
Constraint-based integrity checking in abductive and non-monotonic
extensions of constraint logic programming

Aditya K. Ghose
Department of Business Systems

University of WollongongF
NSW 2522 Australia
aditya@uow.edu.an

Srinivas Padmanabhuni
Department of Computing Science
University of AlbertaFEdmonton

AlbertaFCanadaFT6G 2H1
srinivas@cs.ualberta.ca

Abstract

Recent research on the integration of the abductive
and constraint logic programming paradigms has led
to systems which are both expressive and computa-
tionally efficient. This paper investigates the role of
constraints in integrity checking in the context of such
systems. Providing support for constraints in this role
leads to a framework that is significantly more expres-
sive, without significant loss in efficiency. We augment
the Abductive Constraint Logic Programming frame-
work with assumed constraints and provide model- and
proof-theoretic accounts of two variants: one which in-
volves commitment to such assumptions, and one which
does not. We also show that such accounts extend eas-
ily to a constraint logic programming framework which
supports both negation and assumed constraints. The
gains in expressivity in these frameworks turn out to be
particularly useful in a variety of application domains,
including scheduling and constraint database updates.

Introduction
Recent research on the integration of the abductive and
constraint logic programming paradigms has led to sys-
tems which are both expressive and computationally ef-
ficient. The Abductive Constraint Logic Programming
(ACLP) paradigm (Kakas & Michael 1995) involves
cooperation of abductive and constraint solvers in effi-
ciently generating solutions to complex problems repre-
sented in an expressive[high-level language. This paper
seeks to enhance the expressive power of frameworks
such as ACLP by augmenting the representation lan-
guage with constraints whose sole purpose is integrity
checking. EquivalentlyFthis may be thought of as the
extension of the representation language with assumed
constraints. Our intent is to develop more robust and
expressive representational frameworks without sacri-
ficing computational efficiency.

Integrity constraints play a key role in a variety of
abductive and nonmonotonic reasoning systems. Re-
iter has convincingly argued in (Reiter 1988) that in-
tegrity constraints are best viewed as meta-theoretic
assertions concerning the content of a knowledge base
as opposed to object-level assertions in the knowledge
base. To our knowledgeFthere has been no previous
work on the use of constraints for integrity checkingF

either in the context of pure constraint-based reason-
ingFor hybrid frameworks such as constraint logic pro-
gramming (CLP) (Jaffar & M.J.Maber 1994) or
which integrate constraints with other reasoning sys-
tems (howeverF default reasoning notions have been
considered in the context of concurrent constraint pro-
gramming in (SaraswatFJagadeesanF& Gupta 1996)).
YetFthe question is a non-trivial oneFsince constraints
used for integrity checking must meta-theoretically re-
strict the set of consequences of a knowledge base with-
out restricting the values that solution variables may
take. The following example clarifies the point. Let
{x < 10, x > 5, y -- 1, x+y < 9) be agiven set of
constraints on the domain of integers. One may then
specify x _> 8 as an integrity constraint with the in-
tention of ensuring that every set of constraints used
to obtain a solution is consistent with it. The initial
set of constraints is not consistent with this integrity
constraintFbut the following two subsets are:

¯ {x<lO, x>5,y=l)

¯ {x<10,x>5, x+y<9)

Notice that both of these sets of constraintsFwhile be-
ing consistent with x > 8F admit solutions which vi-
olate it (e.g.Fx = 7,y -- 1 for the first set). Here
the integrity constraint has been used to restrict the
subproblem that is solvedFwithout being enforced on
the values that output variables may take in solutions.
ThusFthe integrity constraint plays precisely the same
role as integrity constraints in abductive systems such
as THEORIST (PooleFGoebelF& Aleliunas 1987).
THEORIST system with a and a -~ b as hypotheses
and -~b as an integrity constraint admits two distinct
maximal scenariosFcontaining a and a --~ b respectively.
Notice that -~b is used to restrict what may appear in
a maximal scenarioFbut does not itself appear in one.
We argue that several classes of applications require
that constraints predicates play such a role. No ex-
isting system supports this. For instanceFconstraint
predicates that appear in the integrity constraints of
ACLP are actually enforced on the output values that
variables may take.

An alternative view of constraints in integrity check-
ing roles treats them as assumptionsFin the same sense

From: AAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved.

as the justifications of default rules in default logic (Re-
iter 1980) (which are used as assumptions concerning
the content of extensions with the consistency of such
assumptions sanctioning the application of a default
rule). Our intent is to explore how assumed constraints
might play a role similar to default justifications in hy-
brid frameworks such as ACLP and CLP by serving
as filters that must be checked to determine the appli-
cability of a program clause. Once againFconstraint
assumptions restrict the set of valid conclusions but are
not themselves derivable as conclusions. In the context
of systems such as ACLP and CLPFwe distinguish be-
tween two classes of constraints: enforced constraints
(which constrain the values that output variables may
take) and assumed constraints in the sense just dis-
cussed.

Constraints as assumptions are useful in variety of
domains including planningFscheduling and configura-
tion. The following is a typical rule that one might need
to encode in a scheduling application:

If it is consistent to assume that a given order is
ready to be shipped and that the order arrives at
the loading dock at time tl and that truck A may
be loaded at time t2, then conclude that truck A
must be loaded at time t2, provided the constraint
t2=t1+5 is satisfiable.

Notice that t2 = t1÷5 is not an enforced constraint since
the values of tl and t2 are independently determined.
It is an assumed constraint whichFif violatedFblocks
the applicability of the corresponding rule.

Constraints used for integrity checking find useful
application in enforcing constraint database updates.
Returning to our initial example involving a set of
constraints on the domain of integersFthe retraction
of the constraint x < 8 from a database given by
(x < 10,x > 5,y = 1,x +y < 9} is achieved simply
by asserting x _> 8 as an integrity constraint. SimilarlyF
one might wish to specify constraints which determine
valid updates of the values of certain variablesFwith-
out enforcing them on the values of output variables
in solutions. In a companion paperFwe describe how
constraint predicates in integrity checking roles may
be used to define a meaningful notion of minimal spe-
cialization in formalizations of incremental learning of
constraint-based representations. One such account of
incremental learning is being trialed in a system for
automatically acquiring scheduling knowledge. Con-
straints in integrity checking roles may be used for en-
forcing the mutual exclusivity of constraints. ThusFthe
mutual exclusivity of constraints cl and c2 may be en-
forced by asserting -~(Cl A c2) as an integrity constraint
without requiring that the resulting constraint be en-
forced on solutions. Constraint assumptions may be
used to implement a weak notion of conditional con-
straints (e.g.F enforce Cl if it is consistent to assume
C2).

We discuss two variants of the ACLP framework
in detail in this paper. Both involve augmenting the

basic ACLP representational framework by permit-
ting the specification of assumed constraints in both
the program clauses and the integrity constraints. In
the first variantF which we shall call the Extended
A CLP (E-A CLP) frameworkF assumed constraints in
program clauses are tested for consistency against a
constraint store consisting of the current set of accu-
mulated enforced constraints to determine whether the
corresponding clause is applicable. The second variantF
which we shall call the EC-ACLP frameworkFinvolves
committing to assumptions in a manner analogous to
what Rational Default Logic (Mikitiuk & Truszcyn-
ski 1993) and Constrained Default Logic (DelgrandeF
SchaubF& Jackson 1994) achieve in the context of de-
fault reasoning. The intent is to ensure that contra-
dictory constraint assumptions are not made; this is
achieved by maintaining a separate store which accumu-
lates all assumed constraints in addition to the enforced
ones. We present a model theory and proof theory for
each variant. We then show how these semantics and
proof procedures extend to the case of CLP with de-
fault negation (applicable to non-constraint predicates)
and assumed constraints.

Extending ACLP with constraints for

integrity checking

In this section we shall define the syntax and present
the model theory of the E-ACLP and EC-ACLP frame-
works. As with CLPFwe shall assume that both these
frameworks are parameterized by a choice of constraint
domain 7). We shall use the standard notions of entail-
ment in constraint domainFand valuations as defined in
(Jaffar & M.J.Maher 1994). In the followingFBp refers
to the Herbrand base of P.

Extended ACLP

Definition 1 [Extended ACLP Framework] An
Extended ACLP(I)) framework is a triple (P,A,
where:

¯ P is a collection of clauses of the form:
P +- ql,-’’, qm~Cl,..., Cn : dl,..., dr

where p, ql , . . . , qm are non-constraint predicate sym-
bols while cl , . . . , cn and dl , . . . , dr are constraint
predicates defined on T).

¯ A is a distinguished subset of the set of non-constraint
predicates called abducibles.

¯ IC, the set of integrity constraints is a collection of
clauses of the form:

l ~’- ql , . . . , qm DCl , " " " , Cn :dl,.-. ,dr

where ql , . . . , qm are non-constraint predicate symbols
while cl , . . . , cn and dl , . . . , dr are constraint predi-
cates defined on 7).

Program clauses of
the form p ~ ql,... ,qmDcl,... ,Cn :dl,... ,dr read as
follows: if ql,-..,qm have been established and the set
of all enforced constraints ci together with all assumed

constraints di are consistent with the current constraint
store of accumulated enforced constraints, conclude p
and add each ci to the constraint store. An integrity
constraint of the form .l_~- ql,...,qm~cl,...,Cn :
dl,...,dr ensures that the following are not simulta-
neously true: ql,...,qra are simultaneously derivableF
each enforced constraint ci is entailed by the constraint
store and the constraint store is consistent with the as-
sumed constraints di.

Definition 2 Let P be an E-ACLP program. For any
pair (R, T) where R C Bp and T is any set of constraint
predicates on the domain l), let P(R, T) -- (R’,T’)
where R~ and T~ are the smallest sets such that:

¯ RI C_ Bp

¯ T~ is a set of constraint predicates defined on 7).

¯ for any clause p +- ql,...,qm~Cl,...,cn :
dl,. .. , dr E P, if there exist valuations v and v~ such
that v(ql),... ,v(qm) e R, D~ v(al) h... A v(cn)
v(T) and T)~ v’(Cl)A...Av’(ca)Av’(dl)A...Av’(dr)A
v’(T), then v(p) e R’, {cl,... ,ca}

A pair (M, S), where M C Bp and S is a set of con-
straints defined on 7), is a model of P iff F(M, S)
(M, S) and ±~

Definition 3 [E-ACLP Abductive Explanations]
Given an E-ACLP framework (P, A, IC), an explana-
tion of a goal of the form:

ql ,.. ¯, qm ~Cl ,..., Cn :dl,. ¯ ̄ , dr

is a set A of clauses of the form:

a t-- el,...,es

where a is an atom whose predicate symbol belongs to
A and each ei is a constraint predicate defined on 7),
such that there exists a model (M, S) of P A (JIC
such that S U {el,..., ca} tJ {dl,..., dr} is solvable and
for every valuation v where l)~ v(S U {cl,...,c~}),
{V(ql) V(qm)} C_

Adding eommltment to assumptions in
extended ACLP

SyntacticallyFEC-ACLP frameworks are identical to E-
ACLP frameworks. HoweverFthe notions of model and
abductive explanation differ. EC-ACLP models aug-
ment E-ACLP models by explicitly recording every con-
straint assumption made (in addition to all enforced
constraint) in a separate store. This store thus enables
explicit commitment to assumptions. For a program
clause to be applicableFits assumed constraints and its
enforced constraints must be jointly consistent with this
store. If a program clause is deemed to be applicableF
all assumed and enforced constraints contained in the
clause are added to this store (in addition to the en-
forced constraints being added to the set of accumu-
lated enforced constraints). Each integrity constraint
involves a similar consistency check with this additional
constraint store.

Definition 4 Let P be an EC-A CLP program. For any
triple (R, S, T) where R C Bp while S and T are sets
constraint predicates on the domain :D, let F(R, S, T) ---
(R~,S~,T~) be the smallest set R~, S~ and T~ such that:

¯ RI C_ Bp
¯ S~ and T~ are constraint predicates defined on 7).
¯ for any clause p +-- ql,...,qm~cl,...,cn :

dl, . . . , dr E P, if there exist valuations v and v~ such
that v(ql),... ,V(qm) e R, ~0~ v(cl) A... v(cn) A
v(T) and 7)~ vl(el) A ... A vl(cn) vl (dl) A .. . A
v’(dr) A v’(S), then v(p) E R’, {cl ,ca} C_ T’ and
{cl,...,ca} U {dl,...,dr} C S’.

A triple (M,C,S), where M C_ Bp and C and
are constraints defined on 7), is a model of P iff
P(U, C, S) = (M, C, S) and _1_¢

Definition 5 [EC-ACLP Abductive Explana-
tions] Given an EC-ACLP framework (P, A, IC), an
explanation of a goal of the form:

ql,... ,qmDcl,... ,ca :dl , dr

is a set A of clauses of the form:

a ~-- el~ . . . , es

where a is an atom whose predicate symbol belongs to
A and each ei is a constraint predicate defined on I),
such that there exists a model (M, C, S) of P A U IC
such that SU {cl,. . . ,ca} U {dl,... ,dr} is solvable and
for every valuation v where D~ v(U (J {el , ca}),
{v(ql),... ,v(qm)} _C

Observation: The E-ACLP and EC-ACLP frame-
works without assumed constraints in the program
clauses and integrity constraints coincide with the
ACLP framework.

Proof Procedure for EC-ACLP

In this sectionPwe present a proof procedure for: EC-
ACLP which builds on the abductive proof procedure
defined in (Kakas 8z Michael 1995). For convenience let
us denote a clause Rj of the above form by the short
form p ~ Qj~Cj : Dj where Cj denotes the set of
enforced constraints in the clause and Dj denotes the
set of assumed constraints in the clause and Qi repre-
sents the predicate literals in the clause Ri. A solu-
tion to the set of clauses of the above form are of the
form 3x(a(x), C(x)) where C(x) is a set of enforced con-
straints on the variables in the vector x in the abducible
predicate. The framework is a direct generalization of
the concept of clauses in CLP (R). The only additional
feature in the clauses of EC-ACLP(/)) is the presence
of the assumed constraints. The assumed constraints of
the form di are responsible for constraining the solution
space of the solutions to the constraint logic program.
Without loss of generality we shall assume any goal
clause to be of the form +- L1,L2,... ,L,~Dcl,... ,crop
because corresponding to any generic goal of the form
~-- L1,L2,... ,Ln~Cl,C2,C3 am : dl,d2,... ,dkPWe
can add the integrity constraint ~-- L1, L2,..., La~¢ :

dl, d2,..., dk to set of integrity constraints ICFand pass
the initial goal <-- L1, L2,..., LnDcl, c2, c3,...,Cm as
the initial goal G1 to the abductive proof procedure.

Abductive Derivation: An abductive derivation
from (G1,51,5~,J1) to (Gk,5k,5~.,ffk) in < P,A, IC >
is a sequence
(G1,51,5;, J1)F(G2, 52, 5~, J2),... I(Gk, 5k, 5~, Jk) such
that for each iFGi has the form 4-- L1,L2,...,LnNCF
C being a set of enforced constraints(could be empty)F
Lj is a selected atomFeach 5j is a set of ground ab-
ducibles over the domain of R extended by the skolem
constantsFeach 5* is a set of goals FJi is a set of en-

J . ¯
forced and assumed constraint terms denoting the set
of constraints of both kind encountered in the present
goal Gi and (G4+1,5i+1,6"+1, Ji+l) is derived according
to the following rules:

A1) If Li is not an abducible then Gi+l = SFSi+I =
- 5i where S is the5iFJi+l=Ji U Cj U Dj and 6"+1 - *

set of enforced constraints and literals in the CLP
resolvent of some clause Rj of the form p(u) +--
QjDCj : Dj in P with Gi on Lj and the set of
constraints Ji+l is solvable.

A2) If Lj is an atom with an abducible predi-
cate and Lj unifies with a member of 5/ return-
ing the constraints Co and or/U Co is solvable then
Gi+ 1 =t--’,..., Lj-1, Lj+I , . . . , LnNC U Cor ~i+l =

5i and 6"+1 : 5*FJi+l = Ji U Co.
A3) If Lj is an atom with an abducible predi-
cate and Lj ~_ 5iF let Sk(L2) = L20 = L’~ and

C" : C U {x -- t I x e var(Lj),t : xO}.
J" = Ji U {x = t [x E var(Lj),t = xO}.
Then there exists a consistency derivation from

’ " 5 ’ * J") ’ ’ *’ ’({Lj},C , 413 {L~},5~, to ({},C,5,5 ,J)
then Gi+l =4- L1,...,L3,L4 ,L,~C’. 5i+1 =
5’ and 5i*+1 = 6" and Ji+l = J’.

Consistency derivation A consistency derivation
for an abducible atom LFfrom (L, C1,51,5~,J1) to
(Fro, Cm, 5m, 5m, Jm) in < P, A, IC > is a sequence
(L, C1,61,5~, J1)l~F1, C1,51,5~, J1)]~F2, C2, 62, 5~, J2)r

... F(Fm, Cm, 5m, 5"~, Jm) where:

i) F1 is the set of resolvents of the form GllIG12
etc. where all goals Glk are of the form ~-
L1 , Ln~Cdi : Dd4 obtained by resolving the ab-
ducible L with the denials in IC and 5~. All the
constraints Cai here involved in any goal are en-
forced constraintsFand Dd4 contain only assumed
constraints.

ii) For each i > 1F Fi has the form {+-
L1,..,Ln~Cd4 : Dai} UF~FLj or Cdi or Ddi is se-
lected and (F/+I, Ci+l, 54+1,6"+1, Ji+l) is obtained
according to the following rules:

C1) If Lj is not an abducibleFlet R be the set of all
ri where ri is a resolvent of +-- L1,. ¯., Ln~Cdi : Ddi
with clauses in P on Lj and Jij is the set of enforced
as well as assumed constraints in the resolvent in

conjunction with JiFand Jij is solvable. Fi+l --
R [.J Fi Ci+ 1 ~- Ci 5*_{_ 1 = 6* 5i+ 1 = 54. and J4+1 =
J4.
(C2) If Lj is an abducible predicate atomF let
R be the set of all ri where ri is a resolvent of
+- L1,...,Ln~Cd4 : Ddi with atoms in 5i on Lj
and J4j is the set of enforced as well as assumed
constraints in the resolvent in conjunction with JiF
and Jij is solvable. Fi+l = R U F~ Ci+l = Ci
54"+1 = 5*[.J{’(" Lh... ,LnflCdi : Ddi} 5/+1 = 54

and Ji+l = Ji.

C3) if Cd4 is selected then Fi+x = FiFC4+I = C4 13
C’FS~+1 = 6" and 5i+1 = 5i and Ji+l = J4 U C’.

Here C’ is such that Ji 13 C’ is solvable but Cai 13 C’
is not solvable.

C4) if Ddi is selected then Fi+l = FiFC4+I = Ci
6"+1 = 6* and 5i.I- 1 = 5i and Ji+l = Ji 13 D’. Here
D’ is such that Ji U D’ is solvable but Ddi U D’ is
not solvable.

The difference from the treatment of Ddl from Cd4 is
that the constraint D’ is only added to the justifications
and not to the actual solution to enforce consistency[’
while in Cdi C’ is used to constrain the solution set of
constraints in Ci.

Theorem 1 If< P,A, IC > is an EC-ACLP program,
and (+- G, {}, {}, {}),..,(+- ¢~C, 6, 5", J) is an abduc-
tire derivation, it is termed as an abductive refutation.
If Ssot = Rs(SU 3xC) where x is the vector of ~ee vari-
ables in the constraint store C, and Rs stands for the
reverse skolemisation function, then 5sot is an abductive
explanation for the goal G.

Example 1 Consider the ACLP with assumed con-
straints in the following set of EC-ACLP clauses.

el: s(X, Y) +--r(X),p(Y)~Z +

C2: s(X, Y) +-- r(X)~X + Z
C3 : p(Y) +- ~Y =
C4 : r(X) <-- q(X), a(X), DX > 5, X < 10.
C5 : q(X) +- D : > 8.

We have an integrity constraint IC1 as +-- a(X)~X <
It has no assumed constraint in the global IC. Con-
sider the query 4- s(X,Y)~¢ : ¢. In the absence
of any assumed or enforced constraintFwe start with
G1 =<-- s(X, Y)~¢. At the outsetFwe resolve this with
the clause C1. The CLP resolvent is <--- r(X),p(X) and
constraint store C= {X+Y < 9}Fand J = {X+Y < 9}.
On further resolving this with the clause C3Fwe get
new goal as +- r(X) Fwith the constraint store C=
{Y = 1,X+Y < 9} and J = {Y = 1,XTY <
9}. Now r(X) can be resolved with clause C4Pto get
+- q(X), a(X) with the constraint store C and J both
as {X > 5,X < IO, Y = 1,X +Y < 9}. Next
q(X) can be resolved with the clause C5F and here
the assumed constraint X > 8 U J is not solvableF

hence this path of finding a solution stops. Retract-
ing the pathFwe now try to resolve the goal <--- s(X, Y)
with the clause C2. The CLP resolvent is <--- r(X)F
with the constraint store C ={X + Y > 8}, and J --
{X + Y > 8}. On further resolving this with the clause
C4Fwe get the new goal as +-- q(X),a(X)Fwith
{X > 5,X < 10,X+Y > 8} and J = C. Next when
we resolve q(X) with C5Fwe get the assumed constraint
X > 8. This constraint is solvable in conjunction with
J. So we can carry out the resolution and now J --
{X > 5,X < 10,X+Y > 8,X_> 8}. C still remains
the same. Now since we only have the abducible a(X)F
we skolemise a(X)Fto a(t)Ft being a skolem constant.
We add the substitution X--t to J as well as C. Now we
need to obtain a consistency derivation for a(t)Fwith
J1 = {X > 5,X < 10,X+Y > 8,X _> 8,X = t}F
51 -~ {a(t)}Cl = {X > 5, X IO, X T Y > 8, X =t}
,ff = {}.

The only integrity constraint against which a(t) can
be resolved is the integrity constraint IC1. On re-
solving +- a(t)F against IC1F we get the resolvent
+- Y < 3, Y = t All others remain the same. Now
to get the consistency derivation we note that there
are no abducibles in this resolvent. Thus by selecting
rule C3Fwe select t > 3 as the constraint C’ such that
J~ = {X > 5,X < 10,X +Y > 8,X >__ 8,X = t}UC’
is solvable but C’ U {Y = t, Y <_ 3} is not satisfiable.
So we end the consistency derivation with Fm= r(Jm -=
{X>5,X< 10, X+Y>S,X=t,t>3}VSm={a(t}
and ~n = {} and Jm = {X > 5, X < 10, X + Y >
8,X >__ 8,X = t,t > 3}.

So coming back to the abductive derivationFwe get
Gi+l =4-- X > 5,X < 10,X + Y > 8,X = t,t >
3, where we have no more abducibles left. Hence the
resulting solution for the query +-- s(X, Y) is the set of
constraints {X > 5, X < 10, X+Y > 8, X = t,t >
3}Fwhich when condensed along with ai and reverse
skolemised gives 4-- a(X)OX > 5,X < 10,X + Y > 8
as the solution.

Proof Procedure for E-ACLP

In the previous sectionFthe detailed proof procedure for
the EC-ACLP with commitment to assumptions was
explored in detail. The semantics of E-ACLP with-
out commitment to assumptions offers a more general
view of obtaining solution explanations than the rigid
framework offered by the commitment to assumptions.
A simple modification of the procedure defined for the
semantics in the previous section is sufficient to cap-
ture the notion of solution in this semantics. As al-
ready explained in the case of EC-ACLPFthe assumed
constraints can be presumed absent in the goal clauseF
without loss of generality.

Changes The following changes in the abductive and
consistency derivations of the proof procedure shall
achieve the required result.

1. In all the stepsFwhether the consistency derivation

or the abductive derivationFthe set of justifications
Ji is no longer required.

2. In any step where the solvability of Ji is seen in con-
junction with the set of enforced as well as assumed
constraints in the resolventFthe new form requires
solvability of the existing constraint store Ci of en-
forced constraintsFin conjunction with the set of both
enforced as well as the assumed constraints in the re-
solvent. The rules which are affected in this change
are ALIA2 and CllC2IC3 and C4.

3. In caseFthe set of constraints in CiFis solvable in
conjunction with the constraints of both types in the
resolventFadd the enforced constraints in the resol-
vent to the constraint storeFin rules A1 and A2.

4. The entire consistency derivation has no use of Ji in
the steps. In step C3Fonly Ci is modified by addition
of such a C’. In step C4Fdo no changes to anything
but only look for the existence of a D’ such that D’ is
solvable in conjunction with Ci but not solvable with
Ddi.

Example of commitment-free E-ACLP Consider
Example 1 in the previous section for the goal +--
s(X, Y) for the same set of clauses and integrity con-
straints. We start by resolving this with the clause
C1. The CLP resolvent is <-- r(X),p(X) and constraint
store C= {X + Y < 9}Fand J = {X + Y < 9}. On
further resolving this with the clause C3Fwe get new
goal as +-- r(X) Fwith the constraint store C--{Y =
1, X + Y < 9}. r(X) can be resolved with clause C4F
to get 4--- q(X),a(X) with the constraint store C as
{X > 5, X < 10,Y = 1, X + Y < 9} and Next the
q(X) can be resolved with the clause C5Fand here the
assumed constraint X > 8 U C is not solvableFhence
this path of finding a solution stops. Retracting the
pathFwe now try to resolve the goal +-- s(X, Y) with
the clause C2. The CLP resolvent is +- r(X)Fwith
the constraint store C = {X + Y > 8}, On further re-
solving this with the clause C4Fwe get the new goal as
+- q(X), a(X) with C= {X > 5, X < 10, X + Y > 8}.
Next when we resolve q(X) with C5Fwe get the as-
sumed constraint X > 8. This constraint is solvable
in conjunction with C. So we can carry out the res-
olution and C still remains the same. Now since we
only have the abducible a(X)Fwe skolemise a(X)Fto
say a(t). We add the substitution X=t to C. Now
need to obtain a consistency derivation for a(t)Pwith
~1 = {a(t)}C1 = {X > 5, X < 10, X+Y > 8,X = t}.
5~ = {} The only integrity constraint against which
a(t) can be resolved is the integrity constraint IC1.
resolving +-- a(t) Fagainst ICiFwe get the resolvent
4-- Y _< 3, Y = t All others remain the same. Now
to get the consistency derivation we note that there
axe no abducibles in this resolvent. Thus by select-
ing rule C3Fwe select t > 3 as the constraint C’ such
that C~ = {X > 5,X < 10,X+Y > 8,X =t}UC’
is solvable but C’ U{Y = t,Y < 3} is not satisfi-
able. So we end the consistency derivation with Fm =

IL7 m = {X > 5,X < IO, X+Y > 8,X = t,t > 3}F
~m ---- {a(t) and 5* = {}. The final constraint set
~-X>5, X< 10,X+Y>8,X=t,t>3givingthe
final solution as +-- a(X)NX > 5,X < 10,X + Y > 8.

CLP extensions

In this sectionF we shall provide some comments on
the semantics and proof procedures required for CLP
programs with default negation (applicable to non-
constraint predicates) and assumed constraints. We
shall refer to these as CLPNC programs. The syntax of
such programs is similar to that of program clauses in E-
ACLP and EC-ACLPFexcept that each qi is now addi-
tionally permitted to be of the form notq(xl,..., Xk)
well. The model theory relies on the Gelfond-Lifschitz
transform that forms the basis of stable model seman-
tics (Gelfond & Lifschitz 1990). Let Mt C_ Bp for a
CLPNC program P. Let P~ represent the program ob-
tained by applying every possible valid grounding to
clauses in P. Let P" be the program obtained by apply-
ing the Gelfond-Lifschitz transform to PTignoring both
enforced and assumed constraints. To obtain seman-
tics similar to those for E-ACLP (i.e.Pwithout commit-
ment to assumptions)Fwe compute the model (M,
obtained by treating p~l as an E-ACLP program. Then
(M, S) is treated as the model of the original program
iff M coincides with Mq To obtain semantics similar to
those for EC-ACLP (i.e.Fwith commitment to assump-
tions)Fwe compute the model (M,C,S) obtained by
treating po as an EC-ACLP program. Then (M, C, S)
is treated as the model of the original program P iff M
coincides with Mq

In contrast to the model-theoretic semantics which
computes total extensions in the form of stable modelsF
the proof procedures involved in logic programs with
negation formulate a top-down query answering proce-
dure for a target goal. The Eshghi-Kowalski procedure
(Eshghi & Kowalski 1989) has been modified for use
in logic programming with negation by Dung (Dung
1995) by considering negation as failure as a kind of ab-
duction. The scenarios(models) generated by this top
down procedure have been related to stable models and
other models of logic programs with negation in (Dung
1995). There have been specific versions of the Eshghi-
Kowaiski procedure proposed by Dung for negation as
failure in (Dung 1995)Fwith minor variations to take
care of the specific integrity constraints present in case
of negation by failure as the only rule of abduction.

Here too the only difference from the EC-ACLP
framework above is the formulation of integrity con-
straints. The only integrity constraints IC in the
CLPNC framework are of the form V(ti)p~ (ti) Vnotpi
and V(ti)-~(pi(ti) A notpi(ti)). This pair of constraints
holds for all predicates pi and its corresponding ab-
ducible predicate notpi. Here ti’s are vectors of vari-
ables contained in pi. The only abducibles are the those
of type notpi.

Conclusions
We have examined in this paper a set of related frame-
works which implement the notion of constraint as-
sumptionsF or constraints in integrity checking rolesF
motivated by the need to represent complex problems
drawn from a broad range of application domainsFin-
cluding planningF scheduling and configuration. We
have presented the model-theoretic and proof-theoretic
bases for two distinct extensions of the ACLP frame-
work. We have also outlined how theseFcoupled with
intuitions from the stable model semantics of logic pro-
grams with negationFmight be used to define a model
theory and proof theory for CLP programs with default
negation and assumed constraints. We believe these
are important advancesFyielding more robust and ex-
pressive systems without sacrificing computational effi-
ciency.

References
DelgrandeFJ. P.; SchanbFT.; and JacksonFW. K.
1994. Alternative approach to default logic. Artifi-
cial Intelligence 70:167-237.

DungF P. 1995. An argumentation theoretic foun-
dation for logic programming. J. Logic Programming
22:151-177.
EshghiFK.Fand KowalskiFR. 1989. Abduction com-
pared with negation by failure. In Proc. 6th ICLPF
234-254. MIT Press.
GelfondFM.Fand LifschitzFV. 1990. Logical programs
with classical negation. In Proc. 7th ICLPF579-597.
MIT Press.
JaffarFJ.Fand M.J.Maher. 1994. Constraint logic pro-
gramming: a survey. Journal of Logic Programming
503-581.
KakasFA.Pand MichaelFA. 1995. Integrating abduc-
tive and constraint logic programming. In Proc. 12th
ICLPF399-413.
MikitiukF A.F and TruszcynskiF M. 1993. Rational
default logic and disjunctive logic programming. In
Logic programming and nonmonotonic reasoning. MIT
Press.

PooleFD.; GoebelFR.; and AleliunasFR. 1987. The-
orist: A logical system for defaults and diagnosis. In
CerconeF N.F and McCallaF G.F eds.F The Knowledge
Frontier. Springer. 331-352.
ReiterFR. 1980. A logic for default reasoning. Artificial
Intelligence 13:81-132.

ReiterFR. 1988. On integrity constraints. In Proc. of
TARK-88F97-112.
SaraswatFV.; JagadeesanFR.; and GuptaFV. 1996.
Timed default concurrent constraint programming.
Journal of Symbolic Computation 22(5-6):475-520.

Thomas EiterF J. L.F and SubrahmanianF V. 1997.
Computing non-ground representations of stable mod-
els. In Proc of 4th LPNMRF198-217. Springer-Verlag.

