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Abstract

Fuzzy rule-based systems have been mainly used as a conve-
nient tool for synthesizing control laws from data. Recently,
in a knowledge representation-oriented perspective, a typol-
ogy of fuzzy rules has been laid bare, by emphasizing the dis-
tinction between implicative and conjunctive fuzzy rules. The
former describe pieces of generic knowledge either tainted
with uncertainty or tolerant to similarity, while the latter en-
code examples-originated information expressing either mere
possibilities or how typical situations can be extrapolated.
The different types of fuzzy rules are first contrasted, and
their representation discussed in the framework of possibil-
ity theory. Then, the paper studies the conjoint use of fuzzy
rules expressing knowledge (as fuzzy constraints which re-
strict the possible states of the world), or gathering examples
(which testify the possibility of appearance of some states).
Coherence and inference issues are briefly addressed.

Introduction
Fuzzy rules of the form “ifX is A, thenY is B”, whereA
and/orB are fuzzy sets, are often advocated as the basic unit
used in fuzzy logic-based systems for expressing pieces of
knowledge (Zadeh 1992), or modeling data. Although ex-
pressiveness is increased by the introduction of fuzzy sets
in if-then rules, and by the existence of a wide panoply of
possible operators for connecting the membership functions
of A andB in the representation of the rules (e.g., (Dubois
& Prade 1996)), little attention has been paid to the possi-
ble intended semantics of fuzzy rules. Indeed, researchers
involved in fuzzy modeling use sets of fuzzy rules as black
box tools for the approximation of control laws. In this type
of works, the intended meaning of the fuzzy rules as a sum-
mary of data meaningful for a human operator is not a major
concern. Besides, works more oriented towards knowledge
engineering have mainly focused on the study of the proper-
ties of the generalized modus ponens, introduced by (Zadeh
1979), which extends inference to fuzzy rules.

However, a formal study (Dubois & Prade 1996) has
pointed out that there exist different types of fuzzy rules with
very different intended semantics. A first dichotomy must be
made between implicative and conjunctive rules. The for-
mer, whose representation is of the form�A ! �B (where
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! is a multiple-valued implication operator), express a more
or less strictconstrainton the values allowed forY , condi-
tioned by the value taken byX . The latter, whose represen-
tation is of the form�A ^ �B (where^ denotes a, maybe
non-symmetric, conjunction), gather sets of pairs of values
which areknown as(more or less)feasiblefor (X;Y ). Thus,
given the value forX , implicative (resp. conjunctive) rules
forbid (resp.guarantee possible) values forY .

This basic distinction is important since expert knowledge
can be composed of both restrictions or constraints on the
possible values on the one hand (e.g., induced by general
laws), and of examples of possible values on the other hand
(e.g., induced by observations). In this case, using simul-
taneously implicative and conjunctive rules allows to repre-
sent these two kinds of knowledge in the same rule base.
These two types of information may also reveal some inco-
herence, when a constraint forbids values which are assessed
as possible by an example.

Moreover, reasoning in AI is usually driven either from
generic knowledge, expressed by, maybe fuzzy, expert rules
(e.g., (Ruspini, Bonissone, & Pedrycz 1998), (Ayoun & Gra-
bisch 1997)), or from data or examples, as in Case-Based
Reasoning (e.g., (Bonissone & Cheetham 1997) in the fuzzy
case), or in KDD which aims at extracting rules from data.
In this perspective, distinguishing between the two kinds of
rules or, even better, using them simultaneously is also of
interest when rules are induced from both positive and nega-
tive examples of a concept. Indeed, these examples can lead
to conjunctive and implicative rules respectively.

Besides, the choice between several types of fuzzy impli-
cation or conjunction operators leads to a more accurate rep-
resentation of knowledge, where we can further distinguish
between rules involving uncertainty in their conclusions, and
rules which take benefit of fuzzy sets for expressing toler-
ance to similarity (without genuine uncertainty).

First, the semantics of the four main kinds of fuzzy rules is
presented, emphasizing the difference between implication-
based and conjunction-based rules. Then, the conjoint use
of these two kinds of rules is studied. Knowledge represen-
tation, inference and coherence issues are addressed.

Different fuzzy rules for different information
In possibility theory, the available information is represented
by means of possibility distributions which rank-order the
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possible values in a given referential set or attribute domain.
A piece of information “X is (in)Ai”, whereX is a variable
ranging on a domainU , andAi is a subset ofU (maybe
fuzzy), is represented by the constraint:

8u 2 U; �X (u) � �Ai(u); (1)

where�X is a possibility distribution restricting the values
of X . Several such pieces of information are naturally ag-
gregated conjunctively into:

8u 2 U; �X(u) � mini �Ai(u): (2)

Then, once all the constraints are taken into account, a min-
imal specificity principle is applied, which allocates to each
value (or state of the world) the greatest possibility degree
in agreement with the constraints. It leads to the equality:

8u 2 U; �X(u) = mini �Ai(u): (3)

Observation-based information corresponds to the con-
verse inequalities. LetAi be a subset of values testified as
possible forX since all the values inAi have been observed
as possible forX by a sourcei (Ai may be a fuzzy set if
some values are less guaranteed as possible forX). Then,
the feasible values forX are restricted by the constraint:

8u 2 U; ÆX(u) � �Ai(u): (4)

If several sources provide examples of possible values for
X , all this information is aggregated disjunctively into:

8u 2 U; ÆX(u) � maxi �Ai(u): (5)

A converse principle, of maximal specificity, expressing that
nothing can be guaranteed if it has not been observed, leads
to limit the set of feasible values forX to:

8u 2 U; ÆX(u) = maxi �Ai(u): (6)

This two-sided approach is applied to possibility distribu-
tions representing fuzzy rules in the following.

The semantics of the four main kinds of fuzzy rules, of
the form “if X isAi, thenY isBi” is now detailed. The dif-
ference between implication-based and conjunction-based
models is particularly addressed, emphasizing ideas first in-
troduced in (Dubois & Prade 1996) or (Weisbrod 1996).

Implicative rules: restrictions of possible values
In the possibilistic framework (e.g.,(Dubois & Prade 1996)),
each piece of knowledge is represented by a possibility dis-
tribution �i on the Cartesian product of the domains of the
involved variables, which expresses a (fuzzy) restriction on
the possible values of these variables. Thus, considering a
knowledge baseK = fAi ! Bi; i = 1; : : : ; ng, made ofn
parallel fuzzy rules (i.e., rules with the same input spaceU
and output spaceV ), each rule “ifX is Ai, thenY is Bi”
(denotedAi ! Bi) is represented by a conditional possibil-
ity distribution�iY jX =�Ai!Bi (the membership function of
Ai ! Bi), which is determined according to the semantics
of the rule.X is the tuple of input variables (on which infor-
mation can be obtained) andY the tuple of non-input vari-
ables (on which we try to deduce information). According
to (2), the possibility distribution�K representing the base
K is obtained as the (min-based) conjunction of the�iY jX ’s:

�K = mini=1;::: ;n �
i
Y jX : (7)

This equation shows that rules are viewed as (fuzzy) con-
straints since the more rules, the more constraints, the
smaller the number of values that satisfy them, and the
smaller the levels of possibility.�K is then an upper bound
of possible values.

In order to compute the restriction induced on the values
of Y , given a possibility distribution�0X restricting the val-
ues of input variable(s)X , �0X is combined conjunctively
with �K and then projected onV , the domain ofY :

�Y (v) = supu2U min(�K(u; v); �0X(u)): (8)

This combination-projection is known assup-mincompo-
sition and often denotedÆ. Then, given a set of rulesK and
an inputA0, one can deduce the outputB0 given by:

B0 = A0 Æ
\n

i=1
Ai ! Bi = A0 ÆRK; (9)

with �RK = �K. The obtained fuzzy setB0 is then an upper
bound of the possible values for the output variableY .

If, for a given precise inputA0 = fu0g, the ruleAi ! Bi

does not apply, i.e.,�Ai(u
0) = 0, the sup-mincomposi-

tion yields the conclusionB0 = V , the entire output space.
This conclusion is in accordance with the conjunctive com-
bination of the rules. Indeed, when a rule does not apply,
it is not supposed to modify the conclusionB0 given by the
other rules. ThusV plays the role of the neutral element for
the aggregation operator. This is why implicative rules are
combined conjunctively.

Moreover, this conjunctive combination implies that some
output values, which are possible according to some rules,
can be forbidden by other ones. Then, the possibility degree
�K(u; v) = 0 means that ifX = u, thenv is an impossible
value forY ; (u; v) is an impossible pair of input/output val-
ues. By contrast,�K(u; v) = 1 denotes ignorance. It means
that for the input valueX = u, no rule inK forbids the value
v for the output variableY . However, the addition of a new
rule toK (expressing a new piece of knowledge) can lead to
forbid this value. A possibility degree�K(u; v) > 0 means
that the pair(u; v) is not known as totally impossible, with
respect to the current knowledge.

As a consequence, the conclusionB0 = V , obtained for a
given precise inputA0 = fu0g, should not be understood as
“each output value is possible (for sure)” but rather as “the
knowledge base gives no information, then it leads to no re-
striction on the values of the output variable”, i.e., this case
of total ignorance leads to an uncertainty level uniformly
equal to1. In conclusion, a membership degree0 to B0

means impossibility, while a degree1 represents ignorance.
According to the typology of fuzzy rules proposed in (Du-

bois & Prade 1996), there are two main kinds of implicative
rules, whose prototypes arecertaintyandgradualrules.

Certainty rules are of the form “The moreX isA, the more
certainlyY lies inB”, as in “The younger a man, the more
certainly he is single”, or “The more crowded is the cafeteria
in the morning, the more certainly it is about ten o’clock”.
This statement corresponds to the following conditional pos-
sibility distribution modeling the rule:

8(u; v); �Y jX(v; u) � max(�B(v); 1� �A(u)): (10)



Clearly, A andB are combined with Kleene-Dienes im-
plication: a ! b = max(1 � a; b). For a precise input
A0 = fu0g, 8v 2 V; �B0(v) � 1 � �A(u

0) holds, i.e., a
uniform level of uncertainty1� �A(u

0) appears inB0 (see
Figure 1.a). Then, “Y is B” is certain only to the degree
�A(u

0), since values outsideB are possible to the comple-
mentary degree. A similar behavior is obtained with the im-
plicationa ! b = 1 � a ? (1 � b), where? is the product
instead of min.
Gradual rules are of the form “The moreX isA, the more
Y is B”, as in “The redder the tomato, the riper it is”. This
statement corresponds to the constraint:

8u 2 U; �A(u) ? �Y jX(v; u) � �B(v); (11)

where? is a conjunction operation. The greatest solution
for �Y jX(v; u) in (11) (according to the minimal specificity
principle which calls for the greatest permitted degrees of
possibility) corresponds to the residuated implication:
�
A!B

(u; v) = supf� 2 [0; 1]; �A(u) ? � � �B(v)g (12)

When? is min, equation (12) corresponds to G¨odel implica-
tion: a! b = 1 if a � b, andb if a > b.

If only a crisp relation betweenX andY is supposed to
underly the rule, it can be modeled by Rescher-Gaines im-
plication:a! b = 1 if a � b, and0 if a > b.

Applying (9) with one rule, the core ofB0 is enlarged
w.r.t. B (see Figure 1.c), i.e., the lessX satisfiesA, the
larger the set of values in the support ofB which are com-
pletely possible forY . This embodies a tolerance to simi-
larity: if the value ofX is close to the core ofA, thenY is
close to the core ofB.

Conjunctive rules: guaranteed possible values
In the fuzzy control tradition, rule-based systems are often
made of conjunction-based rules, as Mamdani-rules for in-
stance. These rules, denotedAi^Bi, can no more be viewed
as constraints, but rather as pieces of data, i.e., as couples of
conjointly possible input/output (fuzzy) values. Each rule is
then represented by a conjoint possibility distribution:

ÆiX;Y = �Ai^Bi :

A first justification of this interpretation comes directly
from the semantics of the conjunction. Moreover, given a
precise inputA0 = fu0g, and a conjunctive ruleAi ^ Bi, if
the rule does not apply (i.e.,�Ai(u

0) = 0), then thesup-min
composition leads to the conclusionB0 = ;. This implies a
disjunctive combination of the conjunctive rules, which ap-
propriately corresponds to an accumulation of data and leads
to a set of values whose possibility/feasibility is guaranteed
to some minimal degree. Equation (7) is then turned into:

ÆK = maxi=1;::: ;n Æ
i
X;Y : (13)

The distributionÆK is then a lower bound of possible values.
From a set of conjunctive rulesK and an inputA0, the

sup-mincomposition leads to an outputB0 given by:

B0 = A0 Æ
[n

i=1
Ai ^ Bi = A0 ÆRK: (14)

Thus, a possibility degreeÆK(u; v) = 1 means that if
X = u, thenv is a totally possible value forY . This is
a guaranteed possibility degree. By contrast,ÆK(u; v) = 0

only means that ifX = u, no rule can guarantee thatv is
a possible value forY . By default,v is considered as not
possible (since possibility cannot be guaranteed). A mem-
bership degree0 to B0 represents ignorance, while a degree
1means a guaranteed possibility. Thus, a conclusionB0 = ;
should not be understood as “all the output values are impos-
sible”, but as “no output value can be guaranteed”.

As for implicative rules, there are two main kinds of con-
junctive rules, calledpossibilityandantigradualrules.
Possibility rulesare of the form “the moreX isA, the more
possibleY lies in B”, as in “the more cloudy the sky, the
more possible it will rain soon”. It corresponds to the fol-
lowing possibility distribution modeling the rule:

8(u; v); min(�A(u); �B(v)) � ÆX;Y (u; v): (15)

These rules, modeled with the conjunctionmin, correspond
to the ones introduced by Mamdani and Assilian in 1975.

For an input valueu0 such that�A(u0) = �, a possibility
rule expresses that when� = 1, B is a set of possible val-
ues forY (to different degrees ifB is fuzzy). When� < 1,
values inB are still possible, but they are guaranteed possi-
ble only up to the degree�. To obtainB0, the setB is then
truncated as shown on Figure 1.b. Finally, if� = 0, the rule
does not apply, andB0 = ; as already said.
Antigradual rules have been obtained by symmetry rela-
tions between (10), (11) and (15) (see (Dubois & Prade
1996) for details). They correspond to the inequality:
8(u; v); �A(u) ? (1� ÆX;Y (u; v)) � 1� �B(v); (16)

which can also be written, when the conjunction? is min:
8(u; v); �A(u) ^ �B(v) � ÆX;Y (u; v); (17)

where^ is the non-commutative multiple-valued conjunc-
tion: a ^ b = b if a+ b > 1 and0 otherwise.

Such a rule expresses that “the moreX is A, the larger
the set of possible values forY is, around the core ofB”,
as in “the more experienced a manager, the wider the set of
situations he can manage”. For a given input valueA0 =
fu0g, this rule means that if�A(u0) = 1, all the values inB
are possible forY (B0 = B). If �A(u0) = � < 1, the values
in B such that�B(v) < �, cannot be guaranteed, as shown
on Figure 1.d. Such a rule expresses how values which are
guaranteed possible can be extrapolated on a closeness basis.
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Figure 1: Inference with different kinds of fuzzy rules, and
a precise input valueA0 = fu0g such that�A(u0) = �.

Choosing between different types of rules
Given a fuzzy rule and a precise inputA0 = fu0g, the con-
clusionsB0 obtained for each of the four kinds of fuzzy



rules presented in the previous sections are depicted on Fig-
ure 1. Clearly, theB0’s are obtained fromB by applying
four different thresholding functions: horizontal ones for
certainty and possibility rules (low degrees of possibility
are increased, and high degrees are decreased respectively),
and vertical ones for gradual and antigradual rules (enlarge-
ment of the core, and squeezing of the support respectively).
Thus, these four kinds of fuzzy rules can be considered as
the basic ones, in particular if the considered triple (con-
junction, disjunction, negation) is (min, max, 1-.).

For the valuation scale, only a complete order on the
membership degrees is assumed when usingmin, max, and
the order reversing operation1 � (:). They can belong to
a discrete, linearly ordered scale of membership degrees.
Then,1 � (:) is just the order reversing map of the scale.
When the continuous[0; 1] scale is used as a ratio scale,
the product can be used instead ofmin for the conjunc-
tion. In this case, the behavior of the four kinds of rules
can be made continuous, with a similar semantics. Thus, the
triple of operators (conjunction, disjunction, negation), has
to be chosen depending on the scale of the membership de-
grees. Besides, the particular case of Lukasiewicz implica-
tion a! b = min(1; 1�a+ b) is worth noticing. Indeed, it
combines the effects of both certainty and gradual rules (ad-
dition of an uncertainty level, and enlargement of the core of
the output). Similarly, the bounded suma^b = min(a+b; 1)
combines the effects of the two conjunctive rules.

It is important to use the right kind of rule for the repre-
sentation of each piece of knowledge. First, the choice has
to be made between implicative and conjunctive models.

For if-then rules expressing constraints, as for instance “if
the speed of a car is highly too fast, then the driver must
brake strongly”, or “if a vegetable is big and orange, then it
is a pumpkin”, the problem is to determine if it corresponds
to certainty or gradual rules. Consider an inputA0 = fu0g
such that�A(u0) = �, with a partial membership degree
to the condition part of the rule (0 < � < 1). The answer
depends on the effect of� onB0, as shown on Figure 1.

If the rule expresses typicality, a partial membership de-
gree leads to an uncertainty level on the conclusion, and it is
acertainty rule. It is the case with the second rule: being big
and orange is typical of a pumpkin, if the vegetable is not re-
ally big, it can be a pumpkin, but it is not certain. Then the
rule expresses “The more a vegetable is big and orange, the
more certainly it is a pumpkin”. A certainty rule is a rule
which holds in normal cases; counter-examples should cor-
respond to rather exceptional situations.

If by contrast the rule expresses a closeness relation, or
a gradual evolution of a variable with respect to another, a
partial membership degree leads to a less precise conclusion,
and it is agradual rule. It is the case for the first rule which
expresses that the strength of the braking must be propor-
tional to the speed of the car, and which writes “the higher
the over-speed of a car, the stronger the driver must brake”.

For rules expressing examples of possible values, as for
instance “if someone is very rich, then this person can access
to numerous means of transport, including the least common
(and most expensive) ones”, or ”if a city is big, then its shops
are open in the evening”, the problem is to determine if they

correspond to possibility or to antigradual rules. As for im-
plicative rules, the answer depends on the effect of� onB0.

If the rule expresses that the whole conclusion is more or
less possible,� leads to a bounding of the possibility degrees
of the values inB. It is then apossibility rule, as in the
second example which expresses the level of possibility that
shops are open at “evening” time. It then writes “the bigger
a city, the more possible its shops are open in the evening”.

By contrast, if the rule only gives a set of more or less
possible values, and� leads to the deletion of the less pos-
sible values, it is then anantigradual rule. It is the case in
the first example, which means that the less common means
of transport (supposed here to be the most expensive ones)
cannot be guaranteed as possible ones for not very rich peo-
ple. The rule is understood as “the richer someone, the more
numerous the means of transport this person can access to”.

Sometimes, certainty and possibility rules can be con-
trasted according to counter-examples. Indeed, the rule “the
younger someone, the more it is certain that s/he is single”
should be a certainty rule since counter-examples are rather
exceptional. By contrast, the rule “the older someone, the
more it is possible s/he has been married” is a possibility
rule since even if non-married old persons are less numer-
ous than married ones, they are not exceptional at all.

Joint use of implicative and conjunctive rules
Usually, fuzzy rule-based systems are made of parallel rules
of the same kind. This section shows the interest of using
several kinds of rules in the same rule base, and in particular
one kind of implicative with one kind of conjunctive rules.

Thus, the considered knowledge baseK = K! [ K^ is
composed of a setK! = fAi ! Bi; i = 1; : : : ; ng of
implicative rules and a setK^ = fAj ^ Bj ; j = 1; : : : ;mg
of conjunctive rules, where! and^ are multiple-valued
implication and conjunction operators.

Dealing with both fuzzy constraints and examples
Information pertaining to a domain can be composed of both
examples of possible values, and of constraints expressing
sets of impossible values. To accurately represent this in-
formation, examples and constraints must be distinguished,
using conjunctive and implicative rules together.

For instance, consider an expert system for assessing the
buying price of a one-roomed flat in a big city. The consid-
ered input variables are the surface (Size , in m2), the prox-
imity to the university (Puni ) and to the town center (Pcen ,
in minutes). The output variable is the price (Pr�1000
dollars). An expert salesman can give the following rules
(which are very sketchy, and then not very realistic, for the
sake of simplicity).

� the morePuni is (12,15,20,23), the more certainlyPr is
(30,35,60,65),

� the morePuni is (12,15,20,23) and the morePcen is
(7,10,20,23), the more certainlyPr is (40,45,55,60),

� the morePuni is (12,15,20,23) and the morePcen is
(20,23,30,33), the more certainlyPr is (30,35,50,55),

where (a,b,c,d) is a trapezo¨ıdal shaped fuzzy set whose sup-
port is ]a; d[, and core[b; c]. For instance, (12,15,20,23)



means “approximately[15; 20]” (the interval ]12; 23[ ex-
pressing what is meant by approximately) and could be
given a linguistic label, as “not too far”.

Certainty rules have been chosen here since the given
prices are considered as boundaries. The upper bound is the
maximal price a buyer would pay for the flat, and the lower
bound the minimal price the seller would accept. However,
gradual rules, which encode the notion of proximity or re-
semblance, are also of interest in this context, and particu-
larly if knowledge about “reference flats” is available, as it
seems natural to assess: “the more similar two flats, the more
similar their prices should be” (see (Duboiset al. 1998)).

In this kind of application, another important source of
knowledge is the database of recently sold flats. This is
also the case in many engineering sciences which are data-
driven rather than knowledge-driven. The available informa-
tion is often under the form of data, each piece of data cor-
responding to an actually observed situation. By contrast,
each model of a knowledge base expressing constraints rep-
resents a potentially observable situation only. For instance,
consider the following entries of a database:

Size (m2) Puni (mn) Pr (dollars)

30 18 43,000
29 15 47,000
35 13 52,000
32 20 45,000

These data can be summarized by a conjunctive rule, like:

� the moreSize is (28,30,32,36) and the morePuni is
(12,15,20,23), the more possiblyPr is (40,43,50,55).

This extraction can be done either by a human expert, or an
adequate KDD process. It is not discussed here. The mem-
bership grades should reflect the typicality of the examples.

Usually, fuzzy rules extracted from rough data are con-
junctive ones, since they seem more natural to produce from
a (generally incomplete) set of examples. However, data can
be composed of both positive and negative examples, and
the latter could lead to implicative rules, since they express
impossible values. Depending on the applications, negative
examples may be rather difficult to find, as in the flat pric-
ing problem, where impossible values are more naturally as-
sessed through constraints provided by experts.

This example shows that both implicative and conjunc-
tive rules are required in order to accurately represent all the
available knowledge.

Inference mechanisms

The considered rule baseK contains two kinds of knowl-
edge, represented inK! andK^, whose representations
�K! andÆK^ express an upper and a lower bound of pos-
sible values respectively. This is why the fuzzy inference
mechanism (the Generalized Modus Ponens) should not be
applied directly onK, but separately onK! andK^. Then,
with only one kind of implicative and one kind of conjunc-
tive rules, no special inference mechanisms is required. The
methods consists in partitioningK into K! andK^, and
applying the usual algorithms.

With conjunctive rules, it is possible to apply the usual
rule by rule inference technique of classical expert systems.
Indeed, in equation (14),

S
andÆ commute, and then:

B0
^ = A0 Æ (

[m

j=1
Aj ^Bj) =

[m

j=1
(A0 ÆAj ^ Bj):

With implicative rules, this approach (called FITA, for
first infer then aggregate) should not be applied as soon as
the inputA0 is fuzzy. Only a global inference (called FATI
for first aggregate then infer) has to be used, since only the
following inclusion generally holds:

B0
! = A0 Æ (

\n

i=1
Ai ! Bi) �

\n

i=1
(A0 ÆAi ! Bi):

However, for certainty rules, the addition of well-chosen re-
dundant rules allow to design a rule by rule inference method
(Ughetto, Dubois, & Prade 1997) and, for gradual rules, spe-
cific inference techniques have been proposed.

For a (maybe fuzzy) inputA0, the rule baseK leads to a
double information: an upper boundB0

! and a lower bound
B0
^ of the possible values for the variableY . With these two

bounds, usualdefuzzificationmethods are no longer appro-
priate when a precise output is required. An intuitive method
consists in choosing one of the valuesv which maximize
both�B0

!
(v) and�B0^(v). Otherwise, the two bounds pro-

vide an accurate view of the possible range of values forY .
If this choice involves an optimization criterion, the out-

put value can be chosen according to a notion of higher order
uncertainty. In our example, if a flat sizing 31 m2 and at 18
mn from university is to be sold, the previous rules give the
range of prices depicted on Figure 2. It means that we are
sure to sell it between 43 and 50. It is also possible, but
not certain, to sell it between 55 and 60, and one cannot ex-
pect more than 65. In order to sell the flat very rapidly, the
price can range in[35; 40]. If only money (and not time) is
involved, the price can be then around 60.

µB

µB

0
6050 553530 4340 65

1

V

Figure 2: Possible prices for a flat (thousand dollars)

The inference mechanism becomes less simple when the
inputA0 is also ill-known, and only bounded byA0! andA0

^.
This is the case in particular when rules have to be chained.
Here again, the natural approach consists in usingA0! with
K! for obtainingB0

!, andA0
^ with K^ for obtainingB0

^.

Accurate representation of what is known
If the boundaries of the conclusion, namelyfB0

!; B0
^g are

more difficult to handle than a usual fuzzy setB0, they allow
for an accurate representation of what is known about the
possible values ofY . With only one kind of fuzzy rules, the
membership degree of an output valuev to the conclusion
B0 can be interpreted as follows. For implicative rules:

� �B0(v) = 0 means thatv is impossible,



� �B0(v) = 1 means ignorance, as no rule forbidsv. By
default,v is considered possible.

For conjunctive rules:

� �B0(v) = 1 means thatv is guaranteed to be possible,
� �B0(v) = 0 means ignorance, as no rule can guaranteev.

By default,v is considered not possible.

Now, for sets containing both implicative and conjunctive
rules, the case of ignorance is no more ambiguous since:

� �B0
!
(v) = 1 and�B0^(v) = 1 means thatv is guaranteed

to be completely possible (certainly possible),
� �B0

!
(v) = 1 and�B0^(v) = 0 means ignorance onv

which is neither guaranteed, nor forbidden,
� �B0

!
(v) = 0 and�B0^(v) = 0 means thatv is certainly

impossible.

Absence of information is no more interpretedby default
as possibility or impossibility, but expresses ignorance only.

Coherence checking
Validation is an important issue for rule-based systems, in
order to avoid inconsistent conclusions especially. In the
possibilistic framework, a set of rules is said to be coherent
if for all (allowed) input variable, there is at least one output
value totally compatible with the input value and the rules:
The rule baseK = fAi ! Bi; i = 1; : : : ; ng is coherent if
8u 2 U; supv2V �

K(u; v) = 1.
According to this definition, it is easy to show that only

implicative rules can be incoherent. Indeed, conjunctive
rules represent only a lower bound of the possibility distribu-
tion ÆK. Thus, it is not possible to prove thatÆK(u; v) < 1,
and the rule baseK^ is always coherent. Examples cannot
be incoherent, while constraints can be. Far from being a
drawback, it can be considered as a good property of im-
plicative rules. Since coherence checking algorithms have
been designed (see for instance (Dubois, Prade, & Ughetto
1997)), potential incoherence can be detected and removed.

However, checking the coherence ofK! is not sufficient
to ensure the coherence ofK. Indeed, for a given precise
input, an output value can be guaranteed possible by a con-
junctive rule and forbidden by an implicative rule. It is then
necessary to check the coherence ofK^ with respect toK!.
A set of rulesK = K! [ K^ is said to be coherence ifK!
is coherent and ifK^ is coherent w.r.t.K!, i.e., if:�

8u 2 U; 9v 2 V such that�K!(u; v) = 1;
and 8(u; v) 2 U � V; �K!(u; v) � ÆK^(u; v):

Efficient coherence checking algorithms for sets of paral-
lel certainty or gradual rules have been proposed in (Dubois,
Prade, & Ughetto 1997). They can be used to validateK!.

The coherence ofK^ w.r.t.K! is rather simple to check.
Indeed, according to the following propositions, it comes
down to check the coherence of each ruleAj ^ Bj in K^
w.r.t. each ruleAi ! Bi in K! such thatAi \ Aj 6= ;:
� A set of conjunctive rulesK^ = fAj^Bj ; j = 1; : : : ;mg
is coherent with respect to a set of implicative rulesK! =
fAi ! Bi; i = 1; : : : ; ng if and only if each rule inK^ is
coherent w.r.t. each rule inK!.

� A conjunctive ruleAj ^ Bj and an implicative ruleAi !
Bi are always coherent ifAi \ Aj = ;.

Coherence conditions can be defined for the different
pairs of rules (see (Ughetto 1997)).

Conclusion
This paper has advocated the interest of distinguishing be-
tween different kinds of rules for representing data and
knowledge, which can be appropriately modeled in the fuzzy
sets and possibility theory framework. It has been also
shown how to check the coherence of sets of different types
of rules and how to use them in inference. The differences
between the various kinds of fuzzy rules are meaningful
from a cognitive modeling point of view. Each kind, ei-
ther constraint-based or example-based, requires a separate
processing, leading to two conclusions which can be then
fused, and whose coherence can be discussed. The typology
of fuzzy rules should be also relevant when trying to extract
rules from data in learning. The distinction between data
and knowledge is discussed in a more general logical setting
by (Dubois, Hajek, & Prade 1997).
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