are potentially formed. As
one formal pattern for concept formation, he considers a
variation of Voronoï tesselations called power diagrams
(Aurenhammer 1991). An example of a power diagram is
given in the figure:

p1
s1

p2

p3

p5

p4
s2

A Voronoï tessellation is a topological abstraction based
on the notion of distance, which applies to many natural
phenomena, such as crystal growth. Given a metric space
and a set of characteristic points – e.g. the prototypes in
this case – the Voronoï cell around each characteristic
point is defined as the region closer to it than to any other
characteristic point. With power cells, every characteristic

point is also endowed with its own strength, as represented
by the radius of a hypersphere centred in it. Formally, the
boundary equation between two contiguous cells is:

(x – pi)
T(x – pi) – si

2 =  (x – pj)
T(x – pj) – sj

2

where si is the strength of point pi. Voronoï tesselations
correspond to the case when all strengths si are zero. In all
other cases, distances are measured from the borders of the
power hypersphere rather than from the points themselves.
In passing, both Voronoï and power cells are always con-
vex and divided by straight lines. Of course, shapes other
than a sphere might be considered for further generality.

In such a scenario, we propose that uncertainty could be
construed as yet another dimension relating to the relative
strengths of prototypes. In other words, a symbolic system
in a conceptual space might conveniently be modelled as a
family of ‘possible tessellations’ where the prototypes are
fixed and their relative strengths vary. In turn, the addition
of (subjective) probability makes the symbolic system to
correspond to a random tessellation where each concept is
represented by a random set.

The proposal can be further clarified by relating it to our
main topic. Let us consider a Sugeno-type inference sys-
tem with a set of k prototypical points in the domain of the
target function f for which suitable approximations fk are
known. For instance, f could again describe the control
signal for a physical system, with each fk being a local
control strategy whose effectiveness has been experimen-
tally assessed. In the logical encoding, the ‘concepts’ – i.e.
the extension of predicates Vk – are simply the regions
where the corresponding approximation applies. In this re-
spect, the adoption of just one such tessellation is very
committing from an informal standpoint and leads to tech-
nical difficulties. On the other hand, fuzzy inference sys-
tems may be taken as proving that an effective approxima-
tion technique with a low computational cost can be
achieved by adopting random tessellations.

In this light, uncertainty may be held to add flexibility to
a conceptual space in that it improves the pragmatic appli-
cability of a symbolic system defined in it. It is crucial to
observe, however, that uncertainty comes into play when a
purpose is attached to a conceptual tessellation, or, to put
the matter differently, when the symbols associated to the
concepts are inserted into the dynamics of a reasoning pro-
cess, such as that of identifying a purposeful approxima-
tion to an unknown function. Informally, this is quite dif-
ferent from uncertainty about actual facts, as for instance in
the random model of a noisy sensor. In the latter case, ran-
domness stems from the sum of the erratic effects in the
sensing system, whereas randomness in a conceptual space
is taken to be due to the purposeful application of a com-
plex of symbols in a reasoning process.

Inter alia, this also explains why the actual modelling of
fuzzy sets is commonly reported to be so strongly depend-
ent on context. The shape of a fuzzy set such as Old(x) de-
pends on what is taken to be entailed from accepting that a
an object is ‘Old’ in a reasoning context. Likewise, fully-
shaped fuzzy sets can hardly make sense outside the rea-
soning system in which they are originated. The main ad-



vantage of a logical framework for this analysis is to make
this systemic nature of fuzzy sets much more evident.

7. Fuzzy Partitions, Topological Reasoning

We can now turn to the logical encoding of fuzzy parti-
tions by discussing the use of random tessellations for the
underlying ‘deep structure’. Let Vk denote a finite set of n
predicates describing a random tessellation. Two main ax-
iom schema apply:

a)  "x ü (V1(x) ¿ … ¿ Vn(x))
b)  "x ü (Vi(x) � ½V j(x)), "i,j ³ [1..n],  i � j .

These axioms mean that each possible world in S contains
the complete description of a tessellation of D.

In the light of the previous section, we may further as-
sume that a conceptual space is encoded by a suitable set
of measuring functions corresponding to each dimension.
The idea of concepts as convex regions is straightforwardly
extensible to the random dimension by adopting random
power tessellations. Two more properties derive from this:

c)  $x ü Vi(x)
d)  "x"y (ü (Vi(x) � Vi(y)) ¿ ü (Vi(y) � Vi(x)))

which hold for any i ³ [1..n]. Property c) states that each
‘concept’ Vk has at least one prototype, which also means
that fuzzy sets Vk are normal – i.e. their membership func-
tions reaches unity for some objects. Property d) states that
fuzzy sets Vk are consonant.

For obvious computational reasons, fuzzy partitions are
often taken in practice to be decomposable, i.e. to be ex-
pressible as the combination of fuzzy partitions on each
dimension. For instance, a monodimensional fuzzy parti-
tion may have the following shape:

Ak(x)

0

1

z1

As already stated, the min T-norm can be consistently ap-
plied to combinations of fuzzy sets which are jointly con-
sonant. At first sight, this seems to support an informal
‘psychological’ preference for convex tessellating ele-
ments. In the case of the example in Section 5, decompos-
ability plus joint consonance would entail that

p = min(q, r) : "x ((Pq Ak(x) ¾ Pr Bk(x)) � Pp Vk(x)).

as we provisionally assumed in Section 5.

z1

z2

m

z1

z2

m

However, this is incompatible with a random tessella-
tion. In fact, when the two dimensions are orthogonal and

Ak and Bk are triangularly shaped, the tessellating element
for the three-dimensional space –  z1 and z2 plus the ‘ran-
dom’ axis – is a kind of pyramid, as in the left part of the
above figure. Clearly, such a pyramid is not a tessellating
element for the three-dimensional space in question. Ac-
cordingly, it is easily proved that no random power tessel-
lation exists where rectangles are the only possible shapes.
Hence complete coverage with nested rectangles of vary-
ing dimensions can only be achieved by allowing the cells
to overlap in some worlds, thus violating axiom b) above.
This situation is represented in the left hand part of the
following figure:

pk

dk

pk

Consequently, the set of values gk defined in Section 5 is
not a discrete probability distribution since, due to the
overlapping of rectangles, the sum will generally exceed
one. Nevertheless, the use of max is always sound in Mam-
dani-type rules if lower probability limits are intended; the
price to pay, however, is that it is not possible to infer
point-valued constraints. A similar line of reasoning ap-
plies to the product T-norm as well – i.e. the second most
popular choice – with the further problem that not even
convexity is preserved. In turn this makes it difficult to
justify informally why the prototypical elements, i.e. the
vertices of triangles, are still there.

Interestingly, the same reasoning can be used to find a
random power tessellation – based on a generalised dis-
tance – admitting a simple algebraic rule for conjunction.
Without going into details, the random tessellation in
question is represented on the right hand side of the figure
above. In this case, the varying rectangles are allowed to
mutate into more complex shapes to avoid overlapping.
The tessellating element for the three-dimensional space is
given above, on the right hand side of the pyramid. In this
case, the monodimensional fuzzy sets are construed as the
projections of the random tessellation onto each axis. The
corresponding compositional rule is:

((dk(x) = 1) ¾ (p = min(q, r)) ¿ ((dk(x) = 0) ¾ (p = 0)  :
 "x ((Pq Ak(x) ¾ Pr Bk(x)) � Pp Vk(x))

where dk is the characteristic function of the bounding
‘diamond’ for Vk. Note that in general this is not a T-norm,
unless the diamond is a square. However, the net advan-
tage is that the set of values gk computed with the above
rule is now a conditional, discrete distribution over the
possible estimates for û.

As we have seen, analysis of the ‘deep structure’ of a
fuzzy partition throws a different light on the meaning of
algebraic rules. Note also that these aspects are totally in-
visible when the very same algebraic rules are studied in
isolation. Instead, the adoption of a structured characteri-
sation for fuzzy sets brings to light an underlying ‘deep’



level of topological reasoning that also emerges with Gär-
denfors’ conceptual spaces.

8. Conclusions and Future Work

One aspect which has not been discussed in this paper is
how the uncertainty model for fuzzy sets presented ties up
with other uncertainty models regarding factual phenom-
ena, e.g. the random model of a noisy sensor. Models of
the latter kind, from the standpoint of the logical frame-
work, involve randomness over the object domain D and
hence require the introduction of a second probability mea-
sure on D. Thus, the fuzzy inference systems discussed in
Section 5 could be extended to embrace the case where the
parameter values are described by a probability density.

The extension of the formalism to include a second
probability measure has already been contemplated in
(Halpern 1990) and formally studied in a number of subse-
quent works. In these studies, however, the informal ob-
jective is somewhat different from what we are proposing
here. In keeping with a long-standing tradition dating back
to Carnap, the two measures are held to represent two dif-
ferent kinds of probability, namely statistical probability –
i.e. on D – and degrees of belief – i.e. on W. In our line of
thinking, a slightly different direction seems appropriate,
namely conceiving a unique probability space where the
two forms of uncertainty, one relating to factual phenom-
ena and the other intrinsic to the purposive use of a sym-
bolic system, are brought together. It might be assumed
that the unique probability space is decomposable into the
two independent measures mentioned above. However, in
our understanding, the assumption that the learning of new
facts does not in any way alter a systemic fuzzy set model
cannot be taken for granted. Hopefully, the assessment of
the interactions may instead help to achieve a formal ac-
count for more complex, ‘gestalt’-like phenomena.

As we have seen, the logical framework presented may
provide a valuable formal tool for investigating fuzzy
models in terms of their ‘deep structures’. Maybe this will
provide a safer bridge over the gap between the realm of
fuzziness and that of probability.
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