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Abstract

ARGUS is a multi-agent visitor identification system
distributed over several workstations. Human faces
are extracted from security camera images by a neural-
network-based face detector, and identified as frequent
visitors by ARENA, a memory-based face recognition
system. ARGUS then uses a messaging system to no-
tify hosts that their guests have arrived. An inter-
face agent enables users to submit feedback, which is
immediately incorporated by ARENA to improve its
face recognition performance. The ARGUS compo-
nents were rapidly developed using JGram, an agent
framework that is also detailed in this paper. JGram
automatically converts high-level agent specifications
into Java source code, and assembles complex tasks
by composing individual agent services into a JGram
pipeline. ARGUS has been operating successfully in
an outdoor environment for several months.

Introduction

Consider the following scenario. Visitors to large apart-
ment complexes are typically screened by a security
guard in the lobby before being allowed to enter. Over
time, guards learn to associate frequent visitors with
the tenants whom they plan to visit, and are able to
immediately notify the visitor’s host of the guest’s ar-
rival over the building intercom. This paper presents
an automated version of such a security guard: a multi-
agent system for visitor identification, named ARGUS
(after the vigilant watchman from Greek mythology).
At a high-level, ARGUS’s operation consists of the
following steps, each of which is managed by one or
more JGram (Sukthankar, Brusseau, & Pelletier 1998)
agents. A security camera photographs the building
entrance every two seconds, and a motion detection al-
gorithm identifies potential scenes containing visitors.
Faces from these images are extracted using a neural-
network-based face detector (Rowley, Baluja, & Kanade
1998). ARENA (Sim et al. 1999), a memory-based face
recognition system, examines these face images and at-
tempts to find visually similar matches in its stored
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database of visitors. Users interested in receiving noti-
fication of visitors may run a JGram agent which will
automatically be informed when the relevant visitors
are identified. This agent also allows users to provide
ARGUS with immediate corrections for identification
errors. Since ARENA is capable of online learning,
this feedback can be immediately incorporated into the
recognition dataset.

ARGUS is implemented as a collection of agents in
a multi-agent system (Sycara 1998) for several rea-
sons. First, the components require different platforms:
for instance, the camera interface is limited to Win-
dows, while the face recognition system prefers Linux.
Similarly, ARGUS users, distributed over an intranet,
require notification on their individual workstations.
(Some run Linux and others run Windows.) JGram
agents, which use Java RMI for communication, are
well suited for this scenario. Second, the computational
load imposed by some of the image processing routines
is severe enough to merit splitting the task over multi-
ple machines. Third, a multi-agent architecture offers a
high degree of modularity, allowing ARGUS agents to
be dynamically added or removed from the system. For
instance, interface agents can be created and killed as
users arrive and leave without affecting the rest of the
ARGUS system. Similarly, monitoring agents can be
inserted to diagnose problems without disrupting ser-
vice, and different face recognition algorithms can be
seamlessly tested.

The remainder of this paper is organized as follows.
First, the JGram agent framework is described. Next,
the architecture of the ARGUS system is detailed, with
an emphasis on the ARENA face recognizer. In the
following section, ARGUS is evaluated in three experi-
ments. The discussion explores strategies for improving
visitor identification accuracy. The paper concludes by
presenting promising directions for future research.

The JGram Agent Framework

The JGram agent framework was designed to simplify
agent development in Java by providing strong support
in three areas: (1) automatic generation of low-level
agent code from high-level agent service specifications;
(2) dynamic composition of agent services; (3) an in-
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Figure 1: An overview of the internals of a JGram agent
(See the text for details).

telligent scheme for handling errors (exceptions) across
agents.

All inter-agent communications in the JGram frame-
work is performed using an object known as a “slate”:
essentially a small and self-contained blackboard that
is passed from agent to agent, containing named ob-
jects that can be read, added or removed. By sending
parameters to services as slates, JGram is able to multi-
plex multiple remote communications through a single
remote method interface. All JGram agents can there-
fore provide reconfigurable agent interfaces while shar-
ing a single, static, RMI stub file. Details are available
in (Sukthankar, Brusseau, & Pelletier 1998).

Figure 1 shows the internals of a JGram agent. The
JGram framework concentrates on providing general
low-level aspects of agent communication. For instance,
agent services can easily be executed in parallel, and
can be invoked either synchronously (function call se-
mantics) or asynchronously (message semantics). The
JGram framework can also provide transparent support
for secure interactions between agents: in the initial ex-
change, agents use public-key authentication and create
a fast symmetric session-key for further communica-
tions. Note that the JGram framework is largely inde-
pendent of higher-level issues such as agent communica-
tion languages or specific agent architectures. Rapid de-
velopment of complex agent systems is possible because
most of the components in the Communications, Secu-
rity and Utilities sections (see Figure 1) are provided
and Java source skeletons for the Agent-Specific Com-
ponents are automatically generated from the high-level
agent specification file. The JGram framework also pro-
vides a name server for alias expansion, managing lists
of agents and public key dissemination.

A variety of Java-based agent frameworks have re-
cently become available (Jeon 1998; Chauhan & Baker
1998). JGram differs from these in that it does not
provide agent templates nor support for specific agent
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Figure 2: This diagram shows an overview of the ARGUS
architecture, where each box depicts a JGram agent. The
heavier lines show the major data pathways and the light
lines show monitoring information. A line with a double
arrows represents a synchronous exchange while one with a
single arrow indicates asynchronous dataflow. (See the text
for details.)

methodologies. Instead, JGram enables rapid develop-
ment of communities where the agent interactions can
be modeled as service requests. Additionally, JGram
provides a novel, cross-agent generalization of pipes
and exceptions that significantly simplifies develop-
ment of certain complex applications. See (Sukthankar,
Brusseau, & Pelletier 1998) for details.

An Overview of ARGUS Components

This section presents an overview of the ARGUS system
architecture (see Figure 2) and details the important
agents and their interactions. ARGUS’ three tasks may
be summarized as: (1) visitor identification and noti-
fication; (2) interactive labelling of unknown visitors;
(3) evaluation of face detection and face recognition
algorithms. Since these tasks occur in parallel, most
ARGUS agents perform several roles simultaneously.

In the primary task, visitor identification, the dele-
gator agent collects images from the camera hardware
(every 2 seconds), performs image differencing (Ballard
& Brown 1982) on successive images, and sends those
images that contain motion through a JGram pipeline
to the detector and recognizer agents. In the event of a
positive visitor identification, the delegator broadcasts
messages to all notifier agents that are interested in
this visitor’s arrival. User feedback acquired from the
notifier agents is used by the recognizer to update its
face database.

The secondary task, labelling unknown visitors, is
performed every few days by ARGUS administrators,
through the reclassifier interface agent. The reclassifier
requests a list of unlabelled faces from the recognizer
and allows the administrator to add them as training
examples. The reclassifier agent is also used to correct
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Figure 3: The ARGUS notifier displays an image captured
by the security camera along with a box surrounding the face
of the visitor and a tentative identification. User feedback
is used to improve face recognition. (The window size was
reduced for publication.)

errors in the face database, and to dynamically create
new visitor classes. In the current implementation, the
recognizer does not require offline training, so the up-
dates are immediately available for the primary task.

ARGUS?’ final task is supported by the monitor agent
that allows users to interactively query evaluation met-
rics collected by all of the other ARGUS agents. This
is particularly useful when the recognizer agent is eval-
uating experimental algorithms in addition to using an
established algorithm for the primary task. In addition,
the monitor simplifies remote administration of the vis-
itor identification system by verifying that all agents are
operating normaily.

Since we cannot present all of these agents in detail
due to space limitations, we restrict ourselves to a brief
discussion of the highlights. The delegator, in addition
to its image processing responsibilities, also operates as
a facilitator for the agent community, forwarding mes-
sages between different agents. The detector uses the
neural-network-based face finder described in (Rowley,
Baluja, & Kanade 1998). Its primary limitation, that it
can only reliably detect upright, frontal faces, is not a
major problem for ARGUS,; since visitors typically face
forward as they walk through the building entrance.
The neural network weights were trained to locate faces

from web photographs and are not specialized for the
visitor identification task. Since the face detector lo-
cates very tightly cropped faces (typically without hair
and ears), ARGUS enlarges the recommended region
by 140% in each dimension before extracting the face
image. A notifier agent runs on each ARGUS user’s
personal workstation and pops up a window with an
image of the visitor (as shown in Figure 3). The user
may restrict notification to a subset of visitors, and no-
tifier agents may join and leave the ARGUS community
at any time. The recognizer employs a novel algorithm
and is fully described below.

Face Recognition

The visitor identification problem is well served by a
memory-based face recognition algorithm for the follow-
ing reasons. First, since the set of visitors is not known
a priori, the algorithm should be able to accommodate
such changes easily. Memory-based algorithms (Atke-
son, Moore, & Schaal 1997) do not have an explicit
training phase and are ideally suited for incremental
training. Second, the training data should be acquired
without asking the visitors to pose for photographs un-
der controlled conditions. A collection of several images
per visitor, spanning a variety of illumination conditions
can be used instead. Fortunately, non-parametric ap-
proaches, such as nearest-neighbor matching, may per-
form well even if these images do not form a single clus-
ter in feature space. Finally, since the face recognition
is used only for notification rather than access control,
the cost for mis-identification is not severe. Thus, poor
initial accuracy on a new visitor may be tolerated by
users since recognition accuracy improves as feedback
is provided.

The current ARGUS recognizer agent uses ARENA,
a view-based face recognition system. The training
phase is summarized as follows: (1) Minimize illumi-
nation variations using histogram equalization (Ballard
& Brown 1982); (2) From each training image, gener-
ate 10 additional synthetic training images by making
small, random perturbations to the original (rotation
upto +5°; scale upto +5%, and translation upto +2
pixels in each direction). (3) Create reduced-resolution
(16 x 16) versions of these images (using simple aver-
aging over rectangular regions) and store them into the
face database. Our experiments (see below) indicate
that classification speed may be increased by a factor of
11, in exchange for a 5% drop in accuracy, by omitting
step (2) when the database contains a large selection of
images for each visitor.

The classification phase is similarly straightforward:
(1) Pre-process the input image using histogram equal-
ization; (2) Create a reduced-resolution image as dis-
cussed above; (3) Return the label of the single nearest-
neighbor to the input image, among the stored low-
resolution images, using the Los metric.! (As shown

Los@-H = (S m)



Figure 4: Top row: Sample images of two people, as ex-
tracted by the face detector. The image quality is poor due
to lighting and camera placement. Also note the variation
in appearance due to differences in illumination, pose and
facial expression. Bottom row: the corresponding ARENA
reduced-resolution images (16 x 16) pixels.

in (Sim et al. 1999), the Euclidean metric, Ly, does not
perform as well.) Figure 4 shows sample faces extracted
from images by the face detector, along with the cor-
responding (enlarged) ARENA reduced-resolution im-
ages.

Although face recognition is an old problem, it has
received much attention in the last few years (Chel-
lappa, Wilson, & Sirohey 1995; Fromherz 1998). The
research effort has largely focused on the subproblem
of frontal face recognition, and in this domain, tech-
niques based on Principal Components Analysis, pop-
ularly termed eigenfaces (Turk & Pentland 1991; Pent-
land, Moghaddam, & Starner 1994) have demonstrated
good performance. Most published results report ex-
periments on standard datasets such as ORL (Samaria
& Harter 1994) or FERET (Phillips et al. 1997).

Our extensive experiments with ARENA and PCA-
based methods on both FERET and ORL datasets ap-
pear in (Sim et al. 1999). Here, we present only the
results of one such test: Table 1 summarizes a direct
comparison of ARENA with the best published face
recognition results (Lawrence et al. 1996) on the ORL
database. The ORL database contains 10 frontal im-
ages of each of 40 people taken under consistent con-
ditions. The three columns in the table indicate how
many of these images were placed in the training set
(the rest were used for testing). “CN” and “SOM?” re-
fer to convolutional neural network and self-organizing
map respectively; see (Lawrence et al. 1996) for de-
tails. One could reasonably argue that a simple system
like ARENA achieved this accuracy solely by exploit-
ing the relatively uniform illumination and background
conditions present in the standard datasets. Thus, one
of our primary motivations for integrating ARENA in
ARGUS was to evaluate its accuracy in a more chal-
lenging, real-world setting.

Images per person 1 3 5

Eigenface avg per class 61.4% 71.1%  74.0%
Eigenface one per img  61.4% 81.8%  89.5%
PCA+CN 65.8% 76.8% 92.5%
SOM+CN 70.0% 882%  96.5%
ARENA Lo 76.2% 92.7% 97.4%

Table 1: Comparison of ARENA with results reported
in (Lawrence et al. 1996) on the ORL dataset.

Experiments in Visitor Identification

This section summarizes three experiments that eval-
uvate ARGUS on the task of visitor identification.
In accordance with the terminology used in the
FERET (Phillips et al. 1997) test, the set of la-
beled training images is termed the gallery and a test
face (which must not appear in the gallery) is termed
a probe. All of the experiments reported here used
face images collected by ARGUS between January and
March 1999. Compared to the standard datasets used
in the face recognition community, these are very chal-
lenging photographs for the following reasons: The im-
ages were taken by an outdoor camera in a variety of
lighting conditions, at different times during the day,
and in very different weather conditions (including snow
and rain). Since visitors were not instructed to pose for
the camera, their head orientations varied significantly,
and many of the individuals were wearing accessories
such as hats, hoods or sunglasses. Several of the night
images resulted from internal reflections of individuals
as they approached the glass doors from the interior
of the building. The extracted face image sizes ranged
from 33 x 33 to 100 x 100 pixels, with a median face
image size of 47 x 47.

Leave-One-Out Tests

In the Leave-One-Out (LOO) tests, each of the faces in
the gallery was used as a probe image. The probe and
its synthesized images were temporarily removed from
the gallery, and ARGUS was asked to identify the indi-
vidual in the probe. The fraction of probes that were
correctly classified is reported as the accuracy. Two ver-
sions of this experiment were conducted: one with al-
most all of the stored faces (973 images from 44 individ-
uals), and the second restricted to photographs of the
most common visitors (881 images from 23 individuals).
On the first version, ARGUS achieved an overall clas-
sification accuracy of 64.1% (60.4% without synthetic
images). The second version of this test focused on the
task of identifying regular visitors. ARGUS correctly
identified 69.7% of probes in this test (65.2% without
synthetic images). Two individuals (shown in Figure 4),
each with approximately 100 images in the gallery, were
correctly identified approximately 90% of the time.

Online Training

The LOO tests described above model the visitor iden-
tification task inaccurately in one important respect:
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Figure 5: This graph illustrates the variation in face recog-
nition accuracy with respect to k, the minimum number of
raw training images per individual present in the database.
The dashed line shows accuracy for the version of ARENA
without synthesized training data.

when multiple images of a person, all taken within a
short span of time, are present in the gallery, a probe
selected from this subset is likely to be very similar to a
labeled image in the gallery. However, in a real visitor
identification task, all of these images would have ap-
peared together as probes and none of the probe images
would be eligible to match the other (visually similar)
images in its batch. The Online Training experiment
addressed this potential criticism by more faithfully
simulating the sequence of online training that occurs
in ARGUS.

The gallery was initialized to be the empty set. The
stored images were successively fed (as probes) to AR-
GUS in time-stamp order. During the face recogni-
tion step, the matching was restricted to images that
had been acquired at least five minutes earlier than
the probe image’s timestamp. This prevented ARENA
from exploiting any image similarity that may have ex-
isted among images taken at approximately the same
time.

The Online Training experiment explored how recog-
nition accuracy varies with k, the minimum number
of raw training images (per individual) present in the
database (see Figure 5). For example, when k£ = 20,
only the 11 most common visitors (each with at least
20 images in the database) are retained in the gallery.
Recognition accuracy improves as k increases, showing
that ARGUS is fairly accurate over a limited subset of
visitors. The second line shows that, without synthetic
images, recognition accuracy lags by 3%-5%.

Robustness Tests

ARGUS has been operational at Just Research for the
last two months. To increase speed, we have elimi-
nated the synthesized images from the ARENA train-
ing set. The current system is quite responsive: the
notifier typically displays a window within seconds of a
visitor’s arrival, and occasionally before the visitor has
even pressed the doorbell.

The observed recognition accuracy for common visi-
tors (individuals with 10 or more training images) was
53.9%. For the full case, even including visitors for
which no training data exists, the observed accuracy
was 43.4%.

To explore ARGUS?’ resilience to distractors, approx-
imately 1500 spurious images of faces collected by a
web spider (all labeled as “stranger”), were added to the
database of 750 actual camera images. This change only
reduced the observed accuracy by 3.1%. Although new
visitors and infrequent visitors, with few examples in
the database were often misclassified as “stranger”, the
distractors had surprisingly little detrimental impact
on the regular visitor (or overall) recognition accuracy.
This strengthens the hypothesis that ARENA’s simple
view-based nearest-neighbor classification scheme may
be more robust than anticipated.

Discussion

Although ARENA achieves excellent results on the
standard datasets, its performance on the ARGUS
data shows that there is clearly room for improve-
ment. Strategies for improving accuracy can be divided
into three classes: higher-quality input data; combining
multiple classifiers; and better face recognition tech-
niques.

The current security camera images used for ARGUS
(See Figures 3 and 4) are fairly poor-quality for several
reasons. First, the visitor only occupies a small area
in a wide field of view. Second, during daylight hours,
images tends to be severely back-lit because the camera
is looking from relative darkness, through a glass door,
into direct sunlight. At night, the tinted glass acts as
a (partial) mirror, causing reflections of the building
interior to appear over visitors’ faces. Third, since vis-
itors are not asked to pose for the camera, they may
appear anywhere in the image, with their faces ori-
ented suboptimally. In fact, many of the images are
of partially-illuminated faces that are difficult for hu-
mans to identify.?2 Thus, improving camera position,
installing controlled lighting and asking visitors to pose
would all improve ARGUS’ recognition accuracy (and
make the problem less interesting from a research stand-
point).

Accuracy could also be improved by combining the
outputs from multiple, independent face recognition al-
gorithms using voting. Alternatively, ARGUS could

2Although they have difficulty identifying the visitor
from the face alone, humans are able to make intelligent
guesses based on clothing, overall size and time of day.



wait for consistent classification of several successive
images before issuing a notification. Either of these
schemes offer potential for user customization.

We have also experimented with several variants of
ARENA that show promising performance on this task.
These include: (1) better preprocessing of input images
to compensate for lighting conditions; (2) simple fea-
ture extraction using wavelet decomposition; and (3)
incorporating texture information using Gabor filters.
The ARGUS architecture enables us to evaluate several
recognition algorithms in parallel and transparently up-
grade the visitor identification system without interrup-
tion of service.

Conclusions and Future Work

ARGUS solves a real-world application by combining
image processing, machine learning and messaging tech-
nologies in a multi-agent framework. However there is
still work to be done:

¢ While we have evaluated the individual components
in ARGUS, we plan to get a better idea of the over-
all system’s performance by getting feedback from a
larger population of users. We are also interested in
observing how the performance of a memory-based
face recognizer scales with large populations of visi-
tors.

e Since it is collecting a large dataset of labeled human
faces, with multiple images taken over a period of
time, ARGUS enables us to easily test different face
recognition systems in real-world situations.. This
dataset may be valuable to others in the face recog-
nition community, and we hope to make it publicly
available over the web.

e The ARGUS implementation easily accommodates
the addition of new types of agents. For instance,
the visitor could be automatically notified if his/her
host were unavailable, by an interface agent at the
building entrance.
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